欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 10-22.doi: 10.3724/SP.J.1006.2012.00010

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

我国水稻主栽品种抽穗期多样性的遗传分析

魏祥进1,徐俊锋1,江玲1,王洪俊1,周振玲1,翟虎渠3,万建民1,2,*   

  1. 1 南京农业大学作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心,江苏南京210095;2 中国农业科学院作物科学研究所,北京100081;3中国农业科学院,北京100081
  • 收稿日期:2011-06-20 修回日期:2011-09-16 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 万建民, E-mail: wanjm@njau.edu.cn, wanjm@caas.net.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100101, 2006AA10Z1A5, 2006BAD13B01, 2009AA101101), 国家自然科学基金项目(30871497, 30571142), 江苏省高技术招标项目(BG2006301)和高等学校学科创新引智计划项目(B08025)资助。

Genetic Analysis for the Diversity of Heading Date of Cultivated Rice in China

WEI Xiang-Jin1,XU Jun-Feng1,JIANG Ling1,WANG Hong-Jun1,ZHOU Zhen-Ling1,ZHAI Hu-Qu3,WAN Jian-Min1,2,*   

  1. 1 State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-06-20 Revised:2011-09-16 Published:2012-01-12 Published online:2011-11-07
  • Contact: 万建民, E-mail: wanjm@njau.edu.cn, wanjm@caas.net.cn

摘要: 抽穗期决定着水稻品种的地区和季节适应性,我国水稻品种抽穗期表现出丰富的多样性。设置长、短日照和高、低温4种环境,分析了来自我国各稻区的83份粳稻和51份籼稻共134份水稻主栽品种的抽穗期感光性、感温性及基本营养生长性。回归分析表明我国水稻主栽品种的抽穗期与其感光性、基本营养生长性呈显著线性相关。高纬度地区的水稻品种往往具有弱的感光性和基本营养生长性,低纬度地区的品种感光性和基本营养生长性较强。利用一套抽穗期近等基因系对这134份品种抽穗期基因型进行了分析。结果表明,感光基因E1与基本营养生长Ef-1位点的不同基因型对我国水稻主栽品种抽穗期多样性起着重要的作用。大多数带有非感光等位基因e1的品种感光性与基本营养生长性都相对较弱,抽穗期较短;而携带感光性等位基因E1E1t的品种的感光性与基本营养生长性都相对较强,抽穗期较长。在Ef-1位点,携带显性早熟等位基因Ef-1的品种,其基本营养生长性较弱,抽穗期较短;而携带早熟效应较弱的等位基因Ef-1t或迟熟等位基因ef-1的品种,其基本营养生长性较强,抽穗期较长。同时,各主基因的不同基因型在我国各稻区或各种类型水稻中的分布频率也表现出不同的特点。这些结果将对我国水稻种质的合理利用及广适应性水稻新品种的选育具有重要的指导意义。

关键词: 感光性, 感温性, 基本营养生长性, 基因型分析

Abstract: Heading date (HD) determines the adaptability to growing regions of cultivated rice. There is a rich diversitycultivated rice. In this study, of HDs in Chinese HDs of 83 typical japonica rice and 51 typical indica rice cultivars native to different regions in China were investigated and their basic vegetative growth (BVG), photoperiod-sensitivities (PS) and temperature-sensitivities (TS) were analyzed. A regression analysis showed that HD was closely correlated with PS and BVG. The PS and BVG of cultivars were weak in high latitude regions of China, and strong in low latitude regions.Genetic analyses of the 134 cultivars were conducted using a set of HD tester lines. The results showed that, on the whole, when the cultivars carried no-PS allele e1,the plants headed earlier with weaker PS and BVG, when the cultivars carried the PS allele E1 or E1t, the plants headed later with strong PS and BVG. When the cultivars carried the allele Ef-1,the plants headed earlier with weaker BVG, when the cultivars carried the allele Ef-1t or ef-1, the plants headed later with strong BVG. It suggested that E1and Ef-1 are two major determinants of variation in heading date of cultivated rice in China. Otherwise, the distribution of different alleles of the major heading date genes in different regions of China was analysed, and the results showed that the leading alleles of the major HD genes in different regions of China was different.

Key words: Heading date, Diversity, Cultivated rice, Basic vegetative growth, Photoperiod-sensitivities

[1]Kinoshita T. Report of committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl, 1995, 12: 25–125
[2]Maheswaran M, Mackill D J, Huang N, Sreerangasamy S R, McCouch S R. Identification of RAPD markers linked to Se-3(t), a gene enhancing the level of photoperiod sensitivity in rice. Rice Genet Newsl, 1995, 12: 219–221
[3]Ohshima I, Watanabe Y, Asahic C. Genetic analysis of heading time in cross between two Indica varieties with two inhibitor genes for photoperiod sensitivity. Jpn J Breed, 1993, 43: 101–106
[4]Okumoto Y, Tanisaka T, Yamagata H. Heading-time genes of the rice varieties grown in the Tohoku-Hokuriku region in Japan. Jpn J Breed, 1992, 42: 121–135
[5]Okumoto Y, Tanisaka T. Trisomic analysis of a strong photoperiod-sensitivity gene E1 in rice (Oryza sativa L.). Euphytica, 1997, 95: 301–307
[6]Yokoo M, Okuno K. Genetic analysis of earliness mutations induced in the rice cultivar Norin 8. Jpn J Breed, 1993, 43: 1–11
[7]Shen B(沈波), Qian H-R(钱惠荣), Wang J-L(王建林), Zheng K-L(郑康乐). Tagging genes for heading date in rice via linkage to RFLP markers. Acta Agron Sin (作物学报), 1994, 20(1): 1–7 (in Chinese with English abstract)
[8]Ichitani K, Okumoto Y, Tanisaka T. Photoperiod sensitivity gene of Se-1 locus found in photoperiod insensitive rice cultivars of the northern limit region of rice cultivation. Breed Sci, 1997, 47: 145–152
[9]Ichitani K, Okumoto Y, Tanisaka T. Genetic analyses of low photoperiod sensitivity of rice cultivars from the northern most regions of Japan. Plant Breed, 1998, 117: 543–547
[10]Okumoto Y, Ichitani K, Inoue H. Photoperiod insensitivity gene essential to the varieties grown in the northern limit region of paddy rice (Oryza sativa L.) cultivation. Euphytica, 1996, 92: 63–66
[11]Tsai K H. Gene loci and alleles controlling the duration of basic vegetative growth of rice. In: Rice Genetics. Manila, Philippines: International Rice Research Institute, 1986. pp 339–349
[12]Inoue I, Nishida H, Okumoto Y, Tanisaka T. Identification of an early heading time gene found in the Taiwanese rice cultivar Taichung 65. Breed Sci, 1998, 48: 103–108
[13]Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTL) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91: 374–381
[14]Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet, 1997, 95: 1025–1032
[15]Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet, 1998, 96: 997–1003
[16]Maheswaran M, Huang N, Sreerangasamy S R, McCouch S R. Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed, 2000, 6: 145–155
[17]Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterizaton of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885–891
[18]Lin H X, Ashikari M, Yamanouch U, Sasaki T, Yano M. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci, 2002, 52: 35–41
[19]Yu S B, Li J X, Xu C G, Tan Y F, Li X H, Zhang Q F. Identification of quantitative trait loci and epistatic interactions for plant height and HD in rice. Theor Appl Genet, 2002, 104: 619–625
[20]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering line gene CONSTANS. Plant Cell, 2000, 12: 2473–2483
[21]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922–7927
[22]Kojima S, Takahashi Y, Kobayashi Y. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowing downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43(10): 1096-1105
[23]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1 a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 118: 926–936
[24]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767
[25]Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758
[26]Yamagata H, Okumoto Y, Tanisaka T. Analysis of genes controlling heading time in Japanese rice. In: Rice Genetics. Manila, Philippines: International Rice Research Institute, 1986. pp 351–359
[27]Yamamoto T, Kuboki Y, Lin S Y. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendellian factors. Theor Appl Genet, 1998, 97: 37–44
[28]Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interaction three QTLs, Hd-1, Hd-2 and Hd-3, controlling heading date of rice using nearly isogenic lines. Theor Appl Genet, 2000, 101: 1021–1028
[29]Xu J F, Jiang L, Wei X J, Zhang W W, Liu S J, Chen L M, Luo L G, Wan J M. Genotypes of heading date of middle indica rice in the mid-lower region of the Yangtze River. J Integr Plant Biol, 2007, 49: 1772–1781
[30]Wei X J, Jiang L, Xu J F, Zhang W W, Lu G W, Zhang Y S, Wan J M. Genetic analyses of heading date of japonica rice cultivars from Northeast China. Field Crops Res, 2008, 107: 147–154
[31]Yokoo M, Kikuchi F. Multiple allelism of the locus controlling heading time of rice, detected using the close linkage with the blast-resistance. Jpn J Breed, 1977, 27: 123–130
[32]Collaborative Group of Rice Light and Temperature (水稻光温协作组). Light and Temperature of Rice Varieties in China(中国水稻品种的光温生态). Beijing: Science Press, 1978. pp 1–40 (in Chinese)
[33]Vergara B S, Chang T T. The Flowering Response of the Rice Plant to Photoperiod, a Review of the Literature, 4th edn. Manila, Philippines: International Rice Research Institute, 1985. p 61
[34]Tsai K H. Further observations on the Ef-1 gene for early heading. Rice Genet Newsl, 1985, 2: 77–78
[35]Jiang L, Xu J F, Wei X J, Wang S F, Tang J Y, Zhai H Q, Wan J M. The inheritance of early heading in the rice variety USSR5. Acta Genet Sin, 2007, 34: 46–55
[36]Wei X J, Jiang L, Xu J F, Liu X, Liu S J, Zhai H Q, Wan J M. The distribution of japonica rice cultivars in the lower region of the Yangtze River valley is determined by its photoperiod-sensitivity and deading date genotypes. J Integr Plant Biol, 2009, 51: 922–932
[1] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[2] 王南,祁显涛,刘昌林,谢传晓,朱金洁. 基于CRISPR/Cas9核糖核蛋白体DNA定点内切酶体外活性建立高效基因型分析技术[J]. 作物学报, 2020, 46(7): 978-986.
[3] 何强;陈立云;邓华凤;唐文邦;肖应辉;袁隆平. 水稻C815S及其同源株系的育性光温特性[J]. 作物学报, 2007, 33(02): 262-268.
[4] 陈雄辉;万邦惠. 水稻的感光性、感温性与光温诱导雄性不育性之间的相关研究[J]. 作物学报, 1993, 19(03): 282-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!