作物学报 ›› 2012, Vol. 38 ›› Issue (03): 535-540.doi: 10.3724/SP.J.1006.2012.00535
韩仲志,赵友刚*
HAN Zhong-Zhi,ZAO You-Gang*
摘要: 为了验证以花生荚果图像特征识别品种和检验种子的可行性,选用代表北方大花生主推区的20份花生品种,从扫描图像获得花生荚果形态、颜色及纹理等50个特征,综合运用主分量分析(PCA)、神经网络(ANN)、支持向量机(SVM)、聚类分析等手段,讨论了品种识别、产地识别、DUS性状的选取和品种聚类过程,研究发现,经PCA优化特征的SVM识别模型识别效果好且识别结果稳定,20个品种的品种识别率达到90%以上。模型对3个不同产地的花生荚果正确识别率达到100%。另外从中筛选出一批对品种特异性、一致性和稳定性(DUS)测试有意义的备选特征,并建立了花生品种的谱系聚类树。研究结果对DUS性状的优选、花生品种及产地的识别及对花生谱系研究有一定参考价值。
[1]Agriculture Department of China, New Varieties of Plants Test Sub-centre (Guangzhou)(农业部植物新品种测试(广州)分中心), Photos Standards of New Peanut Varieties DUS Test (花生新品种DUS测试性状照片拍摄规范). Beijing: China Agriculture Press, 2010 (in Chinese)[2]UPOV. General Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants (TG/1/3). Geneva (Switzerland): The International Union for the Protection of New Varieties of Plants, 2002. p 11[3]Zhao C-M(赵春明), Han Z-Z(韩仲志), Yang J-Z(杨锦忠), Li N-N(李娜娜), Liang G-M(梁改梅). Study on application of image process in ear traits for DUS testing in maize. Sci Agric Sin (中国农业科学), 2009, 42(11): 4100–4105 (in Chinese with English abstract)[4]Han Z-Z(韩仲志), Zhao Y-G(赵友刚), Yang J-Z(杨锦忠). Detection of embryo using independent components for kernel RGB images in maize. Trans CSAE (农业工程学报), 2010, 26(3): 222–226 (in Chinese with English abstract)[5]Han Z-Z(韩仲志), Zhao Y-G(赵友刚). Quality grade detection in peanut using computer vision. Sci Agric Sin (中国农业科学), 2010, 43(18): 3882–3891 (in Chinese with English abstract)[6]Han Z-Z(韩仲志), Zhao Y-G(赵友刚). A cultivar identification and quality detection method of peanut based on appearance characteristics. J Chin Cereals Oils Assoc (中国粮油学报), 2009, 24(5): 123–126 (in Chinese with English abstract)[7]Han Z-Z(韩仲志), Zhao Y-G(赵友刚). Image analysis and system simulation on quality and variety of peanut. J Chin Cereals Oils Assoc (中国粮油学报), 2010, 25(11): 114–118 (in Chinese with English abstract)[8]Sakai N, Yonekawa S, Matsuzaki A. Two-dimensional image analysis of the shape of rice and its application to separating varieties. J Food Eng, 1996, 27: 397–407[9]Dubey B P, Bhagwat S G, Shouche S P, Sainis J K. Potential of artificial neural networks in varietal identification using morphometry of wheat grains. Biosyst Eng, 2006, 95(1): 61–67[10]Su Q(苏谦), Wu W-J(邬文锦), Wang H-W(王红武), Wang K(王库), An D(安冬). Fast discrimination of varieties of corn based on near infrared spectra and biomimetic pattern recognition. Spectroscopy Spectral Anal (光谱学与光谱分析), 2009, 29(9): 2413–2416 (in Chinese with English abstract)[11]Wang F(王方), Wang W(王伟), Zhang C-Y(张春娅), Yin J-T(尹吉泰), Wang S-S(王树生), Lu F-P(路福平). Recognition of production regions for Cabernet Sauvignon dry red wines. Sino-Overseas Grapevine Wine (中外葡萄与葡萄酒), 2008, (1): 4–7 (in Chinese with English abstract)[12]Hao J-P(郝建平), Yang J-Z(杨锦忠), Du T-Q(杜天庆), Cui F-Z(崔福柱), Sang X-P(桑素平). A study on basic morphologic information and classification of maize cultivars based on seed image process. Acta Agron Sin (中国农业科学), 2008, 41(4): 994–1002. (in Chinese with English abstract)[13]Yang J-Z(杨锦忠), Hao J-P(郝建平), DuT-Q(杜天庆), Cui F-Z(崔福柱), Sang X-P(桑素平). Discrimination of numerous maize cultivars based on seed image process. Acta Agron Sin (作物学报), 2008, 34(6): 1069−1073 (in Chinese with English abstract)[14]Lindsay I Smith. A tutorial on Principal Components Analysis [EB/OL]. http://www.cs.otago.ac.nz/cosc453/ student_tutorials/principal_components. pdf, February 26, 2002[15]Gardnera M W, Dorlinga S R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environ, 1998, 32: 2627−2636[16]Hsu C W, Chang C C, Lin C J. A practical guide to support vector classi_cation [EB/OL]. http://www.csie.ntu.edu.tw/~cjlin, April 15, 2010[17]Likas A, Vlassisb N, Verbeekb J J. The global k-means clustering algorithm. Pattern Recogn, 2003, 36: 451−461[18]Yang J-Z(杨锦忠), Zhang H-S(张洪生), Hao J-P(郝建平), Du T-Q(杜天庆), Cui F-Z(崔福柱), Li N-N(李娜娜), Liang G-M(梁改梅). Identifying maize cultivars by single characteristics of ears using image analysis. Trans CSAE (农业工程学报), 2011, 27(1): 196−200 (in Chinese with English abstract)[19]Yang J-Z(杨锦忠), Zhang H-S(张洪生), Zhao Y-M(赵延明), Song X-Y(宋希云), Wang X-Q(王新勤). Quantitative study on the relationships between grain yield and ear 3-D geometry in maize. Sci Agric Sin (中国农业科学), 2010, 43(21): 4367−4374 (in Chinese with English abstract)[20]GB/T 1532-2008. National Standards of the People's Republic of China: Peanut (中华人民共和国国家标准: 花生). Beijing: Standards Press of China, 2008 (in Chinese)[21]DB 34 T 252.4-2003. National Standards of the People's Republic of China: Pollution-free peanut IV: Peanut (Kernel)(中华人民共和国国家标准:无公害花生第4部分:花生果/仁). Beijing: Standards Press of China, 2003 (in Chinese) |
[1] | 唐浩,刘洪,余汉勇,张浙峰,肖应辉,杨益善,陈立云. 基于DUS测试的标准品种形态性状稳定性和重要性分析[J]. 作物学报, 2013, 39(04): 632-641. |
[2] | 潘治利, 祁萌, 魏春阳, 李锋, 张仕祥, 王建伟, 过伟民, 艾志录. 基于图像处理和支持向量机的初烤烟叶颜色特征区域分类[J]. 作物学报, 2012, 38(02): 374-379. |
[3] | 束永俊, 吴磊, 王丹, 郭长虹. 人工神经网络在作物基因组选择中的应用[J]. 作物学报, 2011, 37(12): 2179-2186. |
[4] | 王立新,常利芳,李宏博,季伟,刘丽华,赵昌平. 小麦区试品系DUS测试的分子标记[J]. 作物学报, 2010, 36(07): 1114-1125. |
[5] | 袁哲明*,谭显胜. 基于支持向量机非线性筛选水稻苗期抗旱性指标[J]. 作物学报, 2010, 36(07): 1176-1182. |
[6] | 黄英姿;毛盛贤. 基因型与环境互作研究的新进展[J]. 作物学报, 1992, 18(02): 116-125. |
|