作物学报 ›› 2017, Vol. 43 ›› Issue (06): 940-944.doi: 10.3724/SP.J.1006.2017.00940
• 研究简报 • 上一篇
胡文冉,范玲,李晓荣,谢丽霞,杨洋,李波,陈方圆
HU Wen-Ran,FAN Ling,LI Xiao-Rong,XIE Li-Xia,YANG Yang,LI Bo,CHEN Fang-Yuan
摘要:
分子量是聚合物的重要特性之一,木质素的分子量及其分布是研究苯丙烷类结构的反应、物理化学特性和评价其改性产物质量的内容之一。本研究以陆地棉成熟纤维为材料,分别利用酶解-温和酸解木质素法和二氧六环法提取棉纤维中木质素,结合凝胶渗透色谱法(gel permeation chromatography, GPC)调查和评价2种方法获得的棉纤维中木质素的相对分子量。结果表明,经二氧六环处理提取的棉花纤维中的木质素(dioxane lignin, DL)的重均分子量为2924 g mol–1、数均分子量2403 g mol–1,略高于由酶解-温和酸解处理提取的木质素(enzymatic hydrolysis-mild acidolysis lignin, EMAL)的重均分子量(2169 g mol–1)和数均分子量(1970 g mol–1),EMAL的多分散系数稍低,说明木质素的均一性比DL高。表明EMAL法提取的木质素更适用于分析棉纤维中木质素的相对分子量。利用EMAL法分析棉纤维中木质素相对分子量表明,不同棉花品种的木质素重均分子量分布范围为938~2169 g mol–1,数均分子量分布范围为857~1970 g mol–1,多分散性系数在1.09~1.74间,均小于2。重均分子量与纤维马克隆值呈显著负相关,数均分子量与纤维长度呈显著负相关,与纤维马克隆值呈极限著负相关。
[1] Fan L, Shi W J, Hu W R, Hao X Y, Wang D M, Yuan H, Yan H Y. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Integr Plant Biol, 2009, 51: 626–637 [2] Gou J Y, Wang L J, Chen S P, Hu W L, Chen X Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res, 2007, 17: 422–434 [3] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell, 2013, 25: 4421–4438 [4] Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651–664 [5] K?rk?nen A, Koutaniemi S. Lignin biosynthesis studies in plant tissue cultures. J Integr Plant Biol, 2010, 52:176–185 [6] Rubin E M. Genomics of cellulosic biofuels. Nature, 2008, 454: 841–845 [7] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol, 2003, 54: 519–546 [8] Mousavioun P, Doherty W. Chemical and thermal properties of fractionated bagasse soda lignin. Ind Crops Prod, 2010, 31: 52–58 [9] 崔朋, 方红霞, 吴强林, 钱晨. 超高效聚合物色谱法测定酚化解聚木质素的相对分子质量. 色谱, 2015, 33: 314–317 Cui P, Fang H X, Wu Q L, Qian C. Relative molecular mass determination of phenolated depolymerized sodium lignosulfonate by advanced polymer chromatography system. Chin J Chromatogr, 2015, 33: 314–317 (in Chinese with English abstract) [10] Jeong H, Park J, Kim S, Lee J, Ahn N, Roh H G. Preparation and characterization of thermoplastic polyurethanes using partially acetylated kraft lignin. Fibers Polymers, 2013, 14: 1082–1093 [11] Pouteau C, Dole P, Cathala B, Averous L, Boquillon N. Antioxidant properties of lignin in polypropylene. Polymer Degrad Stab, 2003, 81: 9–18 [12]Tolbert A, Akinosho H, Khunsupat R, Naskar A K, Ragauskas A J. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioprod Bioref, 2014, 8: 836–856 [13] 韩敏. 不同提取方法对木质素分子量及其分布的影响. 洛阳理工学院学报(自然科学版), 2013, 23: 1–4 Han M. Effects of different extraction on lignin molecular mass and distribution. J Luoyang Inst Sci Technol (Nat Sci Edn), 2013, 23(2): 1–4 (in Chinese with English abstract) [14] 孙永昌. 木质素高效分离、结构表征及基于离子液体的降解机理研究. 北京林业大学博士学位论文, 北京, 2014. pp 125–135 Sun Y C. Efficient Separation and Structural Characterization of Lignin, and Lignin Degradation in Ionic Liquid-Based Systems. PhD Dissertation of Beijing Forestry University, Beijing, China, 2014. pp 125–135 (in Chinese with English abstract). [15] Hu W R, Fan L, Tian X L, Tian X L. Modified methods for the analysis of the lignin-like phenolic polymer contents of cotton fiber. J Anim Plant Sci, 2015, 25: 232-239 [16] 胡文冉, 范玲, 孙涛, 谢丽霞, 田晓莉. 棉花纤维中苯丙烷类结构单体的检测方法. 棉花学报, 2016, 28: 407–412 Hu W R, Fan L, Sun T, Xie L X, Tian X L. A method for detecting phenylpropanoid monomers in cotton fiber. Cotton Sci, 2016, 28: 407–412 (in Chinese with English abstract) [17] 胡文冉, 范玲, 谢丽霞, 王乐乐. 不同发育阶段棉纤维中木质素的沉积变化. 新疆农业科学, 2016, 53: 467–472 Hu W R, Fan L, Xie L X, Wang L L . Dynamic changes of lignin deposition during cotton fiber development stage. Xinjiang Agric Sci, 2016, 45: 467–472 (in Chinese with English abstract) [18] Müse G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, Schopfer P. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta, 1997, 201: 146–159 [19] Koda K, Gaspar A, Argyropoulos D S. Molecular weight-functional group relations in softwood residual kraft lignins. Holzforschung, 2005, 59: 612–619 [20] Wu S B, Argyropoulos D S. An improved method for isolating lignin in high yield and purity. Journal of Pulp and Paper Science, 2003, 29: 235-240 [21] 蒋挺大. 木质素(第2版). 北京: 化学工业出版社, 2008 Jiang T D. Lignin, 2nd edn. Beijing: Chemical Industrial Press, 2008 (in Chinese) [22] 胡文冉, 张芳, 白洁, 曹双瑜, 范玲. 有机溶剂法提取棉花纤维中木质素. 新疆农业科学, 2011, 48: 1701–1703 Hu R W, Zhang F, Bai J, Cao S Y, Fan L. Extraction of lignin from cotton fiber with organic solvents. Xinjiang Agric Sci, 2011, 48: 1701–1703 (in Chinese with English abstract) [23] Ikeda T, Holtman K, Kadla J F, Chang H M, Jameel H. Studies on the effect of ball milling on lignin structure using a modified DFRC methods. J Agric Food Chem, 2002, 50: 129–135 [24] 刘凤岐, 汤心颐. 高分子物理. 北京: 高等教育出版社, 1995. pp 15–18 Liu F Q, Tang X Y. Polymer physics. Beijing: High Education Press, 1995. pp 15–18 (in Chinese) [25] 中野準三. 木质素的化学: 基础与应用. 北京: 轻工业出版社, 1988. pp 320–334 Nakano J. Chemistry of Lignin-Basis and Application. Beijing: China Light Industry Press, 1988. pp 320–334 (in Chinese) [26] Bj?rkman A. Studies on finely divided wood I. Extraction of lignin with neutral solvents. Svensk Papperstidning, 1956, 59: 477–485 [27] Brownell H H. Isolation of milled lignin and lignin carbohydrate complex. TAPPI, 1965, 48: 513–518 [28] Guerra A, Filpponen I, Lucia L A, Argyropoulos. Comparative evaluation of three lignin isolation protocols for various wood species. Agric Food Chem, 2006, 54: 9696–9705 [29] 武书斌, 李梦实. 麦草酶解-温和酸解木质素的化学结构特性研究. 林产化学与工业, 2006, 26(1): 104–108 Wu S B, Li M S. Study on chemical structure characteristics of wheat straw lignin from enzymatic hydrolysis-mild acidolysis. Chem Ind For Prod, 2006, 26: 104–108 (in Chinese with English abstract) |
[1] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[2] | 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627. |
[3] | 尹能文**,李加纳**,刘雪,练剑平,付春,李威,蒋佳怡,薛雨飞,王君,柴友荣*. 高温干旱下油菜的木质化应答及其在茎与根中的差异[J]. 作物学报, 2017, 43(11): 1689-1695. |
[4] | 陈雪萍**,荆凌云**,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊*. 甘蓝型油菜茎秆菌核病抗性与木质素及其单体比例的相关性分析及QTL定位[J]. 作物学报, 2017, 43(09): 1280-1289. |
[5] | 唐映红, 陈建荣, 刘芳, 袁有美, 郭清泉, 昌洪涛. 苎麻肉桂酰辅酶A还原酶基因cDNA序列的克隆与分析[J]. 作物学报, 2015, 41(09): 1324-1332. |
[6] | 邹俊林,刘卫国,袁晋,蒋涛,叶素琴,邓榆川,杨晨雨,罗玲,杨文钰. 套作大豆苗期茎秆木质素合成与抗倒性的关系[J]. 作物学报, 2015, 41(07): 1098-1104. |
[7] | 卢昆丽,尹燕枰,王振林*,李勇,彭佃亮,杨卫兵,崔正勇,杨东清,江文文. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制[J]. 作物学报, 2014, 40(09): 1686-1694. |
[8] | 吴立柱,王省芬,张艳,李喜焕,张桂寅,吴立强,李志坤,马峙英. 酸不可溶性木质素和漆酶在棉花抗黄萎病中的作用[J]. 作物学报, 2014, 40(07): 1157-1163. |
[9] | 黄杰恒**,李威**,曲存民,刘列钊,徐新福,王瑞,李加纳*. 甘蓝型油菜不同抗倒性材料中木质素代谢途径关键基因表达特点[J]. 作物学报, 2013, 39(08): 1339-1344. |
[10] | 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系[J]. 作物学报, 2011, 37(09): 1616-1622. |
[11] | 曲存民, 付福友, 卢坤, 谢景梅, 刘晓兰, 黄杰恒, 李波, 王瑞, 谌利, 唐章林, 李加纳. 不同环境中甘蓝型油菜种皮木质素含量的QTL定位[J]. 作物学报, 2011, 37(08): 1398-1405. |
[12] | 王娟, 倪志勇, 吕萌, 李波, 范玲. 棉花纤维伸长期与次生壁增厚期蛋白质组比较[J]. 作物学报, 2010, 36(11): 2004-2010. |
[13] | 王进,陈信波,高原,张彦红,龙松华,邓欣,何东锋,王玉富. 亚麻木质素合成关键酶基因表达分析[J]. 作物学报, 2009, 35(8): 1468-1473. |
[14] | 谭琨岭,胡明瑜,李先碧,覃珊,李德谋,罗小英,赵娟,臧振乐,李宝利,裴炎,罗明*. 棉花中一个钝叶醇14α-脱甲基酶基因同源基因(GhCYP51G1)的克隆、序列特征和表达分析[J]. 作物学报, 2009, 35(7): 1194-1201. |
[15] | 朱一超;张天真;贺亚军;郭旺珍. 棉花纤维伸长发育期的基因表达分析[J]. 作物学报, 2006, 32(11): 1656-1662. |
|