作物学报 ›› 2020, Vol. 46 ›› Issue (7): 978-986.doi: 10.3724/SP.J.1006.2020.93064
王南1,祁显涛1,2,刘昌林1,谢传晓1,*(),朱金洁1,*()
WANG Nan1,QI Xian-Tao1,2,LIU Chang-Lin1,XIE Chuan-Xiao1,*(),ZHU Jin-Jie1,*()
摘要:
建立快速、准确、高通量与简便易行的基因型分析技术对基因功能解析、分子育种与突变体鉴定研究具有重要价值。本研究的目标是利用Cas9或Cas9NG变体与单分子指导RNA (single guide RNA, sgRNA)核糖核蛋白复合体(sgRNA/Cas9-RNP或sgRNA/Cas9NG-RNP)体外DNA定点内切酶活性, 建立与优化简便高效与低成本的基因型分析技术。以我们前期创制的CRISPR/Cas9定点编辑玉米ZmWx基因第7外显子区域定点突变基因编辑后代分离群体为材料, 以ZmWx靶位点两侧特异引物扩增的PCR产物为底物, 利用原核表达并纯化的Cas9或Cas9-NG蛋白为DNA内切酶, 以体外转录的靶向ZmWx基因靶点的sgRNA或骨架序列优化的sgRNA (enhanced sgRNA, esgRNA)为Cas9或Cas9-NG酶定点活性指导元件, 通过体外组装为sgRNA/Cas9-RNP复合体, 对目标样本进行酶切, 以区分目标位点野生型、纯合突变体、杂合突变体基因型, 并对反应体系进行了优化。研究表明, 基于esgRNA/Cas9的PCR/RNP检测技术可对ZmWx基因编辑目标突变体后代进行快速有效的基因型鉴定; 实验体系优化结果表明, esgRNA/Cas9蛋白质量比为1:1, 各为1 μg, 20 μL反应体系, 37℃酶切0.5 h, 可对500 ng待测DNA底物充分酶切并确定基因型; esgRNA/Cas9NG反应体系优化结果表明, 当esgRNA与Cas9-NG蛋白均为2 μg时, 37℃酶切4 h, 可对500 ng DNA底物进行酶切并实现基因型分析。利用Cas9NG拓宽靶位点检测范围的研究结果, 暗示Cas9NG是以牺牲核酸酶酶切活性为代价降低了Cas9蛋白对PAM (protospacer adjacent motif, PAM)基序NGG序列的依赖性, 实现PAM-NG基序识别能力, sgRNA/Cas9NG检测效率等仍有待提升与优化。本研究为基因功能解析、分子育种与突变体鉴定等研究提供了一套简便、成本低廉的技术方法, Cas9NG体外内切酶活性及其效率也为该Cas9突变体活体基因编辑技术研发提供了参考数据。
[1] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821.
pmid: 22745249 |
[2] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X B, Jiang W Y, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339:819-823.
pmid: 23287718 |
[3] |
Shalem O, Sanjana N E, Hartenian E, Shi X, Scott D A, Mikkelsen T S, Heckl D, Ebert B, Root1 D E, Doench J G, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014,343:84-87.
pmid: 24336571 |
[4] |
Platt R J, Chen S, Zhou Y, Yim M J, Swiech L, Kempton H R, Dahlman J E, Parnas O, Eisenhaure T M, Jovanovic M, Graham D B, Jhunjhunwala S, Heidenreich M, Xavier R J, Langer R, Anderson D G, Hacohen N, Regev A, Feng G P, Sharp P A, Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159:440-455.
pmid: 25263330 |
[5] |
Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533:420.
pmid: 27096365 |
[6] |
Maddalo D, Manchado E, Concepcion C P, Bonetti C, Vidigal J A, Han Y C, Ogrodowski C, Rekhtman N, Lowe S W, Ventura A. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature, 2014,516:423.
pmid: 25337876 |
[7] |
Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017,551:464.
pmid: 29160308 |
[8] |
Konermann S, Brigham M D, Trevin A E, Joung J, Abudayye O O, Barcena C, Hsu P D, Habib N, Gootenberg J S, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015,517:583.
doi: 10.1038/nature14136 pmid: 25494202 |
[9] |
Kiani S, Beal J, Ebrahimkhani M R, Huh J, Hall R N, Xie Z, Li Y Q, Weiss R. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat Methods, 2014,11:723.
pmid: 24797424 |
[10] |
Hilton I B, D’ippolito A M, Vockley C M, Thakore P I, Crawford G E, Reddy T E, Gersbach C A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol, 2015,33:510.
doi: 10.1038/nbt.3199 pmid: 25849900 |
[11] |
Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, Xie X S. Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res, 2017,27:298.
pmid: 28084328 |
[12] |
Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157:1262-1278.
pmid: 24906146 |
[13] |
Hu J H, Miller S M, Geurts M H, Tang W X, Chen L W, Sun N, Zeina C M, Gao X, Rees H A, Lin Z, Liu D R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556:57.
doi: 10.1038/nature26155 pmid: 29512652 |
[14] |
Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Oura S. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018,361:1259-1262.
doi: 10.1126/science.aas9129 pmid: 30166441 |
[15] |
Nawaz G, Han Y, Usman B, Liu F, Qin B X, Li R G. Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech, 2019,9:254.
doi: 10.1007/s13205-019-1787-4 pmid: 31192079 |
[16] |
Bao A L, Chen H F, Chen L M, Chen S L, Hao Q G, Guo W, Qiu D Z, Shan Z H, Yang Z G, Yuan S G, Zhang C J, Zhang X J, Liu B H, Kong F J, Li X, Zhou X A, Tran L P, Cao D. CRISPR/ Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019,19:131.
doi: 10.1186/s12870-019-1746-6 pmid: 30961525 |
[17] |
Doll N M, Gilles L M, Gérentes M F, Richard C, Just J, Fierlej Y, Borrelli V M G, Gendrot G, Ingram G C, Rogowsky P M, Widiez T. Single and multiple gene knockouts by CRISPR-Cas9 in maize. Plant Cell Rep, 2019,38:487-501.
doi: 10.1007/s00299-019-02378-1 pmid: 30684023 |
[18] |
Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S, Gao C X, Li J. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant, 2017,10:1238-1241.
doi: 10.1016/j.molp.2017.06.006 pmid: 28645639 |
[19] | Qi X T, Dong L, Liu C L, Mao L, Liu F, Zhang X, Cheng B J, Xie C X. Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop J, 2018,6:314-320. |
[20] |
Dong L, Qi X T, Zhu J J, Liu C L, Zhang X, Cheng B J, Mao L, Xie C X. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol J, 2019,17:1853-1855
doi: 10.1111/pbi.13144 pmid: 31050154 |
[21] |
Li C X, Liu C L, Qi X T, Wu Y, Fei X, Mao L, Cheng B J, Li X H, Xie C X. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol J, 2017,15:1566-1576.
doi: 10.1111/pbi.2017.15.issue-12 pmid: 28379609 |
[22] |
Dong L, Li L N, Liu C L, Liu C X, Geng S F, Li X H, Huang C L, Mao L, Chen S J, Xie C X. Genome editing and double-fluores-cence proteins enable robust maternal haploid induction and identification in maize. Mol Plant, 2018,11:1214-1217.
doi: 10.1016/j.molp.2018.06.011 pmid: 30010025 |
[23] |
Datta S, Budhauliya R, Chatterjee S, Vanlalhmuaka, Veer V, Chakravarty R. Enhancement of PCR detection limit by single- tube restriction endonuclease-PCR (re-PCR). Mol Diagn Ther, 2016,20:297-305.
doi: 10.1007/s40291-016-0195-2 pmid: 26993322 |
[24] | Vouillot L, Thélie A, Pollet N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3: Genes Genom Genet, 2015,5:407-415. |
[25] |
Liu W, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019,62:1-7.
doi: 10.1007/s11427-018-9402-9 pmid: 30446870 |
[26] |
Liang Z, Chen K, Yan Y, Zhang Y, Gao C X. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol J, 2018,16:2053-2062.
doi: 10.1111/pbi.12938 pmid: 29723918 |
[27] |
Dang Y, Jia G G, Choi J, Ma H, Anaya E, Ye C, Shankar P, Wu H. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol, 2015,16:280.
doi: 10.1186/s13059-015-0846-3 pmid: 26671237 |
[28] |
Yin H, Song C Q, Suresh S, Wu Q, Walsh S, Rhym L H, Mintzer E, Bolukbasi M F, Zhu L J, Kauffman K, Mou H, Oberholzer A, Ding J, Kwan S Y, Bogorad R L, Zatsepin T, Koteliansky V, Wolfe S A, Xue W, Langer R, Anderson D G. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol, 2017,35:1179.
doi: 10.1038/nbt.4005 pmid: 29131148 |
[1] | 魏祥进, 徐俊锋, 江玲, 王洪俊, 周振玲, 翟虎渠, 万建民. 我国水稻主栽品种抽穗期多样性的遗传分析[J]. 作物学报, 2012, 38(01): 10-22. |
|