欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2854-2860.doi: 10.3724/SP.J.1006.2023.23064

• 研究简报 • 上一篇    

基于留一交叉验证法的APSIM-Maize产量模拟

杨雪宁1,2(), 张永强1(), 张选泽1, 马宁1, 张俊梅3   

  1. 1中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室, 北京 100101
    2中国科学院大学中丹学院, 北京 100101
    3达拉特旗农业技术推广中心, 内蒙古达拉特 014300
  • 收稿日期:2023-09-27 接受日期:2023-04-18 出版日期:2023-10-12 网络出版日期:2023-04-27
  • 通讯作者: 张永强, E-mail: zhangyq@igsnrr.ac.cn
  • 作者简介:E-mail: xnyang1999@163.com
  • 基金资助:
    “科技兴蒙”行动重点专项(十大孔兑综合治理与水资源集约高效利用集成示范) ()和 ()(KJXM-EEDS-2020005);鄂尔多斯科技重大专项(鄂尔多斯陆地生态系统碳储量、碳汇核算及潜力评价)(2022EEDSKJZDZX016)

Yield simulation from APSIM-Maize by using the leave-one-out cross validation approach

YANG Xue-Ning1,2(), ZHANG Yong-Qiang1(), ZHANG Xuan-Ze1, MA Ning1, ZHANG Jun-Mei3   

  1. 1Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100101, China
    3Dalat Banner Agricultural and Animal Husbandry Technology Extension Center, Dalat 014300, Inner Mongolia, China
  • Received:2023-09-27 Accepted:2023-04-18 Published:2023-10-12 Published online:2023-04-27
  • Contact: E-mail: zhangyq@igsnrr.ac.cn
  • Supported by:
    “Science for a Better Development of Inner Mongolia” Program (Integrated Demonstration of Comprehensive Management and Effective Utilization of Water Resources in the Ten Kongduis)(KJXM-EEDS-2020005);Bureau of Science and Technology of the Inner Mongolia Autonomous Region, and the Ordos Science & Technology Plan (Calculation and Evaluation of Carbon Storage and Carbon Sink in Terrestrial Ecosystem in Ordos)(2022EEDSKJZDZX016)

摘要:

作物生长模型APSIM广泛应用于作物估产和农业生产管理中, 在观测数据有限的情况下, 开展留一交叉验证是提高模型模拟能力的关键途径。本研究以内蒙古十大孔兑地区春玉米为研究对象, 量化分析了APSIM-Maize模型模拟2012—2019年间玉米产量对关键参数的敏感性, 并根据参数敏感性强弱对APSIM-Maize模型进行交叉验证与参数率定, 提高了模型模拟能力。主要结果为: (1) 影响春玉米产量的敏感性参数由强到弱依次是: 蒸腾效率系数、辐射利用效率、开花到成熟的积温、出苗到拔节的积温、开花到灌浆的积温、潜在灌浆速率、光周期和最大穗粒数; (2) 交叉验证时, APSIM-Maize模型各参数变异系数在1.06%~23.32%之间波动, 总体上模型参数变异性小, 可靠性高; (3) APSIM-Maize模型经过参数率定后的模拟产量与实测产量具有较好的一致性(R2 = 0.72, RMSE = 401.5 kg hm-2), 模型在十大孔兑地区春玉米产量的评估中表现出较好的适应性。本研究为在农田试验数据有限情况下提高模型率定参数的可靠性提供了新的研究思路和科学依据。

关键词: APSIM-Maize模型, 交叉验证, 春玉米

Abstract:

The Agricultural Production Systems Simulator (APSIM) has been extensively used in crop yield estimation and agricultural management. Leave-one-out cross validation is a key way to improve the model simulation capability with the limited filed data. In this study, we evaluate the parameters sensitivity to maize yield and evaluate the reliability of parameters with the leave-one-out cross validation based on the sensitivity rank of parameters. These results showed that: (1) The sensitive parameters for maize yield were ranked in descending order as: transpiration efficiency coefficient, radiation use efficiency, thermal time from flower to maturity, thermal time from emergence to end of juvenile phase, thermal time from flowering to start grain-filling, potential grain growth rate, photoperiod slope, and potential grains per head. (2) The coefficients of variation of parameters fluctuated from 1.06% to 23.32%, which indicates that the variation of parameter was small and the reliability of parameters was high. (3) The adjusted APSIM-Maize model performed well in simulating spring maize yield (R2 = 0.72; RMSE = 401.5 kg hm-2), which indicates that the model had great adaptability in estimating spring maize yield in the Ten Kongduis. Our study provides an insight to improve the reliability of parameters with limited field data.

Key words: APSIM-Maize model, cross validation, spring maize

表1

2012-2019年春玉米产量及田间管理数据"

年份Year 产量Yield (kg hm-2) 种植密度Plant density (plant m-3)
2012 11,801.41 6.30-6.75
2013 12,141.89 6.30-6.75
2014 11,967.90 6.75-7.50
2015 11,237.44 6.75-7.50
2016 11,606.40 6.75-7.50
2017 11,675.40 7.50-8.25
2018 11,859.90 7.50-8.25
2019 12,429.90 7.50-8.25

图1

留一交叉验证法示意图 RMSEi和R2i分别表示第i次交叉验证时的均方根误差和决定系数(i = 1, 2, …, 8); RMSE_Calj和RMSE_Valj分别表示第j年在交叉验证率定期和验证期的均方根误差(j = 2012, 2013, …, 2019)。"

图2

基于全局敏感性指数的参数敏感性排序 transp_eff_cf: 蒸腾效率系数; rue: 辐射利用效率; tt_flower_to_ maturity: 开花到成熟的积温; tt_emerg_to_endjuv: 出苗到拔节的积温; tt_flower_to_start_grain: 开花到灌浆的积温; grain_gth_ rate: 潜在灌浆速率; photoperiod_slope: 光周期; head_grain_no_ max: 最大穗粒数。"

图3

APSIM-Maize模型交叉验证与率定结果 (a): 交叉验证与率定时均方根误差比较, 其中RMSE_Cal表示交叉验证时率定期的均方根误差, RMSE_Val表示交叉验证时验证期的均方根误差, RMSE表示率定时的均方根误差; (b): 交叉验证(b1~b8)与率定(b9)时产量模拟值与实测值比较。"

表2

交叉验证及率定参数集"

参数名称
Parameter name
交叉验证 Cross validation CV
(%)
率定 Calibration
1 2 3 4 5 6 7 8
transp_eff_cf 0.012 0.013 0.012 0.013 0.012 0.012 0.012 0.012 3.53 0.012
rue 1.84 1.73 1.81 1.81 1.82 1.81 1.8 1.9 2.42 1.82
tt_flower_to_maturity 740 729 733 737 723 740 726 748 1.06 723
tt_emerg_to_endjuv 180 174 187 170 200 192 186 177 5.07 180
tt_flower_to_start_grain 246 142 222 238 225 244 225 268 15.39 225
grain_gth_rate 16.81 9.06 11.37 15.56 11.39 15.55 17.02 19.95 23.32 11.41
photoperiod_slope 14 12.07 14.5 21.67 13.48 13.96 16.06 14.06 18.24 20.08

图4

参数变异系数与敏感性顺序的关系"

[1] Hao S, Ryu D, Western A, Perry E, Bogena H, Franssen H J H. Performance of a wheat yield prediction model and factors influencing the performance: a review and meta-analysis. Agric Syst, 2021, 194: 103278.
doi: 10.1016/j.agsy.2021.103278
[2] He D, Wang E, Wang J, Robertson M J. Data requirement for effective calibration of process-based crop models. Agric For Meteorol, 2017, 234/235: 136-148.
doi: 10.1016/j.agrformet.2016.12.015
[3] Makowski D, Wallach D, Tremblay M. Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agron Sustain Dev, 2002, 22: 191-203.
[4] Sheng M, Liu J, Zhu A X, Rossiter D G, Liu H, Liu Z, Zhu L. Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model. Agric For Meteorol, 2019, 278: 107659.
doi: 10.1016/j.agrformet.2019.107659
[5] Ramirez Villegas J, Koehler A K, Challinor A J. Assessing uncertainty and complexity in regional-scale crop model simulations. Eur J Agron, 2017, 88: 84-95.
doi: 10.1016/j.eja.2015.11.021
[6] Her Y, Chaubey I. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrol Proc, 2015, 29: 4220-4237.
doi: 10.1002/hyp.10487
[7] 李波, 孙翔龙, 姚名泽, 鲍慧, 王俊皓. 温室秸秆不同还田量条件下DSSAT-CROPGRO-Tomato模型的调参与验证. 生态学杂志, 2021, 40: 908-918.
Li B, Sun X L, Yao M Z, Bao H, Wang J H. Parameter estimation and verification of the DSSAT-CROPGRO-Tomato model under the condition of different amounts of staw returned to the field in the greenhouse. Chin J Ecol, 2021, 40: 908-918. (in Chinese with English abstract)
[8] Chipanshi A, Zhang Y, Kouadio L, Newlands N, Davidson A, Hill H, Warren R, Qian B, Daneshfar B, Bedard F, Reichert G. Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric For Meteorol, 2015, 206: 137-150.
doi: 10.1016/j.agrformet.2015.03.007
[9] Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric For Meteorol, 2011, 151: 385-393.
doi: 10.1016/j.agrformet.2010.11.012
[10] Qian B, De Jong R, Warren R, Chipanshi A, Hill H. Statistical spring wheat yield forecasting for the Canadian prairie provinces. Agric For Meteorol, 2009, 149: 1022-1031.
doi: 10.1016/j.agrformet.2008.12.006
[11] Nurulhuda K, Muharam F M, Shahar N a N, Hashim M F C, Ismail M R, Keesman K J, Zulkafli Z. ORYZA (v3) rice crop growth modeling for MR269 under nitrogen treatments: assessment of cross-validation on parameter variability. Comput Electron Agric, 2022, 195: 106809.
doi: 10.1016/j.compag.2022.106809
[12] 赵子龙, 李波, 丰雪, 姚名泽, 解影, 邢经纬, 李长信. 温室环境不同灌水水平条件下DSSAT-CROPGRO-Tomato模型的调参与验证. 应用生态学报, 2018, 29: 2017-2027.
doi: 10.13287/j.1001-9332.201806.012
Zhao Z L, Li B, Feng X, Yao M Z, Xie Y, Xing J W, Li C X. Parameter estimation and verification of DSSAT-CROPGRO- Tomato model under different irrigation levels in greenhouse. J Appl Ecol, 2018, 29: 2017-2027. (in Chinese with English abstract)
[13] 陈召霞, 徐新刚, 徐良骥, 杨贵军, 邢会敏, 贺鹏. 基于新型植被指数的冬小麦覆盖度遥感估算. 麦类作物学报, 2016, 36: 939-944.
Chen Z X, Xu X G, Xu L J, Yang G J, Xing H M, He P. Estimating vegetation coverage of winter wheat based on new vegetation index. J Triticeae Crops, 2016, 36: 939-944. (in Chinese with English abstract)
[14] Keating B A, Carberry P S, Hammer G L, Probert M E, Smith C J. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron, 2003, 18: 267-288.
doi: 10.1016/S1161-0301(02)00108-9
[15] He L, Zha G, Jin N, Zhuang W, Yu Q. Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels. Trans CSAE, 2015, 31: 148-157.
[16] Saxton K E, Rawls W J, Romberger J S, Papendick R I. Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J, 1986, 50: 1031-1036.
doi: 10.2136/sssaj1986.03615995005000040039x
[17] 游松财, 邸苏闯, 袁晔. 黄土高原地区土壤田间持水量的计算. 自然资源学报, 2009, 24: 545-552.
doi: 10.11849/zrzyxb.2009.03.020
You S C, Di S C, Yuan Y. Calculation of filed capacity in the Loess Plateau region. J Nat Resour, 2009, 24: 545-552. (in Chinese with English abstract)
[18] Saltelli A, Tarantola S, Chan K P S. A quantitative model- independent method for global sensitivity analysis of model output. Technometrics, 1999, 41: 39-56.
doi: 10.1080/00401706.1999.10485594
[19] 宋明丹, 冯浩, 李正鹏, 高建恩. 基于Morris和EFAST的CERES-Wheat模型敏感性分析. 农业机械学报, 2014, 45(10): 124-131.
Song M D, Feng H, Li Z P, Gao J E. Global sensitivity analyses of DSSAT-CERES-Wheat model using Morris and EFAST methods. Trans CSAM, 2014, 45(10): 124-131. (in Chinese with English abstract)
[20] Li J, Wang L, Luo Z, Wang E, Wang G, Zhou H, Li H, Xu S. Reducing N2O emissions while maintaining yield in a wheat-maize rotation system modelled by APSIM. Agric Syst, 2021, 194: 103277.
doi: 10.1016/j.agsy.2021.103277
[21] Ren X, Sun D, Wang Q. Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agric Water Manag, 2016, 171: 40-48.
doi: 10.1016/j.agwat.2016.03.014
[22] Wang N, Wang E, Wang J, Zhang J, Zheng B, Huang Y, Tan M. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric For Meteorol, 2018, 250-251: 319-329.
[23] Iman R L, Conover W J. A measure of top-down correlation. Technometrics, 1987, 29: 351-357.
[24] Confalonieri R, Bellocchi G, Tarantola S, Acutis M, Donatelli M, Genovese G. Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environ Model Software, 2010, 25: 479-488.
doi: 10.1016/j.envsoft.2009.10.005
[25] Ahmed M, Akram M N, Asim M, Aslam M, Hassan F U, Higgins S, Stöckle C O, Hoogenboom G. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Comput Electron Agric, 2016, 123: 384-401.
doi: 10.1016/j.compag.2016.03.015
[26] Kheir A M S, Alkharabsheh H M, Seleiman M F, Al-Saif A M, Ammar K A, Attia A, Zoghdan M G, Shabana M M A, Aboelsoud H, Schillaci C. Calibration and validation of AQUACROP and APSIM models to optimize wheat yield and water saving in arid regions. Land, 2021, 10: 1375.
doi: 10.3390/land10121375
[27] Wang Y, Lyu J, Wang Y, Sun H, Hannaford J, Su Z, Barker L J, Qu Y. Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China. Internation J Disast Risk Reduct, 2020, 45: 101483.
[28] Levitan N, Gross B. Utilizing collocated crop growth model simulations to train agronomic satellite retrieval algorithms. Remote Sens, 2018, 10: 1968.
doi: 10.3390/rs10121968
[1] 栾奕, 白岩, 卢实, 李磊鑫, 王德强, 高婷婷, 石洁, 杨洪明, 路明. “十三五”国家东华北春玉米区域试验品种抗病性评价[J]. 作物学报, 2023, 49(4): 1122-1131.
[2] 吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响[J]. 作物学报, 2023, 49(4): 1065-1078.
[3] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[4] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[5] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[6] 刘朋召,师祖姣,宁芳,王瑞,王小利,李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[7] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[8] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[9] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[10] 宁芳,张元红,温鹏飞,王瑞,王倩,董朝阳,贾广灿,李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777-791.
[11] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[12] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[13] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
[14] 李光彦,王庆燕,许艳丽,卢霖,焦浏,董学瑞,董志强*. 双重化控对春玉米灌浆期穗位叶和籽粒蔗糖代谢关键酶活性的影响[J]. 作物学报, 2016, 42(08): 1215-1223.
[15] 路海东,薛吉全,郝引川, 张仁和,高杰. 播期对雨养旱地春玉米生长发育及水分利用的影响[J]. 作物学报, 2015, 41(12): 1906-1914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .