多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响
Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns
通讯作者: 马均, E-mail:majunp2002@163.com
收稿日期: 2023-09-23 接受日期: 2024-01-12 网络出版日期: 2024-02-07
基金资助: |
|
Corresponding authors: E-mail:majunp2002@163.com
Received: 2023-09-23 Accepted: 2024-01-12 Published online: 2024-02-07
Fund supported: |
|
作者简介 About authors
E-mail:957937991@qq.com
研究多元化种植模式下, 不同前茬秸秆还田与水氮管理对水稻产量形成、干物质积累分配及氮素吸收利用的影响。2018—2019年以杂交稻F优498为材料, 采用三因素裂裂区设计, 主区设置油菜-水稻(Py)、小麦-水稻(Px)、青菜-水稻(Pq) 3种种植模式秸秆还田, 裂区设置常规淹水灌溉(W0)和干湿交替灌溉(W1) 2种水分管理方式, 裂裂区设置不施氮处理(N0)、常规施氮处理(N1)、精量减氮处理(N2) 3个施氮水平, 分析测定了拔节期、齐穗期和成熟期不同处理下秸秆还田的腐解率、氮素释放率、水稻各器官的干物质积累分配、植株氮素吸收利用以及籽粒产量。结果表明, Py的平均产量分别较Px、Pq增加2.55%、13.99%, 主要原因是其有效穗数和千粒重较高; Py可促进各营养器官干物质和氮素积累, 有利于干物质分配、提高茎鞘氮素贡献率和氮肥利用率, Py各时期的平均干物质积累总量、氮素积累总量分别比Px和Pq增加5.25%、7.48%和14.60%、17.30%, Py的氮肥偏生产力较Pq显著增加24.90%, 但Py的秸秆腐解率和氮素释放率较低。3种模式下W1处理的水稻产量分别比W0处理增加5.10% (Py)、1.76% (Px)和4.80% (Pq), W1处理可促进秸秆腐解和氮素释放, 促进干物质积累和氮素吸收转运, 有利于Py和Px模式下的干物质分配, 进而提高氮肥利用率。同一秸秆还田和水分管理下, N2处理可促进秸秆腐解和氮素释放, 有利于干物质分配和氮素转运, 提高了齐穗期、成熟期茎鞘和叶片氮素积累量, 进而提高氮肥利用率, N2处理的产量、干物质积累量较N1处理略有下降, 但二者差异不显著。综合考虑分析, 油-稻种植模式下, 油菜秸秆还田配合干湿交替灌溉与精量减氮(120 kg hm-2)有利于干物质积累分配、氮素吸收转运, 进而提高氮肥农学利用率、氮肥偏生产力, 并可节约20%氮肥投入, 实现水稻稳产高效生产。
关键词:
To study the effects of different precrop straw return and water and N management on rice yield formation, dry matter accumulation and distribution, and N uptake and utilization under diversified cropping patterns. In 2018-2019, hybrid rice F you 498 was used as the experimental material, and a three-factor split plot design was adopted. The main plot was conducted with three planting modes of rape-rice (Py), wheat-rice (Px), and cabbage-rice (Pq). In the field, the split area was equipped with two water management methods including conventional flooding irrigation (W0) and alternating wet and dry irrigation (W1). The split area was equipped with three N levels including no N treatment (N0), conventional N application treatment (N1), and precise N reduction (N2). The decomposition rate, N release rate, dry matter accumulation, and the distribution of various rice nutrient organs, plant N uptake and utilization of straw returned to the field under different treatments at jointing, heading, and maturity stages, and grain yield were analyzed and measured. The results showed that the average yield of Py increased by 2.55% and 13.99%, respectively, compared with Px and Pq, mainly due to its higher effective panicles and 1000-grain weight. Py promoted the accumulation of dry matter and N in various nutrient organs, which was beneficial to dry matter distribution, to improve the stem sheath N contribution rate and N fertilizer utilization rate, the average total dry matter accumulation and total N accumulation at each stage of Py increased by 5.25%, 7.48%, and 14.60%, 17.30%, respectively, compared with Px and Pq. The partial factor productivity of N increased significantly by 24.90% compared with Pq, but the straw decomposition rate and N release rate of Py were lower. The rice yield of W1 treatment under the three modes increased by 5.10% (Py), 1.76% (Px), and 4.80% (Pq), respectively, compared with W0 treatment. W1 treatment promoted straw decomposition and N release, promote dry matter accumulation and N uptake and transport are beneficial to dry matter distribution in Py and Px modes, thereby improving N fertilizer utilization efficiency. Under the same straw return and water management, N2 treatment promoted straw decomposition and N release, which was beneficial to dry matter distribution and N transport, and increased N accumulation in stem sheaths and leaves at heading and maturity stages, thus improving N fertilizer utilization efficiency. However, the yields and dry matter accumulations in N2 treatment decreased slightly compared with those in the N1 treatment, but there was significant difference between them. Comprehensive analysis showed that under the rape-rice planting model, returning rapeseed straw to the field combined with alternating dry and wet irrigation and precise N reduction (120 kg hm-2) was beneficial to dry matter accumulation and distribution, N uptake and transport, and thus improving the agronomic efficiency of N, and partial factor productivity of N, and can save 20% of N fertilizer input to achieve stable and efficient rice production.
Keywords:
本文引用格式
胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均.
HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun.
多元化种植模式是中国稻田重要的种植体系, 具有提高土地利用率, 保证粮食安全等优点, 其中油菜-水稻、小麦-水稻、青菜-水稻是中国常见的种植方式[1-2]。每到收获时节, 这几种作物的秸秆也大量产生, 农户随地丢弃或焚烧, 导致秸秆利用率相对较低, 并加重了环境污染[3-4]。秸秆还田是利用秸秆的有效途径之一, 秸秆中含有丰富的有机质和中、微量元素, 秸秆还田后不仅能培肥地力、蓄水保墒, 还能促进养分循环利用和降低施肥量[5⇓-7]。实际生产中, 灌溉用水和氮肥投入是水稻稳产高产的重要限制因素, 但在水稻生产中存在水肥投入量大和利用率低的突出现象[8-9]。因此, 如何在多元化种植模式下, 将前茬作物秸秆还田与水氮管理综合考虑, 在适当减少水分用量的同时, 根据土壤供氮量进行精量减氮, 对于同步提高水稻产量和水肥利用效率至关重要。
前人关于秸秆还田、水分管理和施氮量对水稻产量、氮素吸收利用的影响做了相关研究。张斯梅等[10]研究发现, 麦秸全量还田下, 较当地常规施肥(300 kg hm-2)减氮20%配合氮肥前移, 有利于提高水稻氮肥农学利用率、氮肥偏生产力, 促进水稻稳产增产。张刚等[11]认为, 秸秆还田配施氮肥(240 kg hm-2)能够提高氮肥利用率, 增加产量, 降低氮肥损失, 秸秆还田较无秸秆还田增加氮肥农学利用率1.4~3.4 kg kg-1, 而增加施氮量将降低氮肥农学利用率的趋势。吴宗钊等[12]研究表明, 轻干湿交替灌溉(66.7%)配施氮肥(180 kg hm-2)时水氮耦合效应最佳, 适当水分胁迫仍能获得高产, 并保持较高的氮肥利用效率。张宇杰等[13]揭示, 麦秆全量还田下, 干湿交替灌溉配合氮肥运筹(基肥∶蘖肥∶穗肥=3∶3∶4)能够促进水稻主要生育时期秸秆氮素释放, 提高地上部氮素积累及转运能力, 提高氮肥回收利用率与水分利用率。目前, 前人研究多集中在单一类型秸秆还田或水氮耦合上, 忽略了多元化种植模式下, 前茬氮素投入在秸秆和土壤中残留差异较大, 未能根据土壤供氮量进行精确定氮, 且多元种植模式下秸秆还田、水分管理和施氮量间的交互作用对水稻干物质积累分配、氮素吸收利用及产量形成的研究还不足。因此, 本试验以F优498为材料, 在油菜-水稻、小麦- 水稻、青菜-水稻3种种植模式前茬秸秆还田下, 设置常规淹水灌溉和干湿交替灌溉, 常规施氮和精量减氮处理, 研究多因素共同作用对秸秆腐解率、氮素释放率、水稻干物质积累分配、氮素吸收利用和产量形成的影响, 以期为多元化种植体系秸秆还田利用与稻季水氮高效管理模式提供理论及实践依据。
1 材料与方法
1.1 试验材料
图1
图1
2018-2019年试验区水稻生育期平均气温和降雨量
Fig. 1
Average temperature and rainfall during growth period in rice in the experimental area from 2018 to 2019
表1 土壤基本理化性状
Table 1
年份 Year | 前茬田 Preceding fields | 全氮 Total N (g kg-1) | 有机质 Organic matter (g kg-1) | 碱解氮 Alkali hydrolyzed N (mg kg-1) | 速效磷 Available P (mg kg-1) | 速效钾 Available K (mg kg-1) |
---|---|---|---|---|---|---|
2018 | 油菜Rape | 1.63 | 41.44 | 124.32 | 18.54 | 231.26 |
小麦Wheat | 1.51 | 33.27 | 115.32 | 17.33 | 193.73 | |
青菜Cabbage | 1.32 | 31.78 | 107.30 | 16.89 | 224.89 | |
2019 | 油菜Rape | 1.85 | 44.78 | 136.10 | 20.74 | 239.75 |
小麦Wheat | 1.66 | 35.56 | 118.32 | 18.78 | 197.78 | |
青菜Cabbage | 1.45 | 32.85 | 109.46 | 17.57 | 231.45 |
1.2 试验设计
采用三因素裂裂区设计, 主区设置3种种植模式秸秆还田: 油菜-水稻模式(Py), 油菜秸秆全量还田(6500 kg hm-2); 小麦-水稻模式(Px), 小麦秸秆全量还田(5000 kg hm-2); 青菜-水稻模式(Pq), 青菜残留物全量还田(1000 kg hm-2)。裂区为2种水分管理方式, 设常规淹水灌溉(W0)和干湿交替灌溉(W1)。裂裂区设置3个施氮水平: 不施氮(N0: 0 kg hm-2); 常规施氮(N1: 150 kg hm-2); 精量减氮施肥(N2: 根据土壤供氮量以及氮肥当季利用率减氮施肥)。
定氮公式[14]: 达到目标产量的施氮量(kg hm-2) = (达到目标产量的需氮量−土壤供氮量)/氮肥当季利用率。
具体数据参考该田块之前研究[15], 目标产量10,000 kg hm-2, 每100 kg稻谷需氮量为1.83 kg, 土壤供氮量106.1 kg hm-2, 氮肥利用率为47.1%, 算得所需氮肥为165 kg hm-2, Py、Px、Pq下还田氮素分别45、25和20 kg hm-2, 最终算得Py、Px、Pq下N2施氮量分别为120、140和145 kg hm-2。
2年均采用旱育秧, 2018年于3月18日播种, 5月19日移栽; 2019年于3月24日播种, 5月24日移栽。其中2019年为2018年的定位试验, 2018年水稻收获后, 冬季在相应小区种植油菜、小麦和青菜。小区面积12 m2, 重复3次, 共计54个小区, 行穴距为33.3 cm×16.7 cm, 单本移栽。氮肥为尿素(N≥46%), 按基肥∶蘖肥∶促花肥∶保花肥=3∶3∶2∶2施用, 基肥在移栽前1 d施入, 蘖肥在移栽后7 d施用, 促花肥与保花肥分别于倒4叶和倒2叶抽出时施用。磷肥为过磷酸钙(P2O5≥12%, 90 kg hm-2), 全作底肥一次性施入。钾肥为氯化钾(K2O≥60%, 150 kg hm-2), 按基肥∶穗肥=7∶3施用。小区之间做田埂并用地膜包覆, 以免串水串肥, 其他田间管理措施与当地常规管理方式相同。
1.3 测定项目和方法
1.3.1 土壤理化性状测定
在前茬作物收获后, 灌水旋田前, 按照五点取样法, 将土样取回实验室, 自然风干后磨细, 过20目筛子, 用重铬酸钾外加热法测定土壤有机碳含量, 并换算成有机质; 用凯氏定氮法测土壤全氮; 用碱解扩散法测定土壤碱解氮; 用碳酸氢钠法测定速效磷; 用醋酸铵-火焰原子吸收分光光度法测定速效钾。
1.3.2 产量及产量构成因素
于成熟期各小区选取30穴调查有效穗数, 并按平均有效穗数从每小区选取5穴进行考种, 调查实粒数、空粒数、结实率、千粒重等指标, 待稻谷含水量为13.5%时实测产量。
1.3.3 秸秆腐解率及氮素释放率
于水稻移栽前在每小区埋入装40 g左右相应秸秆的尼龙网袋(深7 cm处), 并在袋中装入等量泥土以助秸秆腐解。于拔节期、齐穗期和成熟期分别取出网袋, 洗净烘干后测定剩余秸秆重量, 后粉碎过筛用凯氏定氮法测定样品中全氮含量, 计算秸秆腐解率及氮素释放率。秸秆腐解率(%) = (试验前网袋内秸秆质量-网袋内秸秆残留质量)/试验前网袋内秸秆质量×100%。秸秆氮素释放率(%) = (原始秸秆质量×原始秸秆氮素含量-剩余秸秆质量×剩余秸秆氮素含量)/(原始秸秆质量×原始秸秆氮素含量)×100%。
1.3.4 干物质积累与分配
于水稻拔节期、齐穗期、成熟期各小区按平均茎蘖数取代表性植株3穴, 分茎、叶、穗(齐穗期和成熟期) 3个部分, 在105℃下杀青30 min, 后在80℃下烘干至恒重, 称取各器官干物质量, 计算植株干物质积累与分配。(1) 茎鞘干物质转运量(kg hm-2) =齐穗期茎鞘干物质量−成熟期茎鞘干物质量; (2) 叶片干物质转运量(kg hm-2) = 齐穗期叶片干物质量−成熟期叶片干物质量; (3) 茎鞘干物质输出率(%) = 茎鞘干物质转运量/齐穗期茎鞘干物质量×100%; (4) 叶片干物质输出率(%) = 叶片干物质转运量/齐穗期叶片干物质量×100%; (5) 茎鞘干物质转运贡献率(%) = 茎鞘干物质转运量/成熟期穗部干物质量×100%; (6) 叶片干物质转运贡献率(%) = 叶片干物质转运量/成熟期穗部干物质量 × 100%; (7) 收获指数(HI) = 成熟期籽粒干重/成熟期植株总干重。
1.3.5 氮素吸收与转运
将1.3.4样本分别粉碎过筛, 采用浓H2SO4-H2O消煮, 凯氏定氮法测定各器官的全氮含量, 计算氮素积累与转运特性(全自动高通量蒸馏滴定仪, UDK169 & Autokjel, 意大利)。(1) 茎鞘氮素转运量(kg hm-2) = 齐穗期茎鞘氮积累量−成熟期茎鞘氮积累量; (2) 叶片氮素转运量(kg hm-2) = 齐穗期叶片氮积累量−成熟期叶片氮积累量; (3) 茎鞘氮素输出率(%) = 茎鞘氮素转运量/齐穗期茎鞘氮素积累量×100%; (4) 叶片氮素输出率(%) = 叶片氮素转运量/齐穗期叶片氮素积累量×100%; (5) 茎鞘氮素转运贡献率(%) = (茎鞘氮素转运量/成熟期穗部氮素积累量)×100%; (6) 叶片氮素转运贡献率(%) = (叶片氮素转运量/成熟期穗部氮素积累量)×100%。
1.3.6 植株氮素利用
根据成熟期产量计算氮素农学利用率及氮肥偏生产力。(1) 氮素农学利用率(kg kg-1) = (施氮区作物产量−无氮区作物产量)/氮肥施用量; (2) 氮素偏生产力(kg kg-1) = 施氮区产量/施氮量。
1.4 数据计算和统计分析
采用Microsoft Excel 2016统计数据, SPSS 25.0 (SPSS Institute Inc, 美国)软件分析数据, 并利用最小显著差数(LSD)在P<0.05水平上进行差异显著性比较。2年试验各处理下水稻产量及各测定指标变化趋势和重演性一致, 本文以2019年数据结果进行分析。
2 结果与分析
2.1 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成的影响
由表2可知, 不同种植模式下秸秆还田对水稻千粒重和产量的影响达极显著水平, 水分管理与施氮量(每穗颖花数除外)对水稻产量和产量构成因素的影响达极显著水平, 秸秆还田和水分管理交互作用(有效穗数除外)、秸秆还田和施氮量交互作用、水分管理和施氮量交互作用(结实率除外)对有效穗数和结实率的影响达显著水平。
表2 多元化种植模式下秸秆还田配合水氮管理对水稻产量及产量构成因素的影响
Table 2
处理 Treatment | 有效穗数 Effective panicles (×104 hm-2) | 每穗颖花数 Spikelets per panicle | 结实率 Seed-setting rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (kg hm-2) | ||
---|---|---|---|---|---|---|---|
Py | W0 | N0 | 90.1 d | 225.54 a | 93.94 ab | 31.97 d | 6068.44 c |
N1 | 137.3 b | 231.66 a | 91.38 bc | 32.84 bcd | 9303.67 ab | ||
N2 | 119.2 c | 229.43 a | 90.34 c | 33.35 abc | 8772.68 b | ||
均值Average | 115.5 | 228.81 | 91.90 | 32.72 | 8046.26 | ||
W1 | N0 | 91.2 d | 221.17 a | 95.45 ab | 32.23 cd | 6149.43 c | |
N1 | 147.5 a | 230.92 a | 91.40 bc | 33.79 ab | 9796.36 a | ||
N2 | 128.8 bc | 228.27 a | 91.27 c | 34.40 a | 9698.83 a | ||
均值Average | 122.5 | 226.79 | 92.71 | 33.47 | 8548.21 | ||
Px | W0 | N0 | 85.9 c | 244.59 a | 93.17 a | 31.49 c | 5983.57 b |
N1 | 127.7 ab | 245.62 a | 92.98 a | 32.50 ab | 9166.53 a | ||
N2 | 122.5 b | 242.99 ab | 92.34 a | 32.98 a | 8910.31 a | ||
均值Average | 112.0 | 244.40 | 92.83 | 32.32 | 8020.14 | ||
W1 | N0 | 94.4 c | 218.67 c | 93.31 a | 31.92 bc | 5990.72 b | |
N1 | 136.7 a | 227.50 abc | 92.98 a | 32.75 a | 9292.24 a | ||
N2 | 136.2 ab | 222.92 bc | 92.41 a | 33.09 a | 9200.85 a | ||
均值Average | 122.4 | 223.03 | 92.90 | 32.59 | 8161.27 | ||
Pq | W0 | N0 | 91.6 c | 219.91 a | 91.84 a | 31.23 c | 5215.41 b |
N1 | 126.3 ab | 221.25 a | 90.65 a | 32.64 b | 8194.23 a | ||
N2 | 117.9 b | 220.72 a | 88.82 a | 33.06 ab | 7913.04 a | ||
均值Average | 111.9 | 220.62 | 90.44 | 32.31 | 7107.56 | ||
W1 | N0 | 94.0 c | 200.20 a | 94.94 a | 31.68 c | 5423.67 b | |
N1 | 138.4 a | 205.83 a | 92.41 a | 33.53 ab | 8532.27 a | ||
N2 | 134.2 a | 200.85 a | 92.13 a | 33.87 a | 8394.27 a | ||
均值Average | 122.2 | 202.29 | 93.16 | 33.03 | 7450.07 | ||
F值 F-value | P | 0.35 ns | 3.70 ns | 0.26 ns | 18.61** | 80.42** | |
W | 32.71** | 6.79** | 7.82** | 7.30** | 6.70** | ||
N | 202.22** | 0.18 ns | 8.50** | 54.68** | 302.79** | ||
P×W | 0.48 ns | 1.27 ns | 6.36* | 0.55 ns | 0.67 ns | ||
P×N | 4.43* | 0.26 ns | 6.30* | 1.00 ns | 0.35 ns | ||
W×N | 5.03* | 0.12 ns | 0.35 ns | 0.51 ns | 1.26 ns | ||
P×W×N | 0.28 ns | 0.27 ns | 0.09 ns | 0.53 ns | 0.21 ns |
Py: 油菜-水稻模式, 油菜秸秆全量还田(6500 kg hm-2); Px: 小麦-水稻模式, 小麦秸秆全量还田(5000 kg hm-2); Pq: 青菜-水稻模式, 青菜残留物全量还田(1000 kg hm-2)。W0: 常规淹水灌溉; W1: 干湿交替灌溉。N0: 不施氮, 0 kg hm-2; N1: 常规施氮, 150 kg hm-2; N2: 精量减氮施肥。同列数据后不同小写字母表示同一种植模式下前茬秸秆还田处理间差异显著(P < 0.05)。方差分析中, *、**分别表示在0.05和0.01概率水平效果显著, ns表示无显著效果。
Py: rape-rice model, full return of rape straw (6500 kg hm-2); Px: wheat-rice model, full return of wheat straw (5000 kg hm-2); Pq: cabbage-rice model, full return of cabbage residue (1000 kg hm-2). W0: conventional flooding irrigation; W1: alternating wet and dry irrigation. N0: no N treatment, 0 kg hm-2; N1: conventional N application treatment, 150 kg hm-2; N2: precise N reduction. Different lowercase letters after the data in the same column indicate significant differences between the previous straw return treatments in the same planting pattern (P < 0.05). In the ANOVA, * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively; and ns indicates no significant difference.
不同种植模式下秸秆还田的水稻产量均表现为Py>Px>Pq, Py的平均产量分别较Px、Pq增加2.55%、13.99%。同一秸秆还田处理下, 不同水分管理的产量均表现为W1>W0, Py、Px和Pq模式下W1处理的水稻产量分别比W0处理增加5.10%、1.76%和4.80%。同一秸秆还田和水分管理下, 不同施氮量的水稻产量均表现N1>N2>N0, 但N1与N2处理间差异不显著。秸秆还田结合水氮管理时水稻产量在PyW1N1处理下最高, PyW1N2处理下次之, PqW0N0处理下最低, PyW1N1与PyW1N2处理间差异不显著, 但分别较PqW0N0处理显著增产87.83%、85.96%。
从产量构成因素来看, 不同种植模式下秸秆还田的水稻有效穗数和千粒重均表现为Py>Px>Pq, 但三者差异不显著, 而每穗颖花数和结实率则表现为Px>Py>Pq。同一秸秆还田处理下, 不同水分管理的有效穗数、结实率和千粒重均表现为W1>W0, 而每穗颖花数表现为W0>W1。同一秸秆还田和水分管理下, 施氮处理均能显著增加水稻的有效穗数和千粒重, 有效穗数在N1处理最大, Py模式下N1处理与其余处理差异显著, 而千粒重在N2处理最大, 各处理对每穗颖花数和结实率影响不显著, 但N2较N1处理略有下降。
2.2 多元化种植模式下秸秆还田配合水氮管理对秸秆腐解率及氮素释放率的影响
由表3可知, 不同种植模式下秸秆还田、水分管理(拔节期N释放率除外)、施氮量、秸秆还田和施氮量交互作用(成熟期期N释放率除外)以及不同种植模式下秸秆还田×水分管理×施氮量三者间的交互作用, 对各指标影响达显著或极显著水平(拔节期秸秆腐解率和成熟期N释放率除外)。
表3 多元化种植模式下秸秆还田配合水氮管理对秸秆腐解率及氮素释放率的影响
Table 3
处理 Treatment | 秸秆腐解率Straw decomposition rate (%) | N释放率N release rate (%) | ||||||
---|---|---|---|---|---|---|---|---|
拔节期 Jointing | 齐穗期 Heading | 成熟期 Maturity | 拔节期 Jointing | 齐穗期 Heading | 成熟期Maturity | |||
Py | W0 | N0 | 14.53 e | 26.44 d | 33.76 d | 24.58 b | 40.77 b | 48.97 c |
N1 | 23.81 c | 35.47 c | 49.57 c | 27.47 a | 41.53 ab | 50.08 c | ||
N2 | 25.35 bc | 36.53 bc | 51.28 c | 26.83 a | 42.56 ab | 52.30 ab | ||
均值Average | 21.23 | 32.81 | 44.88 | 26.30 | 41.63 | 50.79 | ||
W1 | N0 | 16.49 d | 27.54 d | 35.65 d | 22.45 c | 41.90 ab | 49.64 c | |
N1 | 25.62 b | 37.62 b | 53.69 b | 27.18 a | 42.03 ab | 52.13 b | ||
N2 | 27.61 a | 42.62 a | 56.50 a | 26.61 a | 43.81 a | 53.65 a | ||
均值Average | 23.24 | 35.93 | 48.62 | 25.42 | 42.58 | 51.81 | ||
Px | W0 | N0 | 18.43 d | 27.63 b | 34.47 c | 21.71 d | 44.29 c | 53.86 c |
N1 | 24.47 c | 38.66 a | 55.36 b | 30.88 a | 44.92 c | 55.06 bc | ||
N2 | 27.57 b | 40.60 a | 55.53 b | 29.72 ab | 46.25 c | 58.28 a | ||
均值Average | 23.48 | 35.63 | 48.46 | 27.57 | 45.17 | 55.74 | ||
W1 | N0 | 19.33 d | 28.50 b | 36.47 c | 24.35 c | 44.90 c | 55.80 b | |
N1 | 26.47 b | 39.55 a | 56.30 b | 29.54 ab | 50.70 b | 57.92 a | ||
N2 | 29.63 a | 40.52 a | 59.27 a | 28.72 b | 53.61 a | 58.83 a | ||
均值Average | 25.15 | 36.19 | 50.68 | 27.54 | 49.73 | 57.52 | ||
Pq | W0 | N0 | 70.57 e | 74.50 c | 79.53 d | 72.06 a | 72.83 b | 74.17 b |
N1 | 76.40 c | 78.67 b | 86.59 ab | 73.57 a | 74.65 a | 75.06 ab | ||
N2 | 77.68 bc | 80.30 b | 87.46 b | 73.55 a | 75.03 a | 76.21 ab | ||
均值Average | 74.89 | 77.83 | 84.53 | 73.05 | 74.17 | 75.14 | ||
W1 | N0 | 73.63 d | 75.51 c | 81.37 c | 71.62 a | 73.92 ab | 74.93 ab | |
N1 | 78.82 b | 82.53 a | 88.35 ab | 72.56 a | 74.98 a | 75.74 ab | ||
N2 | 80.68 a | 83.46 a | 89.63 a | 72.00 a | 75.13 a | 76.98 a | ||
均值Average | 77.71 | 80.50 | 86.45 | 72.06 | 74.68 | 75.88 | ||
F值 F-value | P | 65,359.04** | 200,044.57** | 47,149.16** | 132,294.38** | 24,912.98** | 1474.51** | |
W | 413.85** | 2563.92** | 282.93** | 3.00 ns | 38.62** | 21.45** | ||
N | 408.47** | 15,057.63** | 5254.44** | 109.74** | 22.64** | 66.51** | ||
P×W | 10.64* | 355.69** | 12.95** | 1.42ns | 15.77** | 1.16 ns | ||
P×N | 8.02** | 507.66** | 364.99** | 19.99** | 4.03** | 2.02 ns | ||
W×N | 0.27 ns | 127.02** | 14.59** | 1.50 ns | 2.51 ns | 1.70 ns | ||
P×W×N | 0.31 ns | 120.63** | 5.94** | 5.00* | 4.24** | 1.18 ns |
处理同
Treatments are the same as those given in
不同类型的秸秆腐解和N释放均表现为前期快, 中后期较慢的趋势。不同种植模式下秸秆还田的腐解率、N释放率均表现为Pq>Px>Py, Pq各时期的平均秸秆腐解率和N释放率分别较Py增加133.13%、86.55%, Pq与其余处理差异显著, Px与Py处理间差异不显著。同一秸秆还田处理下, 不同水分管理的秸秆腐解率和N释放率均表现为W1>W0 (除拔节期N释放率), 但二者差异不显著。同一秸秆还田和水分管理下, 不同施氮量的秸秆腐解率和N释放率多表现为N2>N1>N0, PqW1处理下仅拔节期的秸秆腐解率在N1、N2处理间差异显著, PxW1、PyW1处理下N2处理的平均秸秆腐解率分别较N1处理增加8.56%、8.76%, PyW1N2与PyW1N1处理差异显著, 同时PyW1N2的N释放率(成熟期)较PyW1N1显著增加2.92%。秸秆还田结合水氮管理时秸秆腐解率和N释放率在PqW1N2处理下最高, 而PyW1N2处理下精确减氮能显著提高各时期秸秆腐解率, 促进N释放。
2.3 多元化种植模式下秸秆还田配合水氮管理对水稻干物质积累分配的影响
由表4可知, 不同种植模式下秸秆还田(拔节期茎鞘干物质积累量与收获指数除外)与施氮量(齐穗期穗干物质积累量除外)对各指标影响达极显著水平, 以及二者的交互作用对齐穗期(穗干物质积累量除外)、成熟期各器官的干物质积累量影响达显著或极显著水平。
表4 多元化种植模式下秸秆还田配合水氮管理对水稻干物质积累的影响
Table 4
处理 Treatment | 拔节期Jointing | 齐穗期Heading | 成熟期Maturity | 收获指数 Harvest index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
茎鞘 Stem sheath | 叶 Leaf | 茎鞘 Stem sheath | 叶 Leaf | 穗 Panicle | 茎鞘 Stem sheath | 叶 Leaf | 穗 Panicle | ||||
Py | W0 | N0 | 1113.38 c | 664.05 b | 2962.43 b | 917.18 c | 1006.92 b | 2100.04 c | 740.80 b | 6200.61 c | 0.69 a |
N1 | 1704.77 ab | 1048.62 a | 5129.31 a | 2009.36 b | 1482.33 a | 3469.70 b | 1585.77 a | 9344.37 ab | 0.65 b | ||
N2 | 1637.99 b | 1011.64 a | 5245.73 a | 1976.31 b | 1392.52 a | 3489.79 ab | 1540.37 a | 9030.19 b | 0.64 b | ||
均值Average | 1485.38 | 908.11 | 4445.82 | 1634.30 | 1293.93 | 3019.85 | 1288.98 | 8191.72 | 0.66 | ||
W1 | N0 | 1124.75 c | 682.53 b | 2831.02 b | 939.17 c | 1027.17 b | 2136.47 c | 755.35 b | 6189.72 c | 0.68 a | |
N1 | 1945.54 a | 1195.29 a | 5568.86 a | 2085.37 ab | 1520.01 a | 3678.36 ab | 1645.97 b | 9870.51 a | 0.65 b | ||
N2 | 1811.08 ab | 1115.25 a | 5880.09 a | 2164.15 a | 1421.79 a | 3763.46 a | 1669.77 a | 9759.62 ab | 0.64 b | ||
均值Average | 1627.12 | 997.69 | 4759.99 | 1729.60 | 1322.98 | 3192.76 | 1357.03 | 8606.62 | 0.65 | ||
Px | W0 | N0 | 1024.72 b | 657.27 b | 2867.01 c | 898.54 c | 982.48 b | 2081.99 c | 731.87 b | 6011.75 a | 0.68 a |
N1 | 1655.94 a | 989.93 a | 4681.76 b | 1891.40 b | 1362.11 a | 3199.36 b | 1505.76 a | 9182.41 a | 0.66 bc | ||
N2 | 1638.72 a | 981.22 a | 4915.01 ab | 1920.15 a | 1312.71 a | 3332.93 ab | 1522.19 a | 8952.41 a | 0.65 c | ||
均值Average | 1439.79 | 876.14 | 4154.59 | 1570.00 | 1219.10 | 2871.43 | 1253.28 | 8048.86 | 0.66 | ||
W1 | N0 | 1121.58 b | 664.59 b | 2961.35 c | 914.22 c | 983.14 b | 2230.11 c | 735.10 b | 6034.48 b | 0.67 ab | |
N1 | 1731.74 a | 1083.37 a | 4892.76 ab | 1931.60 ab | 1379.68 a | 3240.28 b | 1511.84 a | 9333.28 a | 0.66 bc | ||
N2 | 1714.86 a | 1050.06 a | 5289.58 a | 2038.32 a | 1315.27 a | 3469.19 a | 1587.60 a | 9211.06 a | 0.65 c | ||
均值Average | 1522.73 | 932.67 | 4381.23 | 1628.10 | 1226.03 | 2979.86 | 1278.18 | 8192.94 | 0.66 | ||
Pq | W0 | N0 | 1014.59 b | 612.13 b | 2702.58 b | 758.84 c | 960.42 b | 1927.36 c | 643.92 c | 6008.35 b | 0.70 a |
N1 | 1648.50 a | 980.37 a | 4199.52 a | 1530.1 b | 1358.73 a | 2912.69 b | 1221.16 b | 8481.31 a | 0.67 b | ||
N2 | 1638.79 a | 917.29 a | 4417.26 a | 1664.74 ab | 1293.68 a | 3067.35 ab | 1283.36 ab | 8244.25 a | 0.65 c | ||
均值Average | 1433.96 | 836.60 | 3773.13 | 1317.90 | 1204.28 | 2635.80 | 1049.48 | 7577.97 | 0.67 | ||
W1 | N0 | 1103.21 b | 641.05 b | 2613.99 b | 786.33 c | 967.75 b | 1954.44 c | 653.04 c | 6027.06 b | 0.70 a | |
N1 | 1708.05 a | 992.62 a | 4259.65 a | 1638.75 ab | 1374.99 a | 3066.94 ab | 1304.95 a | 8534.76 a | 0.66 bc | ||
N2 | 1676.24 a | 885.18 a | 4499.22 a | 1702.75 a | 1318.13 a | 3081.24 a | 1305.02 a | 8476.73 a | 0.66 bc | ||
均值Average | 1495.83 | 839.62 | 3790.95 | 1375.90 | 1220.30 | 2700.88 | 1087.67 | 7679.52 | 0.67 | ||
F值 F-value | P | 2.60 ns | 14.96** | 20.01** | 94.39** | 10.63** | 181.21** | 28.35** | 22.58** | 0.78 ns | |
W | 7.51* | 11.88** | 2.05 ns | 12.13** | 0.98 ns | 21.90** | 11.89** | 2.79 ns | 0.17 ns | ||
N | 152.64** | 82.21** | 232.55** | 976.82** | 124.78 ns | 485.82** | 485.21** | 318.66** | 3.92* | ||
P×W | 0.28 ns | 6.06* | 0.46 ns | 0.38 ns | 0.14 ns | 1.61 ns | 1.01 ns | 0.55 ns | 0.04 ns | ||
P×N | 0.30 ns | 0.67 ns | 3.43** | 6.30** | 0.54 ns | 4.94** | 4.16** | 2.99* | 0.14 ns | ||
W×N | 0.26 ns | 0.49 ns | 1.69 ns | 1.55 ns | 0.03 ns | 0.35 ns | 0.64 ns | 1.08 ns | 0.12 ns | ||
P×W×N | 0.58 ns | 0.29 ns | 0.37 ns | 0.64 ns | 0.01 ns | 0.77 ns | 0.32 ns | 0.25 ns | 0.04 ns |
处理同
Treatments are the same as those given in
不同种植模式下秸秆还田对水稻各营养器官干物质积累量均表现为Py>Px>Pq, Py各时期的平均干物质积累总量分别比Px、Pq增加5.25%、14.60%, 而3种模式下水稻的收获指数差异不显著。同一秸秆还田处理下, 不同水分管理的干物质积累量均表现为W1>W0, Py、Px和Pq模式下W1处理的水稻干物质积累量分别比W0处理增加1.40%、3.31%、1.82%。同一秸秆还田和水分管理下, 不同施氮量的干物质积累量、收获指数多表现为N1>N2, 但N1与N2处理间差异多不显著。秸秆还田结合水氮管理时水稻干物质积累量在PyW1N1处理下最高, PyW1N2处理下次之, PqW0N0处理下最低, PyW1N1与PyW1N2处理间差异不显著。
由表5可知, 不同种植模式下秸秆还田对茎鞘干物质转运量、叶片干物质转运量、贡献率影响达显著或极显著水平, 施氮量对各指标影响达极显著水平, 秸秆还田和施氮量的交互作用对茎鞘干物质转运量影响达显著水平, 水分管理、水分管理和施氮量的交互作用对叶片干物质转运量影响达显著水平。
表5 多元化种植模式下秸秆还田配合水氮管理对水稻干物质转运的影响
Table 5
处理 Treatment | 茎鞘干物质转运 Stem sheath dry matter transport | 叶片干物质转运Leaf dry matter transport | ||||||
---|---|---|---|---|---|---|---|---|
转运量 Transfer amount (kg hm-2) | 输出率 Output rate (%) | 贡献率Contribution rate (%) | 转运量 Transfer amount (kg hm-2) | 输出率 Output rate (%) | 贡献率Contribution rate (%) | |||
Py | W0 | N0 | 862.39 bc | 29.05 b | 14.16 b | 176.37 b | 19.21 b | 2.85 c |
N1 | 1659.60 ab | 32.14 a | 17.88 a | 423.58 a | 21.12 ab | 4.53 a | ||
N2 | 1755.93 a | 32.63 a | 19.44 a | 435.93 a | 22.05 ab | 4.82 a | ||
均值Average | 1425.98 | 31.28 | 17.16 | 345.30 | 20.80 | 4.07 | ||
W1 | N0 | 694.55 c | 23.32 b | 11.25 b | 183.81 b | 19.56 ab | 2.97 bc | |
N1 | 1890.49 a | 33.39 a | 19.29 a | 439.40 a | 21.05 ab | 4.45 ab | ||
N2 | 2116.62 a | 35.98 a | 21.76 a | 494.38 a | 22.75 a | 5.09 a | ||
均值Average | 1567.22 | 30.89 | 17.44 | 372.53 | 21.12 | 4.17 | ||
Px | W0 | N0 | 785.01 b | 27.31 b | 13.03 b | 166.67 b | 18.53 b | 2.77 b |
N1 | 1482.39 a | 31.51 a | 16.27 a | 385.63 a | 20.49 ab | 4.24 a | ||
N2 | 1582.08 a | 31.91 a | 17.77 a | 397.96 a | 20.85 ab | 4.44 a | ||
均值Average | 1283.16 | 30.24 | 15.69 | 316.77 | 19.95 | 3.82 | ||
W1 | N0 | 731.23 b | 24.52 b | 12.15 b | 179.12 b | 19.46 ab | 2.92 b | |
N1 | 1652.47 a | 33.76 a | 17.69 a | 419.76 a | 21.71 ab | 4.51 a | ||
N2 | 1820.38 a | 33.82 a | 19.81 a | 450.76 a | 22.03 a | 4.91 a | ||
均值Average | 1401.36 | 30.70 | 16.55 | 349.88 | 21.07 | 4.12 | ||
Pq | W0 | N0 | 775.21 bc | 28.61 a | 13.03 b | 114.91 b | 14.50 b | 1.87 c |
N1 | 1286.83 ab | 30.44 a | 15.13 a | 308.94 a | 20.24 a | 3.69 ab | ||
N2 | 1349.91 ab | 30.51 a | 16.34 a | 381.38 a | 22.62 a | 4.67 a | ||
均值Average | 1137.33 | 29.86 | 14.84 | 268.41 | 19.12 | 3.41 | ||
W1 | N0 | 659.54 c | 25.22 b | 11.04 b | 133.28 b | 16.93 b | 2.24 b | |
N1 | 1192.70 abc | 26.99 b | 14.13 a | 333.79 a | 20.30 a | 3.89 a | ||
N2 | 1417.98 a | 31.22 a | 16.64 a | 397.72 a | 23.15 a | 4.69 a | ||
均值Average | 1090.07 | 27.81 | 13.94 | 288.27 | 20.13 | 3.60 | ||
F值 F-value | P | 6.33* | 0.87 ns | 1.92 ns | 13.61** | 1.79 ns | 7.70* | |
W | 0.26 ns | 0.09 ns | 0.01 ns | 6.26* | 1.12 ns | 2.37 ns | ||
N | 33.77** | 5.93** | 8.81** | 45.82** | 4.94** | 18.33** | ||
P×W | 0.18 ns | 0.11 ns | 0.14 ns | 0.06 ns | 0.10 ns | 0.20 ns | ||
P×N | 3.89* | 0.39 ns | 0.28 ns | 0.19 ns | 0.37 ns | 0.22 ns | ||
W×N | 0.99 ns | 1.22 ns | 0.71 ns | 3.12* | 0.03 ns | 0.01 ns | ||
P×W×N | 0.13 ns | 0.18 ns | 0.06 ns | 0.04 ns | 0.03 ns | 0.05 ns |
处理同
Treatments are the same as those given in
不同处理下水稻的干物质转运量、输出率、贡献率均表现为茎鞘>叶。不同种植模式下秸秆还田对水稻茎鞘和叶片干物质转运量、输出率、贡献率均表现为Py>Px>Pq, Py的干物质转运量、输出率和贡献率分别较Pq增加34.38%、2.25%、2.91% (茎鞘)和28.95%、1.34%、0.62% (叶)。同一秸秆还田处理下, 除Pq模式下茎鞘干物质转运量、输出率和贡献率表现为W0>W1, 其余处理多表现为W1>W0。同一秸秆还田和水分管理下, 不同施氮量的干物质转运量、输出率、贡献率均表现为N2>N1>N0, N0与其余处理差异显著。秸秆还田结合水氮管理时水稻干物质转运量、输出率和贡献率多在PyW1N2处理下最高, PqW0N0处理下最低。
2.4 多元化种植模式下秸秆还田配合水氮管理对水稻氮素吸收转运的影响
由表6可知, 不同种植模式下秸秆还田、水分管理、施氮量、秸秆还田和水分管理交互作用(成熟期茎鞘氮素积累量除外)、秸秆还田和施氮量交互作用, 以及三者交互作用(齐穗期穗和成熟期叶、穗氮素积累量除外)对各指标影响达显著或极显著水平。
表6 多元化种植模式下秸秆还田配合水氮管理对水稻氮素积累量的影响
Table 6
处理 Treatment | 拔节期Jointing | 齐穗期Heading | 成熟期Maturity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
茎鞘 Stem sheath | 叶 Leaf | 茎鞘 Stem sheath | 叶 Leaf | 穗 Panicle | 茎鞘 Stem sheath | 叶 Leaf | 穗 Panicle | |||
Py | W0 | N0 | 11.65 c | 17.04 c | 16.93 c | 17.02 b | 11.40 c | 8.46 b | 8.55 b | 60.33 b |
N1 | 17.64 a | 34.26 a | 50.28 b | 54.67 a | 20.09 a | 24.02 a | 22.04 a | 106.41 a | ||
N2 | 16.85 b | 32.93 b | 55.29 a | 54.71 a | 19.23 b | 25.33 a | 22.10 a | 93.83 a | ||
均值Average | 15.39 | 28.08 | 40.84 | 42.15 | 16.91 | 19.28 | 17.57 | 86.86 | ||
W1 | N0 | 11.17 c | 16.38 c | 19.68 c | 23.35 c | 12.89 b | 9.72 b | 10.67 b | 58.19 b | |
N1 | 23.36 a | 36.61 a | 53.39 b | 55.69 b | 23.62 a | 25.31 a | 25.26 a | 107.96 a | ||
N2 | 21.39 b | 32.99 b | 56.74 a | 59.69 a | 22.75 a | 26.37 a | 26.78 a | 96.25 a | ||
均值Average | 18.65 | 28.66 | 43.27 | 46.25 | 19.76 | 20.14 | 20.91 | 87.48 | ||
Px | W0 | N0 | 11.09 c | 17.17 c | 15.99 b | 17.76 c | 11.42 b | 9.48 b | 6.48 c | 57.74 b |
N1 | 18.95 a | 28.94 a | 45.40 a | 47.73 b | 18.27 a | 16.99 a | 16.98 b | 104.61 a | ||
N2 | 17.37 b | 26.35 b | 47.17 a | 52.77 a | 17.42 a | 17.21 a | 18.50 a | 98.26 a | ||
均值Average | 15.81 | 24.16 | 36.19 | 39.43 | 15.71 | 14.55 | 13.99 | 86.88 | ||
W1 | N0 | 11.06 c | 18.60 c | 19.22 c | 20.64 c | 11.83 b | 9.54 c | 7.47 c | 61.83 b | |
N1 | 19.65 a | 29.77 a | 48.18 b | 50.50 b | 20.71 a | 17.78 b | 17.27 b | 115.72 a | ||
N2 | 17.09 b | 26.97 b | 54.82 a | 56.99 a | 19.70 a | 19.71 a | 19.15 a | 106.75 a | ||
均值Average | 15.94 | 25.12 | 40.75 | 42.72 | 17.41 | 15.68 | 14.64 | 94.77 | ||
Pq | W0 | N0 | 8.80 c | 13.91 c | 12.94 b | 13.71 b | 10.48 b | 7.54 b | 4.78 b | 57.48 b |
N1 | 17.52 a | 24.34 a | 43.11 a | 44.50 a | 18.93 a | 17.34 a | 13.87 a | 103.22 a | ||
N2 | 15.98 b | 21.48 b | 44.15 a | 45.93 a | 18.79 a | 17.47 a | 14.19 a | 99.40 a | ||
均值Average | 14.11 | 19.91 | 33.40 | 34.72 | 16.07 | 14.13 | 10.96 | 86.71 | ||
W1 | N0 | 10.27 c | 15.46 c | 14.25 c | 15.30 c | 11.87 b | 7.60 b | 5.71 b | 60.05 b | |
N1 | 18.31 a | 24.35 a | 43.94 b | 46.51 b | 19.74 a | 17.71 a | 16.26 a | 106.67 a | ||
N2 | 16.60 b | 21.61 b | 45.75 a | 48.59 a | 19.26 a | 18.02 a | 16.60 a | 101.63 a | ||
均值Average | 15.06 | 20.48 | 34.65 | 36.80 | 16.97 | 14.44 | 12.87 | 89.46 | ||
F值 F-value | P | 160.12** | 2052.90* | 522.32** | 168.68** | 97.47** | 286.05** | 5841.70** | 8.54* | |
W | 118.68** | 255.48** | 60.21** | 152.28** | 193.97** | 13.91** | 35.62** | 26.19** | ||
N | 1495.94** | 13,019.27** | 4718.69** | 6628.52** | 729.50** | 1944.95** | 1365.30** | 1950.72** | ||
P×W | 49.37** | 8.44* | 7.45* | 5.25* | 193.97** | 1.33 ns | 5.59* | 8.69* | ||
P×N | 3.82* | 698.13** | 13.62** | 16.46** | 3.60* | 77.31** | 18.86** | 5.47* | ||
W×N | 20.13** | 10.59** | 1.70 ns | 5.11* | 3.15 ns | 1.01 ns | 2.79 ns | 2.95 ns | ||
P×W×N | 24.17** | 31.90** | 3.64* | 3.71* | 2.24 ns | 3.49* | 1.66 ns | 0.83 ns |
处理同
Treatments are the same as those given in
不同种植模式下秸秆还田对水稻各营养器官氮素积累量多表现为Py>Px>Pq, Py各时期的平均氮素积累总量分别比Px、Pq增加7.48%、17.30%。同一秸秆还田处理下, 不同水分管理的氮素积累量均表现为W1>W0, Py、Px和Pq模式下W1处理的水稻氮素积累量分别比W0处理增加6.75%、8.23%、4.66%。同一秸秆还田和水分管理下, 拔节期各营养器官氮素积累量均表现为N1>N2>N0, N1与N2处理间差异显著, 齐穗期、成熟期茎鞘和叶片氮素积累量均表现为N2>N1>N0, 3种模式下W1N1均与W1N2处理差异显著, 而N2处理的穗氮素积累量较N1处理略有下降。秸秆还田结合水氮管理时水稻氮素积累量在PyW1N1处理下最高, PyW1N2处理次之, 但二者差异不显著。
由表7可知, 不同种植模式下秸秆还田、水分管理、施氮量以及水分管理和施氮量的交互作用对各指标影响达显著或极显著水平, 三者交互作用对叶片氮素分配影响达显著水平。
表7 多元化种植模式下秸秆还田配合水氮管理对水稻氮素转运的影响
Table 7
处理 Treatment | 茎鞘氮素转运Stem sheath N transport | 叶片氮素转运Leaf N transport | ||||||
---|---|---|---|---|---|---|---|---|
转运量 Transfer amount (kg hm-2) | 输出率 Output rate (%) | 贡献率Contribution rate (%) | 转运量 Transfer amount (kg hm-2) | 输出率 Output rate (%) | 贡献率Contribution rate (%) | |||
Py | W0 | N0 | 8.46 c | 50.01 a | 14.03 c | 8.47 b | 49.75 b | 14.04 c |
N1 | 26.25 b | 52.19 a | 24.70 b | 32.62 a | 59.65 a | 30.78 b | ||
N2 | 29.95 a | 54.16 a | 31.95 a | 32.61 a | 59.60 a | 34.76 a | ||
均值Average | 21.56 | 52.12 | 23.56 | 24.57 | 56.34 | 26.53 | ||
W1 | N0 | 9.95 c | 50.58 a | 17.11 c | 12.68 c | 54.30 a | 21.79 c | |
N1 | 28.07 b | 52.54 ab | 25.99 b | 30.43 b | 54.63 a | 28.18 b | ||
N2 | 31.37 a | 55.28 a | 32.59 a | 32.91 a | 55.12 a | 34.19 a | ||
均值Average | 23.14 | 52.80 | 25.23 | 25.34 | 54.69 | 28.05 | ||
Px | W0 | N0 | 6.50 b | 40.65 b | 11.27 c | 11.28 c | 63.50 a | 19.53 c |
N1 | 28.46 a | 62.61 a | 27.20 b | 30.75 b | 64.39 a | 29.39 b | ||
N2 | 29.96 a | 63.46 a | 30.50 a | 34.26 a | 64.91 a | 34.89 a | ||
均值Average | 21.64 | 55.58 | 22.99 | 25.43 | 64.27 | 27.94 | ||
W1 | N0 | 9.68 c | 50.31 b | 15.64 c | 13.17 c | 63.79 b | 21.33 c | |
N1 | 30.40 b | 63.09 a | 26.28 b | 33.23 b | 65.79 a | 28.75 b | ||
N2 | 35.10 a | 64.03 a | 32.88 a | 37.83 a | 66.37 a | 35.44 a | ||
均值Average | 25.07 | 59.45 | 24.94 | 28.08 | 65.32 | 28.51 | ||
Pq | W0 | N0 | 5.39 b | 41.59 b | 9.38 b | 8.93 b | 65.08 a | 15.54 b |
N1 | 25.77 a | 59.76 a | 24.98 a | 30.62 a | 68.85 a | 29.67 a | ||
N2 | 26.67 a | 60.35 a | 26.90 a | 31.74 a | 69.04 a | 31.98 a | ||
均值Average | 19.28 | 53.90 | 20.42 | 23.77 | 67.75 | 25.74 | ||
W1 | N0 | 6.64 b | 46.61 b | 11.09 c | 9.58 b | 62.63 a | 15.96 c | |
N1 | 26.34 a | 59.93 a | 24.69 b | 30.24 a | 65.07 a | 28.36 b | ||
N2 | 27.63 a | 60.37 a | 27.20 a | 31.99 a | 65.81 a | 31.47 a | ||
均值Average | 20.21 | 55.64 | 20.99 | 23.94 | 64.50 | 25.27 | ||
F值 F-value | P | 65.74** | 42.28** | 238.25** | 25.18** | 2025.45** | 10.83* | |
W | 35.55** | 19.56** | 18.17** | 15.43** | 3.20* | 3.28* | ||
N | 1244.18** | 178.65** | 490.53** | 2058.42** | 15.91** | 436.07** | ||
P×W | 5.08* | 3.49 ns | 1.64 ns | 5.98* | 3.09 ns | 2.56 ns | ||
P×N | 3.65* | 24.66** | 4.29** | 2.71 ns | 1.38 ns | 3.43* | ||
W×N | 0.59 ns | 6.22** | 3.61* | 4.29* | 3.19* | 10.38** | ||
P×W×N | 0.67 ns | 2.11 ns | 0.71 ns | 4.02* | 3.39* | 3.75* |
处理同
Treatments are the same as those given in
不同处理下水稻的氮素转运量、输出率、贡献率均表现为叶>茎鞘。不同种植模式下秸秆还田对水稻茎鞘氮素转运量、输出率和叶片氮素转运量、贡献率均表现为Px>Py>Pq, 但处理间差异多不显著, 而茎鞘氮素贡献率表现为Py>Px>Pq, Py较Pq处理显著增加3.69%。同一秸秆还田处理下, 不同水分管理的氮素转运量、输出率和贡献率多表现为W1>W0, 但二者差异不显著。同一秸秆还田和水分管理下, 不同施氮量的氮素转运量、输出率和贡献率多表现为N2>N1>N0, 3种模式W1N2处理的茎鞘、叶片氮素贡献率均显著高于W1N1。秸秆还田结合水氮管理时水稻氮素转运、输出率、贡献率多在PXW1N2处理下最高。
2.5 多元化种植模式下秸秆还田配合水氮管理对水稻氮素利用的影响
由表8可知, 不同种植模式下秸秆还田、水分管理、施氮量、秸秆还田和水分管理的交互作用以及水分管理和施氮量的交互作用对各指标影响达显著或极显著水平。
表8 多元化种植模式下秸秆还田配合水氮管理对水稻氮素利用的影响
Table 8
处理 Treatment | 氮肥农学利用率 Agronomic efficiency of N (kg kg-1) | 氮肥偏生产力 Partial factor productivity of N (kg kg-1) | ||
---|---|---|---|---|
Py | W0 | N0 | — | — |
N1 | 21.56 a | 62.02 c | ||
N2 | 21.59 a | 72.16 b | ||
均值Average | 21.57 | 67.09 | ||
W1 | N0 | — | — | |
N1 | 24.31 a | 65.30 c | ||
N2 | 29.57 a | 80.82 a | ||
均值Average | 26.94 | 73.06 | ||
Px | W0 | N0 | — | — |
N1 | 23.66 a | 61.11 b | ||
N2 | 23.76 a | 63.88 ab | ||
均值Average | 23.71 | 62.49 | ||
W1 | N0 | — | — | |
N1 | 24.07 a | 63.05 ab | ||
N2 | 24.19 a | 65.95 a | ||
均值Average | 24.13 | 64.50 | ||
Pq | W0 | N0 | — | — |
N1 | 19.63 a | 54.40 a | ||
N2 | 18.88 a | 54.85 a | ||
均值Average | 19.26 | 54.63 | ||
W1 | N0 | — | — | |
N1 | 20.87 a | 56.88 a | ||
N2 | 20.72 a | 58.27 a | ||
均值Average | 20.79 | 57.58 | ||
F值 F-value | P | 3.33* | 123.52** | |
W | 3.85* | 24.11** | ||
N | 3.95* | 46.24** | ||
P×W | 3.45* | 7.59* | ||
P×N | 1.21 | 20.60** | ||
W×N | 3.50* | 6.74* | ||
P×W×N | 0.93 | 3.01 |
处理同
Treatments are the same as those given in
不同种植模式下秸秆还田的水稻氮肥农学利用率、氮肥偏生产力多表现为Py>Px>Pq, Py的氮肥农学利用率、氮肥偏生产力较Pq平均增加21.12%、24.90%, 其中Py、Pq模式的氮肥偏生产力差异显著。同一秸秆还田处理下, 不同水分管理的氮肥农学利用率、氮肥偏生产力均表现为W1>W0, Py、Px和Pq模式下W1处理的氮肥农学利用率分别比W0处理增加24.90%、1.77%和7.94%, 氮肥偏生产力分别比W0处理增加8.90%、3.22%和5.40%。同一秸秆还田和水分管理下, 不同施氮量的氮肥农学利用率、氮肥偏生产力多表现为N2>N1, 但N1与N2处理间差异多不显著。秸秆还田结合水氮管理时水稻氮肥农学利用率、氮肥偏生产力均在PyW1N2处理下最高。
3 讨论
3.1 多元化种植模式下秸秆还田配合水氮管理对水稻产量及产量构成因素的影响
秸秆还田能增加土壤通透性, 提高土壤微生物活性, 有利于秸秆与土壤间氮素的循环利用, 具有提高当季和后茬作物产量的作用[16]。裴鹏刚等[17]研究表明, 秸秆还田耦合施氮量(180 kg hm-2)可促进水稻有效穗数增加, 提高氮素和光合同化物积累, 使水稻显著增产9.59%~23.51%。殷尧翥等[18]研究指出, 稻油轮作下油菜秸秆还田, 配合控制性交替灌溉与施氮量(150 kg hm-2)可显著提高水稻齐穗期高效叶面积指数, 促进干物质积累, 提高有效穗数和每穗粒数, 进而达到高产。谌洁等[19]研究表明, 与油菜-水稻模式相比, 青菜-水稻模式能显著提高水稻积温生产效率、降水生产效率, 2年平均增产达10.50%, 而本试验结果与其有所差异, 这可能是由于生态区温光资源不同, 且前人主要针对于不同茬口, 并未进行秸秆还田。本研究结果表明, 不同种植模式下秸秆还田的水稻有效穗数、千粒重和产量均表现为Py>Px>Pq, 说明Py模式更能促进有效穗数形成, 加快光合产物向穗部积累, 也可能是由于Py模式有利于土壤风化, 提高土壤养分释放速率, 最终增加产量[20]。3种模式下W1处理水稻的有效穗数、结实率、千粒重和产量较W0处理均有不同程度增加, N2处理的水稻产量较N1处理略有下降, 但二者之间差异不显著, 这可能是由于土壤干湿交替变化能抑制无效分蘖的发生, 促进根系生长, 提高水稻光合作用及干物质积累, 有利于籽粒灌浆结实[21]。且相比于常规稻, F优498为杂交稻, 其根系更为发达、密集、粗壮, 能够更好的吸收土壤中的养分和水分, 同时提高了土壤的通气性和透水性。综上所述, PyW1N2处理下更能提升水肥利用效率, 可节省氮肥投入20%, 实现水稻稳产高效生产。
3.2 多元化种植模式下秸秆还田配合水氮管理对秸秆腐解率及氮素释放率的影响
秸秆腐解过程中各种养分的释放和土壤微生物的活动, 会改变土壤理化性状, 进而影响水稻生长及产量形成[22]。前人研究发现, 不同类型的秸秆腐解、氮素释放均表现为前期快, 中后期较慢的趋势[23], 且麦秆>油菜杆[24], 本试验结果与其一致, 这是因为腐解前期秸秆中易分解的可溶性化合物大量释放, 提高了土壤中的微生物数量及活性[25]; 而随着还田时间增加, 秸秆中多为不易分解的纤维素等物质,导致微生物活性降低, 腐解率下降[26]。本研究结果表明, Pq模式下的秸秆腐解率、N释放率均显著高于其他种植模式, 但Px与Py处理间差异不显著, 主要原因是青菜残叶还田为菜叶, 腐解较快, 且小麦和油菜秸杆的C/N比较大, 超出了适宜微生物分解的秸杆C/N区间(25~30∶1)[27]。3种模式下秸秆腐解率和N释放率多表现为W1>W0, N2>N1, 这可能是由于干湿交替灌溉能提高含氧量[13], 适量氮肥能降低土壤C/N比, 增强微生物及纤维素等水解酶活性, 促进秸秆腐解[28]。
3.3 多元化种植模式下秸秆还田配合水氮管理对水稻干物质积累分配的影响
水稻产量的形成是干物质积累与分配的结果。研究表明, 秸秆腐解过程中, 微生物活动与秸秆分解消耗大量氮素, 导致水稻的氮素供应不足, 从而抑制水稻生育前期干物质积累, 但随着秸秆养分的释放, 能促进水稻中后期干物质积累[29]。与小麦秸秆还田相比, 油菜秸秆还田能抵消前期的抑制作用, 增加干物质含量[20]。本研究结果表明, Py模式下水稻各营养器官干物质积累量均表现为最大, 这是由于Py模式的秸秆腐解率低于其他2种模式, 能保证前期水稻的供氮量, 而Pq模式的秸秆大量腐解, 与水稻生长形成争氮。W1处理的干物质积累量均大于W0, 原因可能为干湿交替灌溉可减少无效分蘖, 提高水稻生长潜力, 叶面积等个体性状具有较大优势, 促进了干物质后期积累[18]。
花后干物质的转运与分配对水稻产量形成至关重要。唐海明等[30]研究认为, 油菜秸秆还田可提高水稻茎、叶转运率和贡献率, 促进干物质向穗部的转运。顾俊荣等[31]研究发现, 实地氮肥管理配合轻度干湿交替灌溉可显著增加干物质积累量, 促进茎鞘干物质向籽粒转运。本研究结果表明, Py模式下秸秆还田对水稻茎鞘和叶片干物质转运量、输出率、贡献率均大于其他种植模式, 这是因为油菜秸秆还田在生育中后期仍能释放部分营养物质, 更能增加茎叶干物质贮存, 在齐穗期叶片的光合作用更强, 有利于灌浆期光合产物向籽粒转运[32]。而W1N2处理有利于秸秆N释放, 从而促进了水稻合成转化物质。由此说明, PyW1N2处理不仅能提高水稻干物质积累量, 更能实现干物质由营养器官向穗部高效转运, 对籽粒灌浆结实具有积极作用。
3.4 多元化种植模式下秸秆还田配合水氮管理对水稻氮素吸收利用的影响
氮素是植物生长发育不可或缺的营养元素, 氮素吸收转运和利用是水稻高效生产的关键[33]。前人研究表明, 秸秆还田提高了水稻生育中后期氮素积累, 有利于氮素向籽粒转运, 具有增产和提高氮素利用效率的作用[34]。徐国伟等[35]研究认为, 秸秆还田与实地氮肥管理可增强叶片硝酸还原酶活性, 促进植株吸氮, 同时促进氮素转运, 提高氮素收获指数与氮肥利用效率, 本试验结果与其一致。孙永健等[36]研究发现, 干湿交替灌溉有利于增加氮素积累, 以拔节期影响最大, 氮肥适当后移能显著提高抽穗后植株的吸氮量。本研究结果表明, Py模式下水稻各营养器官氮素积累量多表现为最大, 但茎鞘氮素转运量、输出率和叶片氮素转运量、贡献率略小于Px, 这可能是由于Py模式的秸秆腐解率低于Px, 虽有利于全生育期氮素积累, 但氮素转运略慢。W1N2处理有利于提高水稻的氮素积累量、氮素转运量、输出率和贡献率, 这可能是由于干湿交替灌溉可提高茎秆α-淀粉酶、β-淀粉酶活性, 增强氮代谢相关酶活性[37], N2处理有利于秸秆氮素释放, 从而促进氮素转运分配。
4 结论
与其他2种模式秸秆还田相比, 油菜-水稻种植模式下, 油菜秸秆还田的秸秆腐解率及氮素释放率较低, 但其保证了水稻前期的干物质和氮素积累, 与水稻争氮效应较轻, 同时秸秆养分缓慢释放也促进了生育中后期干物质和氮素向穗部积累, 提高氮肥利用效率。油菜-水稻种植模式下, 油菜秸秆还田配合干湿交替灌溉与精量减氮(120 kg hm-2)可促进水稻干物质积累, 提高茎叶干物质转运率、贡献率, 同时有利于氮素吸收、增加茎叶氮素转运率、贡献率, 进而提高氮肥农学利用率和氮肥偏生产力, 最终有利于水稻的有效穗数形成和籽粒灌浆, 并可节约20%氮肥使用, 实现水稻稳产高效生产。
参考文献
长期不同轮作方式对黄壤区水稻产量和养分吸收及土壤养分含量的影响
,
Effects of long-term different cropping rotations on rice yield, nutrient uptake and soil nutrient contents in yellow soil region
,
我国稻田种植制度的演化及展望
,多熟制是我国作物种植制度的重要特征,也是进一步提高粮食产能的重要途径。本文回顾了我国稻田复种制度的起源,简述了新中国成立以来我国稻田种植制度的演化历程,概述了当前我国主要存在的稻田复种轮作模式,并对我国稻田种植制度的发展方向作出了展望。
Development status and prospect of paddy multiple cropping system in China
,Multiple cropping is one of the important farming systems in China, which improves the comprehensive production capacity of arable land and ensures national food security. This paper introduced the origin of paddy multiple cropping system in China, reviewed the development status of paddy multiple cropping system in detail over the past 70 years, introduced the current main paddy-upland multiple cropping rotation system in China. Finally, the future of paddy multiple cropping system was discussed.
Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions
,. Open biomass burning (OBB) has a high potential to\ntrigger local and regional severe haze with elevated fine particulate\nmatter (PM2.5) concentrations and could thus deteriorate ambient air\nquality and threaten human health. Open crop straw burning (OCSB), as a\ncritical part of OBB, emits abundant gaseous and particulate pollutants,\nespecially in fields with intensive agriculture, such as in central and eastern\nChina (CEC). This region includes nine provinces, i.e., Hubei, Anhui, Henan, Hunan,\nJiangxi, Shandong, Jiangsu, Shanghai, and Fujian. The first four ones are\nlocated inland, while the others are on the eastern coast. However,\nuncertainties in current OCSB and other types of OBB emissions in chemical\ntransport models (CTMs) lead to inaccuracies in evaluating their impacts on\nhaze formations. Satellite retrievals provide an alternative that can be\nused to simultaneously quantify emissions of OCSB and other types of OBB,\nsuch as the Fire INventory from NCAR version 1.5 (FINNv1.5), which,\nnevertheless, generally underestimates their magnitudes due to unresolved\nsmall fires. In this study, we selected June 2014 as our study period,\nwhich exhibited a complete evolution process of OBB (from 1 to 19 June) over\nCEC. During this period, OBB was dominated by OCSB in terms of the number of\nfire hotspots and associated emissions (74 %–94 %), most of\nwhich were located at Henan and Anhui (> 60 %) with intensive\nenhancements from 5 to 14 June (> 80 %). OCSB generally\nexhibits a spatiotemporal correlation with regional haze over the central part\nof CEC (Henan, Anhui, Hubei, and Hunan), while other types of OBB emissions\nhad influences on Jiangxi, Zhejiang, and Fujian. Based on these analyses, we\nestablish a constraining method that integrates ground-level PM2.5\nmeasurements with a state-of-art fully coupled regional meteorological and\nchemical transport model (the two-way coupled WRF-CMAQ) in order to derive\noptimal OBB emissions based on FINNv1.5. It is demonstrated that these\nemissions allow the model to reproduce meteorological and chemical fields\nover CEC during the study period, whereas the original FINNv1.5\nunderestimated OBB emissions by 2–7 times, depending on\nspecific spatiotemporal scales. The results show that OBB had substantial\nimpacts on surface PM2.5 concentrations over CEC. Most of the OBB\ncontributions were dominated by OCSB, especially in Henan, Anhui, Hubei, and\nHunan, while other types of OBB emissions also exerted an influence in Jiangxi,\nZhejiang, and Fujian. With the concentration-weighted trajectory (CWT)\nmethod, potential OCSB sources leading to severe haze in Henan, Anhui,\nHubei, and Hunan were pinpointed. The results show that the OCSB emissions\nin Henan and Anhui can cause haze not only locally but also regionally\nthrough regional transport. Combining with meteorological analyses, we can\nfind that surface weather patterns played a cardinal role in reshaping\nspatial and temporal characteristics of PM2.5 concentrations.\nStationary high-pressure systems over CEC enhanced local PM2.5\nconcentrations in Henan and Anhui. Then, with the evolution of\nmeteorological patterns, Hubei and Hunan in the low-pressure system were\nimpacted by areas (i.e., Henan and Anhui) enveloped in the high-pressure\nsystem. These results suggest that policymakers should strictly undertake\ninterprovincial joint enforcement actions to prohibit irregular OBB,\nespecially OCSB over CEC. Constrained OBB emissions can, to a large extent,\nsupplement estimations derived from satellite retrievals as well as reduce\noverestimates of bottom-up methods.\n
Abiotic and biotic effects of long-term straw retention on reactive nitrogen runoff losses in a rice-wheat cropping system in the Yangtze Delta region
,
Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE China
,Livelihood diversification is beneficial to mitigate economic and environmental risks and to improve livelihood sustainability and regional sustainable development. Unsettled herder households (UHH), settled herder households (SHH) and farmer households (FH) are different household types in far northwestern China whose livelihood diversification has not been fully explored. By applying a framework of livelihood diversification, this paper presents a comparative analysis of the characteristics and determinants of the diversification of the three household types. The results show that livelihood assets have been unequally distributed, with FH possessing the least assets; however, FH are better than UHH and SHH in the diversification of livelihood activities. Agriculture remains the most important livelihood source. The high-income groups of the three household types have a higher number of livelihood activities but do not necessarily hold an advantage in equality of livelihood activities. Labor capacity and income are positively related to the number of livelihood activities for the three household types. Livestock size is negatively associated with the number of activities of herders. Moreover, age and subsidy have negative impacts on the number of activities for UHH. Based on the findings, we provide policy suggestions on livelihood enhancement and sustainable and effective development of pastoral regions.
Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils
,Agronomic practices such as crop residue return and additional nutrient supply are recommended to increase soil organic carbon (SOC) in arable farmlands. However, changes in the priming effect (PE) on native SOC mineralization in response to integrated inputs of residue and nutrients are not fully known. This knowledge gap along with a lack of understanding of microbial mechanisms hinders the ability to constrain models and to reduce the uncertainty to predict carbon (C) sequestration potential. Using a C-labeled wheat residue, this 126-day incubation study examined the dominant microbial mechanisms that underpin the PE response to inputs of wheat residue and nutrients (nitrogen, phosphorus and sulfur) in two contrasting soils. The residue input caused positive PE through "co-metabolism," supported by increased microbial biomass, C and nitrogen (N) extracellular enzyme activities (EEAs), and gene abundance of certain microbial taxa (Eubacteria, β-Proteobacteria, Acidobacteria, and Fungi). The residue input could have induced nutrient limitation, causing an increase in the PE via "microbial nutrient mining" of native soil organic matter, as suggested by the low C-to-nutrient stoichiometry of EEAs. At the high residue, exogenous nutrient supply (cf. no-nutrient) initially decreased positive PE by alleviating nutrient mining, which was supported by the low gene abundance of Eubacteria and Fungi. However, after an initial decrease in PE at the high residue with nutrients, the PE increased to the same magnitude as without nutrients over time. This suggests the dominance of "microbial stoichiometry decomposition," supported by higher microbial biomass and EEAs, while Eubacteria and Fungi increased over time, at the high residue with nutrients cf. no-nutrient in both soils. Our study provides novel evidence that different microbial mechanisms operate simultaneously depending on organic C and nutrient availability in a residue-amended soil. Our results have consequences for SOC modeling and integrated nutrient management employed to increase SOC in arable farmlands.© 2018 John Wiley & Sons Ltd.
Straw return and nitrogen fertilization to maize regulate soil properties, microbial community, and enzyme activities under a dual cropping system
,Soil sustainability is based on soil microbial communities’ abundance and composition. Straw returning (SR) and nitrogen (N) fertilization influence soil fertility, enzyme activities, and the soil microbial community and structure. However, it remains unclear due to heterogeneous composition and varying decomposition rates of added straw. Therefore, the current study aimed to determine the effect of SR and N fertilizer application on soil organic carbon (SOC), total nitrogen (TN), urease (S-UE) activity, sucrase (S-SC) activity, cellulose (S-CL) activity, and bacterial, fungal, and nematode community composition from March to December 2020 at Guangxi University, China. Treatments included two planting patterns, that is, SR and traditional planting (TP) and six N fertilizer with 0, 100, 150, 200, 250, and 300 kg N ha–1. Straw returning significantly increased soil fertility, enzymatic activities, community diversity, and composition of bacterial and fungal communities compared to TP. Nitrogen fertilizer application increased soil fertility and enzymes and decreased the richness of bacterial and fungal communities. In SR added plots, the dominated bacterial phyla were Proteobacteria, Acidobacterioia, Nitrospirae, Chloroflexi, and Actinobacteriota; whereas fungal phyla were Ascomycota and Mortierellomycota and nematode genera were Pratylenchus and Acrobeloides. Co-occurrence network and redundancy analysis (RDA) showed that TN, SOC, and S-SC were closely correlated with bacterial community composition. It was concluded that the continuous SR and N fertilizer improved soil fertility and improved soil bacterial, fungal, and nematode community composition.
Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy
,
Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of southwest China
,
麦秸全量还田下减氮施肥对粳稻产量形成和氮素吸收利用的影响
,
Effects of reduced nitrogen fertilization on yield formation and nitrogen uptake and utilization of japonica rice under total wheat straw returning
,
秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响
,
Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss
,
水肥耦合对水稻生长、产量及氮素利用效率的影响
,
Effect of water and fertilizer coupling on growth, yield and nitrogen use efficiency of rice
,
麦秆还田下水氮耦合对水稻氮素吸收利用及产量的影响
,【目的】研究麦秆还田下不同水氮耦合对麦茬杂交籼稻氮素吸收利用及产量的影响。【方法】以杂交稻F优498为材料,设置不同水分处理方式(干湿交替灌溉、淹水灌溉)、氮肥运筹 [总氮150 kg/hm<sup>2</sup>,基肥∶蘖肥∶穗肥分别为3∶3∶4(N1)、7∶3∶0(N2)、不施氮(N0)]和秸秆还田(秸秆全量翻埋还田、秸秆不还田),测定还田秸秆氮素腐解率、水稻籽粒产量及主要生育时期各器官氮素吸收利用特征。【结果】干湿交替灌溉促进了秸秆氮素释放,使水稻在拔节期后的地上部氮素积累量提高4.85%~33.92%,提高成熟期茎鞘氮素转运能力,穗部氮素吸收量提高了10.73%~16.42%,最终提高有效穗数并增产2.51%~3.77%。秸秆还田释放氮素营养,提高拔节期后的水稻地上部氮素积累量5.15%~53.21%和成熟期叶片氮素转运能力,提高穗部氮素吸收量4.93%~ 43.91%,最终增产9.62%~18.33%。施氮促进了秸秆养分释放,提高了水稻植株氮素吸收与转运能力,增加了有效穗数并显著增产16.21%~28.31%。对比干湿交替灌溉耦合优化施氮(N1)模式与淹水灌溉耦合传统施氮(N2)模式,前者促进了各时期的秸秆养分释放,提高了地上部氮素积累能力和茎鞘及叶片的氮素转运能力,并显著提高了氮肥回收利用率7.27%~26.06%。【结论】麦秆全量翻埋还田条件下,干湿交替灌溉耦合优化施氮的水氮耦合模式可促进秸秆氮素释放,有效提高水稻氮素积累及利用能力,提高氮肥回收利用率与水分利用率,为本研究中最适水肥耦合模式。
Effects of water-nitrogen coupling on nitrogen uptake, utilization and yield of rice under wheat straw returning
,【Objective】It is of significance to study the effects of different water and nitrogen coupling on nitrogen absorption, utilization and yield of indica hybrid rice with wheat straw returning.【Method】The nitrogen decomposition rate, nitrogen absorption and utilization were analyzed under two water treatments, three N treatments and two straw returning treatments with F You 498 as material with wheat straw returning at main growth stages. The two water treatments were alternative dry-wet irrigation and submerged irrigation and the straw returning treatments were full-burying returning and no straw returning and the N treatments were 150 kg/hm2 of N application rates with three N regimes—the ratio of the basal fertilizer, tillering fertilizer and panicle fertilizer were 3∶3∶4 (N1), 7∶3∶0 (N2) and 0 (N0), respectively.【Result】The results showed that the alternative dry-wet irrigation promoted the release of straw nitrogen, increased the aboveground nitrogen accumulation of rice after jointing by 4.85%-33.92%, improved the nitrogen transport capacity of stem and sheath at maturity, increased the nitrogen absorption of panicle by 10.73%-16.42%, finally leading to an increase in the number of effective panicles and grain yield by 2.51%-3.77%. Straw returning (S1) released nitrogen nutrition, increased the aboveground nitrogen accumulation of rice by 5.15%-53.21% and the nitrogen transport capacity of leaves at maturity, increased the nitrogen absorption of panicle by 4.93%-43.91%, and finally increased the yield by 9.62%-18.33%. Nitrogen application promoted the release of straw nutrients and improved the nitrogen absorption and transport capacity of rice plants, increased the number of effective panicles and significantly increased the yield by 16.21%-28.31%. Compared with the alternative dry-wet irrigation coupled with optimized nitrogen application (N1) mode, the flooding irrigation coupled with traditional nitrogen application (N2) mode promoted the release of straw nutrients, increased the aboveground nitrogen accumulation of rice by 1.17%-11.89%. It improved the aboveground nitrogen accumulation capacity and nitrogen transport capacity of stems, sheaths and leaves, and significantly improved the nitrogen recovery and utilization rate by 7.27%-26.06%.【Conclusion】Under the conditions of full burying of wheat straw and returning to the field, the alternative dry-wet irrigation coupled with optimized nitrogen application can promote the release of straw nitrogen, effectively improve the nitrogen accumulation and utilization capacity of rice, and improve the nitrogen recovery and utilization rate and water use efficiency. It is the most suitable water-fertilizer coupling model in this experiment.
水稻精确定量施氮研究
,
Study on precise and quantitative N application in rice
,This study is based on the Stanford equation and aims at getting high yield and high quality rice. With the aid of stage and monomial method of quantitative determination, the three parameters of the precise and quantitative N application theory and technology were measured and validated. In the process of study new, methods and route were found preliminarily, such as a new method for determination of the amount of N requirement by grading the yield of a field, a new route to study by demarcating the N supplied by organic fertilizer to the N supply ability of a field and the great effect of the ratio of N applied as basal fertilizer and that as panicle fertilizer on the NUE was proposed. The research has solved the technology of precise and quantitative N application of total amount of N and its splitting application, thus enabling the application of this technology and supporting the application of "3S" technology.
播栽方式与施氮量对杂交籼稻氮肥利用特征及产量的影响
,
Characteristics of nitrogen accumulation and utilization in indica hybrid rice under different planting methods and nitrogen rates
,
Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers
,
秸秆还田耦合施氮水平对水稻光合特性、氮素吸收及产量形成的影响
,在田间定位试验条件下,研究了4个秸秆还田量水平[0 kg/hm<sup>2</sup>(S0)、4000 kg/hm<sup>2</sup>(S4)、6000 kg/hm<sup>2</sup>(S6)、8000 kg/hm<sup>2</sup>(S8) ]耦合4个施氮水平[0 kg/hm<sup>2</sup>(N0)、90 kg/hm<sup>2</sup>(N90)、180 kg/hm<sup>2</sup>(N180)、270 kg/hm<sup>2</sup>(N270) ]对水稻茎蘖动态、生育后期光合特性、干物质积累特征、氮素吸收和产量形成的影响。结果表明:1) 不施氮条件下,秸秆还田明显抑制水稻生育前期茎蘖的发生和茎蘖高峰的形成,促进水稻后期的干物质积累、氮素吸收,提高剑叶光合速率,稻谷产量增加2.22%~4.44%。2)氮肥单施条件下,随着施氮量的增加水稻茎蘖数和最高苗数显著增加,分蘖高峰提前7~14d;施氮显著增加水稻各生育期干物质积累量、氮素吸收量和稻谷产量,明显延缓水稻生育后期剑叶光合速率的下降。3) 同等施氮条件下,与S0相比,秸秆还田S4、S6处理促进水稻茎蘖发生,成熟期植株吸氮量显著增加,以S6处理增幅最大,平均增加36.58%,生育后期剑叶光合速率维持在较高水平;S8处理则对水稻茎蘖发生、光合作用和氮素吸收表现出负面影响。4) 秸秆还田耦合施氮量显著影响单位面积有效穗数和稻谷产量,与N0S0相比,两者配施水稻显著增产9.59%~23.51%,以N180S6处理产量最高,达10.56 t/hm<sup>2</sup>。适宜的秸秆还田量耦合施氮量可促进水稻茎蘖发生和有效穗形成,增加氮素和光合同化物积累,从而增加稻谷产量。
Effects of straw returning coupled with N application on rice photosynthetic characteristics, nitrogen uptake and grain yield formation
,
稻油轮作下油菜秸秆还田与水氮管理对杂交稻群体质量和产量的影响
,【目的】研究秸秆还田与水氮配施的理论与技术,探讨对水稻群体质量和产量形成的影响。【方法】选用宜香优2115为试验材料,三因素裂裂区设计,主区为油菜秸秆堆腐还田和直接还田两种秸秆还田方式,裂区为淹水灌溉和控制性交替灌溉两种水分管理方式,裂裂区为4种施氮量,分析对水稻群体质量及产量的影响,并探讨秸秆还田与水氮管理模式下群体质量和产量形成的关系。【结果】秸秆还田与水氮管理对主要生育时期水稻干物质积累量、叶面积指数(LAI)及产量均存在显著或极显著的调控效应,互作效应显著;且群体质量指标与产量呈显著或极显著正相关。秸秆堆腐还田对水稻群体质量指标的调控显著高于秸秆直接还田,齐穗期高效叶面积指数提高了4.71%~6.50%,群体干物质显著增加了9.22%~13.30%;并对水稻产量及其构成因素影响显著,有效穗数及每穗粒数分别提高了5.9%~9.8%和1.5%~5.2%,从而使产量提高了9.5%~13.4%。控制性交替灌溉相对于淹灌能保证足够的穗数,提高干物质积累量,减缓拔节至齐穗期叶面积衰减,加快结实期群体生长率,利于穗粒数及产量的提高;且随着氮肥用量的增加,分蘖数、干物质积累量、有效叶面积率和高效叶面积率均呈先增后降的趋势。【结论】从三因素间的互作效应来看,秸秆堆腐还田处理下,控制性交替灌溉与施氮量150 kg/hm<sup>2</sup>,可有效提高齐穂期高效叶面积指数(4.80~5.32),具有较高的结实期干物质积累量(6.94~7.36 t/hm<sup>2</sup>),显著提高了有效穗(181.6万~220.9万/hm<sup>2</sup>)及每穗粒数(180~200粒),从而显著提高产量达到10328.1~12464.1 kg/hm<sup>2</sup>,为本研究节水减氮增效最佳的处理。
Effects of rape straw retention and water and nitrogen management on population quality and yield of hybrid rice under rice-rape rotation
,【Objective】It has great significance to investigate the interaction mode between straw returning and water-nitrogen (N) management on rice population quality and yield.【Method】Hybrid rice (Yixiangyou 2115) was used as experimental materials with two straw retention ways as main plot (crop straw composting and direct straw returning) and conventional irrigation and alternate irrigation as split plot and four N rates as split-split plot. The relationship between population quality and yield of hybrid rice were also analyzed.【Results】Straw returning and water-nitrogen (N) management exert significant or extremely significant effects on biomass accumulation of hybrid rice, LAI and grain yield. Correlation analysis indicated that there existed significantly or highly significantly positive correlations between population quality index and yield. The straw composting had a highly significant effect on population growth rate and grain yield compared with direct straw returning, the high valid leaf area index at the full heading stage increased by 4.71%-6.50%, Dry matter weight of population during maturity increased by 9.22%-13.30%, and the effective panicle number increased by 5.9%-9.8%, the spikelet number by 1.5%-5.2%, the yield by 9.5%-13.4%. Compared with conventional irrigation, controlled alternative irrigation could ensure sufficient panicle number, increase dry matter accumulation, slow down leaf area attenuation rate from jointing stage to full heading stage, accelerate population growth rate at seed-setting stage, and increase grain number per panicle and yield significantly. With the increase of nitrogen rate, the number of tillers, dry matter accumulation, effective leaf area ratio and effective leaf area rate all increased at first and then decreased. 【Conclusion】 From the perspective of the effect of the three factors, straw composting, alternative irrigation, 150 kg/hm2 nitrogen level were the optimum treatment of water saving and N reduction in this experiment. It can significantly improve efficient LAI of full heading (4.80-5.32), enhance the high dry matter accumulation rate during filling stage (6.94-7.36 t/hm2), notely increase effective panicle number (181.6×104-220.9×104/hm2) and grain number per panicle(180-200), achieving grain yield of hybrid rice of 10328.1-12464.1 kg/hm2.
青菜/油菜茬口下水稻栽植方式对温光资源利用和产量的影响
,轻简化栽培和优质稻是当前我国水稻生产的主要方向,气象因子是对水稻生长发育和产量形成影响最大的环境因素,但在不同轻简化栽植方式下水稻产量与其田间小气候的关系鲜有研究。为探究西南地区不同前作下杂交稻各生育阶段温、光和水等气候因子与水稻产量形成的关系,在2019—2020年,以杂交籼稻‘宜香优2115'为试验材料,采用两因素裂区设计,主区为青菜和油菜2种前作,副区为机直播、毯苗机插和人工移栽3种栽植方式,研究杂交稻产量对气候因子的响应及水稻植株对温光资源的利用。结果表明: 与油菜-水稻模式相比,青菜-水稻模式下杂交稻积温生产效率和降水生产效率显著提高,进而提高了有效穗数、结实率和千粒重,2年产量分别提高了12.7%和8.3%。与人工移栽相比,机插稻提高了单位面积有效穗数、全生育期光能生产效率、积温生产效率、籽粒光能利用效率和降水生产效率,2年平均产量提高了4.6%;而机直播全生育期降水生产效率、光能生产效率、积温生产效率、籽粒光能利用效率、每穗粒数和千粒重都显著降低,导致2年平均产量下降了8.7%。与2019年相比,2020年机插稻和人工移栽稻在同一茬口下提前一个月播种造成花后生育期缩短、气温降低和降雨量增多,导致有效积温和光辐射量大幅减少,积温生产效率、光能生产效率、降水生产效率和籽粒光能利用效率以及每穗粒数、结实率和千粒重均大幅降低,进而导致产量严重降低。用偏最小二乘法回归分析建立的气象因子产量预报方程标准化回归系数显示,水稻产量与阶段生育期或全生育期内有效积温和总辐射量呈正相关关系,与全生育期内降水量呈显著负相关关系。综上,青菜-水稻模式下机插秧与西南地区稻季光温资源匹配度最高,更有利于温光资源的充分利用和获得高产,但不宜过早播种或移栽。
Effects of planting methods on the utilization of temperature and sunshine resources and yield of rice under cabbage/rape-paddy cropping system
,
多元种植模式下秸秆还田对作物产量形成及秸秆与土壤养分协同利用的影响
四川农业大学博士学位论文, ,
Effects of Straw Returning on Crop Yield Formation and Synergistic Utilization of Straw and Soil Nutrients in Multi- cropping System
,
干湿交替灌溉对水稻产量与水分利用效率的影响
,本研究旨在阐明干湿交替灌溉影响水稻产量的生理机制。大田种植3个当地高产水稻品种武运粳24 (粳稻)、扬两优6号(两系杂交籼稻)与甬优2640 (三系籼/粳杂交粳稻)。自移栽后7 d设置:常规灌溉(CI,保持水层)和干湿交替灌溉(AWD),观察这2种灌溉模式对水稻根系与地上部生长发育的影响。结果表明,与CI相比,AWD可以显著提高水稻产量与水分利用效率,3个供试品种产量分别提高了5.34%、5.85%和6.62%,水分利用效率分别提高了28.9%、25.3%和27.6%。产量与水分利用效率的提高主要得益于水稻根系和地上部植株的生理功能的改善,表现出灌浆期较高的根系氧化力、根系伤流液强度、根系与叶片中玉米素与玉米素核苷的含量、剑叶净光合速率、籽粒中较高的蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶和淀粉合酶活性、较大的深层(10~20 cm)根系、较高的分蘖成穗率与叶面积指数。
Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice
,Alternate wetting and drying (AWD) irrigation has been widely adopted to replace conventional irrigation (CI) for saving water and increasing water use efficiency (WUE) in irrigated rice systems in China. However, there is limited information about how AWD affects yield, WUE, and root and shoot growth and development. To fill this knowledge gap, we conducted the experiment using three local high-yielding rice cultivars, Wuyunjing 24 (japonica), Yangliangyou 6 (two-line indica hybrid rice) and Yongyou 2640 (three-line indica/japonica hybrid rice) under the two water managements, CI and AWD, during the whole growing season. The results showed that, when compared with CI, AWD increased grain yield by 5.34%, 5.85%, and 6.62% and WUE by 28.9%, 25.3%, and 27.6%, respectively which mainly attributed to greater root oxidation activity, amount of root bleeding sap, content of cytokinins (zeatin + zeatin riboside) in roots and leaves, highten photosynthetic rate of flag leaf, deeper root distribution, increased productive tillers and leaf area, and enhanced activities of enzymes involved in sucrose-to-starch conversion in grains during grain filling. The results demonstrate that AWD is an effective practice to increase grain yield and water use efficiency through enhancing root and shoot growth and development.
14-year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China
,
双季稻地区不同类型水稻秸秆与还田深度对还田秸秆腐解进程的影响
,
Effects of different types of rice straw and returning depth on decomposition course of straw in double cropping rice region
,
麦秆、油菜秆还田腐解速率及养分释放规律研究
,
Nutrient release patterns and decomposing rates of wheat and rapeseed straw
,
不同作物秸秆在旱地和水田中的腐解特性及养分释放规律
,
Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields
,
不同施氮量下潮土中小麦秸秆腐解特性及其养分释放和结构变化特征
,
Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates
,
Soil biochemical properties in a semiarid mediterranean agroecosystem as affected by long-term tillage and N fertilization
,
Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China
,
秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响
,
Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice
,
冬季覆盖作物秸秆还田对水稻植株养分积累与转运的影响
,为明确双季稻区不同冬季覆盖作物秸秆还田对后茬水稻植株干物质和养分积累与分配的影响,选择不同冬季覆盖作物-双季稻种植模式为研究对象,采取田间小区定位试验,以冬闲-双季稻种植模式为对照(CK),开展了黑麦草-双季稻(Ry-R-R)、紫云英-双季稻(Mv-R-R)、油菜-双季稻(Ra-R-R)和马铃薯-双季稻(Po-R-R)种植模式下不同冬季覆盖作物秸秆还田后对后茬水稻各部位干物质和氮、磷、钾积累与分配影响的研究。结果表明:早稻成熟期,Po-R-R处理茎、叶物质贡献率均高于其他处理;晚稻成熟期,Ra-R-R处理的茎、叶物质转运率和物质贡献率均高于其他处理。早稻成熟期,Mv-R-R处理水稻植株穗和地上部分的氮素和磷素积累量均显著高于CK处理(P<0.05);各秸秆还田处理水稻植株茎和地上部分的钾素积累量均显著高于CK处理(P<0.05)。晚稻成熟期,Po-R-R处理叶、穗和地上部分的氮素和磷素积累量均显著高于CK处理(P<0.05)。Mv-R-R处理穗和地上部分的钾素积累量均显著高于Ry-R-R、Ra-R-R和CK处理(P<0.05)。总的来说,各冬季覆盖作物秸秆还田措施均促进了水稻各部位干物质积累和转运;其中以紫云英秸秆还田处理有利于水稻群体养分的积累与转运。
Effects of covering paddy field by crop straw in winter on nutrition accumulation and translocation of rice plant
,
不同水氮管理对水稻干物质积累和茎鞘物质运转及产量的影响
,为了探讨不同类型高产水稻水氮高效利用特性,以大穗型杂交粳稻甬优8号和穗粒兼顾型常规粳稻品种(系)苏10-100为材料,进行实地氮肥管理和全生育期轻干-湿交替灌溉技术联合运用,研究水稻干物质和茎鞘非结构性碳水化合物(NSC)积累与运转特性及其与籽粒产量形成的关系。结果表明,与常规水肥管理相比,实地氮肥管理和轻干-湿交替灌溉联合运用显著增加了幼穗分化期至成熟期的干物质积累量和抽穗期茎鞘中NSC含量,提高了茎鞘干物质和NSC运转率和对籽粒的贡献率,大穗型杂交粳稻甬优8号的运转率和贡献率明显大于常规粳稻苏10-100;水氮处理降低了穗数,但显著或极显著地提高了每穗粒数、结实率、充实度和千粒重,苏10-100和甬优8号分别增加了6.21%、2.53%,1.68%、13.63%,3.3%、8.1%和9.06%、10.35%,其中2个弱势籽粒千粒重的增幅分别达到了16.3%和15.9%,显著大于强势粒。因此,采用实地氮肥管理和轻干-湿交替灌溉水稻具有中后期单位面积干物质积累量大,物质运转率高,穗大且多,结实率高、充实度好的特点,有利于促进弱势籽粒灌浆充实,提高籽粒产量。本研究为水稻超高产栽培和不同类型水稻养分水份高效管理提供理论依据和实践指导。
Effects of dry matter accumulation and photosynthate transportation of stem and sheath and grain production under different water and nitrogen management in rice
,
双季稻区冬季覆盖作物残茬还田对水稻生物学特性和产量的影响
,
Effects of straw recycling of winter covering crop on biological characteristics of plants and yield of rice in paddy field
,
Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China
,
秸秆还田下寒地水稻实现高产高氮肥利用率的氮肥运筹模式
,
Nitrogen fertilizer management for high nitrogen utilization efficiency and rice yield under straw incorporation in a cold region
,
秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响
,
Effects of wheat-residue application and site-specific nitrogen management on grain yield and quality and nitrogen use efficiency in direct-seeding rice
,
水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响
,在高产施氮量180 kg hm<sup>-2</sup>条件下,以杂交稻冈优527为材料,通过“淹水灌溉”(W<sub>1</sub>)、“湿润灌溉(前期)+浅水灌溉(孕穗期)+干湿交替灌溉(抽穗至成熟期)”(W<sub>2</sub>)和“旱种”(W<sub>3</sub>) 3种灌水及不同的氮肥运筹处理,研究水分管理和氮肥运筹对水稻养分吸收、转运、分配及产量的影响,并探讨各养分间及其与产量的相互关系。结果表明,水分管理和氮肥运筹对水稻主要生育期氮、磷、钾的累积、转运、分配及产量的影响均存在显著的互作效应,水氮互作条件下各生育期氮、磷、钾间的吸收存在显著的协同效应;抽穗期氮、磷、钾的累积与各养分在结实期转运总量间,以及结实期各养分转运间均呈极显著正相关,且氮、钾在抽穗前期的累积对促进结实期各养分向籽粒的转运和提高产量影响显著,但氮肥后移比例过重(N<sub>4</sub>处理)及W<sub>3</sub>处理均会导致结实期叶片和茎鞘各养分转运总量的显著降低,氮、磷、钾降幅分别达2.73%~18.00%、8.03%~19.70%、6.52%~17.02%。据产量及其与养分吸收、转运间关系的表现,W<sub>1</sub>模式下氮肥后移量以占总施氮量的40%~60%为宜,W<sub>2</sub>模式与氮肥运筹方式为基肥:蘖肥:孕穗肥(倒四、二叶龄期分2次等量施入)=3∶3∶4组合是本试验最佳的水氮耦合运筹模式,W<sub>3</sub>模式下,应减少氮肥的后移量,氮肥后移量占总施氮量的20%~40%为宜。
Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice
,
干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响
,
Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization
,
氮肥运筹和秸秆还田对直播稻氮素利用和产量的影响
,
Effect of nitrogen fertilizer regimes and returning straw on n availability and forming yield of direct-sowing rice
,
/
〈 | 〉 |