欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1236-1252.doi: 10.3724/SP.J.1006.2024.32039

• 耕作栽培·生理生化 • 上一篇    下一篇

多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响

胡明明(), 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均*()   

  1. 四川农业大学水稻研究所 / 作物生理生态及栽培四川省重点实验室, 四川成都 611130
  • 收稿日期:2023-09-23 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-07
  • 通讯作者: 马均, E-mail: majunp2002@163.com
  • 作者简介:E-mail: 957937991@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0301706);国家重点研发计划项目(2017YFD0301701);国家重点研发计划项目(2016YFD0300506);四川省育种攻关专项(2016NYZ0051);四川省教育厅重点项目(18ZA0390)

Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns

HU Ming-Ming(), DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun*()   

  1. Rice Research Institute of Sichuan Agricultural University / Sichuan Provincial Key Laboratory of Crop Physiology, Ecology and Cultivation, Chengdu 611130, Sichuan, China
  • Received:2023-09-23 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-07
  • Contact: E-mail: majunp2002@163.com
  • Supported by:
    National Key Research and Development Program(2017YFD0301706);National Key Research and Development Program(2017YFD0301701);National Key Research and Development Program(2016YFD0300506);Sichuan Provincial Breeding Research Project(2016NYZ0051);Sichuan Provincial Department of Education Key Project(18ZA0390)

摘要:

研究多元化种植模式下, 不同前茬秸秆还田与水氮管理对水稻产量形成、干物质积累分配及氮素吸收利用的影响。2018—2019年以杂交稻F优498为材料, 采用三因素裂裂区设计, 主区设置油菜-水稻(Py)、小麦-水稻(Px)、青菜-水稻(Pq) 3种种植模式秸秆还田, 裂区设置常规淹水灌溉(W0)和干湿交替灌溉(W1) 2种水分管理方式, 裂裂区设置不施氮处理(N0)、常规施氮处理(N1)、精量减氮处理(N2) 3个施氮水平, 分析测定了拔节期、齐穗期和成熟期不同处理下秸秆还田的腐解率、氮素释放率、水稻各器官的干物质积累分配、植株氮素吸收利用以及籽粒产量。结果表明, Py的平均产量分别较Px、Pq增加2.55%、13.99%, 主要原因是其有效穗数和千粒重较高; Py可促进各营养器官干物质和氮素积累, 有利于干物质分配、提高茎鞘氮素贡献率和氮肥利用率, Py各时期的平均干物质积累总量、氮素积累总量分别比Px和Pq增加5.25%、7.48%和14.60%、17.30%, Py的氮肥偏生产力较Pq显著增加24.90%, 但Py的秸秆腐解率和氮素释放率较低。3种模式下W1处理的水稻产量分别比W0处理增加5.10% (Py)、1.76% (Px)和4.80% (Pq), W1处理可促进秸秆腐解和氮素释放, 促进干物质积累和氮素吸收转运, 有利于Py和Px模式下的干物质分配, 进而提高氮肥利用率。同一秸秆还田和水分管理下, N2处理可促进秸秆腐解和氮素释放, 有利于干物质分配和氮素转运, 提高了齐穗期、成熟期茎鞘和叶片氮素积累量, 进而提高氮肥利用率, N2处理的产量、干物质积累量较N1处理略有下降, 但二者差异不显著。综合考虑分析, 油-稻种植模式下, 油菜秸秆还田配合干湿交替灌溉与精量减氮(120 kg hm-2)有利于干物质积累分配、氮素吸收转运, 进而提高氮肥农学利用率、氮肥偏生产力, 并可节约20%氮肥投入, 实现水稻稳产高效生产。

关键词: 水稻, 多元化种植模式, 秸秆还田, 水氮管理, 产量形成, 氮素吸收利用

Abstract:

To study the effects of different precrop straw return and water and N management on rice yield formation, dry matter accumulation and distribution, and N uptake and utilization under diversified cropping patterns. In 2018-2019, hybrid rice F you 498 was used as the experimental material, and a three-factor split plot design was adopted. The main plot was conducted with three planting modes of rape-rice (Py), wheat-rice (Px), and cabbage-rice (Pq). In the field, the split area was equipped with two water management methods including conventional flooding irrigation (W0) and alternating wet and dry irrigation (W1). The split area was equipped with three N levels including no N treatment (N0), conventional N application treatment (N1), and precise N reduction (N2). The decomposition rate, N release rate, dry matter accumulation, and the distribution of various rice nutrient organs, plant N uptake and utilization of straw returned to the field under different treatments at jointing, heading, and maturity stages, and grain yield were analyzed and measured. The results showed that the average yield of Py increased by 2.55% and 13.99%, respectively, compared with Px and Pq, mainly due to its higher effective panicles and 1000-grain weight. Py promoted the accumulation of dry matter and N in various nutrient organs, which was beneficial to dry matter distribution, to improve the stem sheath N contribution rate and N fertilizer utilization rate, the average total dry matter accumulation and total N accumulation at each stage of Py increased by 5.25%, 7.48%, and 14.60%, 17.30%, respectively, compared with Px and Pq. The partial factor productivity of N increased significantly by 24.90% compared with Pq, but the straw decomposition rate and N release rate of Py were lower. The rice yield of W1 treatment under the three modes increased by 5.10% (Py), 1.76% (Px), and 4.80% (Pq), respectively, compared with W0 treatment. W1 treatment promoted straw decomposition and N release, promote dry matter accumulation and N uptake and transport are beneficial to dry matter distribution in Py and Px modes, thereby improving N fertilizer utilization efficiency. Under the same straw return and water management, N2 treatment promoted straw decomposition and N release, which was beneficial to dry matter distribution and N transport, and increased N accumulation in stem sheaths and leaves at heading and maturity stages, thus improving N fertilizer utilization efficiency. However, the yields and dry matter accumulations in N2 treatment decreased slightly compared with those in the N1 treatment, but there was significant difference between them. Comprehensive analysis showed that under the rape-rice planting model, returning rapeseed straw to the field combined with alternating dry and wet irrigation and precise N reduction (120 kg hm-2) was beneficial to dry matter accumulation and distribution, N uptake and transport, and thus improving the agronomic efficiency of N, and partial factor productivity of N, and can save 20% of N fertilizer input to achieve stable and efficient rice production.

Key words: rice, diversified cropping patterns, straw returning to field, water and N management, yield formation, N uptake and utilization

图1

2018-2019年试验区水稻生育期平均气温和降雨量"

表1

土壤基本理化性状"

年份
Year
前茬田
Preceding fields
全氮
Total N
(g kg-1)
有机质
Organic matter
(g kg-1)
碱解氮
Alkali hydrolyzed N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2018 油菜Rape 1.63 41.44 124.32 18.54 231.26
小麦Wheat 1.51 33.27 115.32 17.33 193.73
青菜Cabbage 1.32 31.78 107.30 16.89 224.89
2019 油菜Rape 1.85 44.78 136.10 20.74 239.75
小麦Wheat 1.66 35.56 118.32 18.78 197.78
青菜Cabbage 1.45 32.85 109.46 17.57 231.45

表2

多元化种植模式下秸秆还田配合水氮管理对水稻产量及产量构成因素的影响"

处理
Treatment
有效穗数
Effective panicles
(×104 hm-2)
每穗颖花数
Spikelets per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量
Yield
(kg hm-2)
Py
W0
N0 90.1 d 225.54 a 93.94 ab 31.97 d 6068.44 c
N1 137.3 b 231.66 a 91.38 bc 32.84 bcd 9303.67 ab
N2 119.2 c 229.43 a 90.34 c 33.35 abc 8772.68 b
均值Average 115.5 228.81 91.90 32.72 8046.26
W1
N0 91.2 d 221.17 a 95.45 ab 32.23 cd 6149.43 c
N1 147.5 a 230.92 a 91.40 bc 33.79 ab 9796.36 a
N2 128.8 bc 228.27 a 91.27 c 34.40 a 9698.83 a
均值Average 122.5 226.79 92.71 33.47 8548.21
Px
W0
N0 85.9 c 244.59 a 93.17 a 31.49 c 5983.57 b
N1 127.7 ab 245.62 a 92.98 a 32.50 ab 9166.53 a
N2 122.5 b 242.99 ab 92.34 a 32.98 a 8910.31 a
均值Average 112.0 244.40 92.83 32.32 8020.14
W1
N0 94.4 c 218.67 c 93.31 a 31.92 bc 5990.72 b
N1 136.7 a 227.50 abc 92.98 a 32.75 a 9292.24 a
N2 136.2 ab 222.92 bc 92.41 a 33.09 a 9200.85 a
均值Average 122.4 223.03 92.90 32.59 8161.27
Pq
W0
N0 91.6 c 219.91 a 91.84 a 31.23 c 5215.41 b
N1 126.3 ab 221.25 a 90.65 a 32.64 b 8194.23 a
N2 117.9 b 220.72 a 88.82 a 33.06 ab 7913.04 a
均值Average 111.9 220.62 90.44 32.31 7107.56
W1
N0 94.0 c 200.20 a 94.94 a 31.68 c 5423.67 b
N1 138.4 a 205.83 a 92.41 a 33.53 ab 8532.27 a
N2 134.2 a 200.85 a 92.13 a 33.87 a 8394.27 a
均值Average 122.2 202.29 93.16 33.03 7450.07
F
F-value
P 0.35 ns 3.70 ns 0.26 ns 18.61** 80.42**
W 32.71** 6.79** 7.82** 7.30** 6.70**
N 202.22** 0.18 ns 8.50** 54.68** 302.79**
P×W 0.48 ns 1.27 ns 6.36* 0.55 ns 0.67 ns
P×N 4.43* 0.26 ns 6.30* 1.00 ns 0.35 ns
W×N 5.03* 0.12 ns 0.35 ns 0.51 ns 1.26 ns
P×W×N 0.28 ns 0.27 ns 0.09 ns 0.53 ns 0.21 ns

表3

多元化种植模式下秸秆还田配合水氮管理对秸秆腐解率及氮素释放率的影响"

处理
Treatment
秸秆腐解率Straw decomposition rate (%) N释放率N release rate (%)
拔节期
Jointing
齐穗期
Heading
成熟期
Maturity
拔节期
Jointing
齐穗期
Heading
成熟期Maturity
Py
W0
N0 14.53 e 26.44 d 33.76 d 24.58 b 40.77 b 48.97 c
N1 23.81 c 35.47 c 49.57 c 27.47 a 41.53 ab 50.08 c
N2 25.35 bc 36.53 bc 51.28 c 26.83 a 42.56 ab 52.30 ab
均值Average 21.23 32.81 44.88 26.30 41.63 50.79
W1
N0 16.49 d 27.54 d 35.65 d 22.45 c 41.90 ab 49.64 c
N1 25.62 b 37.62 b 53.69 b 27.18 a 42.03 ab 52.13 b
N2 27.61 a 42.62 a 56.50 a 26.61 a 43.81 a 53.65 a
均值Average 23.24 35.93 48.62 25.42 42.58 51.81
Px
W0
N0 18.43 d 27.63 b 34.47 c 21.71 d 44.29 c 53.86 c
N1 24.47 c 38.66 a 55.36 b 30.88 a 44.92 c 55.06 bc
N2 27.57 b 40.60 a 55.53 b 29.72 ab 46.25 c 58.28 a
均值Average 23.48 35.63 48.46 27.57 45.17 55.74
W1
N0 19.33 d 28.50 b 36.47 c 24.35 c 44.90 c 55.80 b
N1 26.47 b 39.55 a 56.30 b 29.54 ab 50.70 b 57.92 a
N2 29.63 a 40.52 a 59.27 a 28.72 b 53.61 a 58.83 a
均值Average 25.15 36.19 50.68 27.54 49.73 57.52
Pq
W0
N0 70.57 e 74.50 c 79.53 d 72.06 a 72.83 b 74.17 b
N1 76.40 c 78.67 b 86.59 ab 73.57 a 74.65 a 75.06 ab
N2 77.68 bc 80.30 b 87.46 b 73.55 a 75.03 a 76.21 ab
均值Average 74.89 77.83 84.53 73.05 74.17 75.14
W1
N0 73.63 d 75.51 c 81.37 c 71.62 a 73.92 ab 74.93 ab
N1 78.82 b 82.53 a 88.35 ab 72.56 a 74.98 a 75.74 ab
N2 80.68 a 83.46 a 89.63 a 72.00 a 75.13 a 76.98 a
均值Average 77.71 80.50 86.45 72.06 74.68 75.88
F
F-value
P 65,359.04** 200,044.57** 47,149.16** 132,294.38** 24,912.98** 1474.51**
W 413.85** 2563.92** 282.93** 3.00 ns 38.62** 21.45**
N 408.47** 15,057.63** 5254.44** 109.74** 22.64** 66.51**
P×W 10.64* 355.69** 12.95** 1.42ns 15.77** 1.16 ns
P×N 8.02** 507.66** 364.99** 19.99** 4.03** 2.02 ns
W×N 0.27 ns 127.02** 14.59** 1.50 ns 2.51 ns 1.70 ns
P×W×N 0.31 ns 120.63** 5.94** 5.00* 4.24** 1.18 ns

表4

多元化种植模式下秸秆还田配合水氮管理对水稻干物质积累的影响"

处理
Treatment
拔节期Jointing 齐穗期Heading 成熟期Maturity 收获指数
Harvest
index
茎鞘
Stem sheath

Leaf
茎鞘
Stem
sheath

Leaf

Panicle
茎鞘
Stem sheath

Leaf

Panicle
Py W0
N0 1113.38 c 664.05 b 2962.43 b 917.18 c 1006.92 b 2100.04 c 740.80 b 6200.61 c 0.69 a
N1 1704.77 ab 1048.62 a 5129.31 a 2009.36 b 1482.33 a 3469.70 b 1585.77 a 9344.37 ab 0.65 b
N2 1637.99 b 1011.64 a 5245.73 a 1976.31 b 1392.52 a 3489.79 ab 1540.37 a 9030.19 b 0.64 b
均值Average 1485.38 908.11 4445.82 1634.30 1293.93 3019.85 1288.98 8191.72 0.66
W1
N0 1124.75 c 682.53 b 2831.02 b 939.17 c 1027.17 b 2136.47 c 755.35 b 6189.72 c 0.68 a
N1 1945.54 a 1195.29 a 5568.86 a 2085.37 ab 1520.01 a 3678.36 ab 1645.97 b 9870.51 a 0.65 b
N2 1811.08 ab 1115.25 a 5880.09 a 2164.15 a 1421.79 a 3763.46 a 1669.77 a 9759.62 ab 0.64 b
均值Average 1627.12 997.69 4759.99 1729.60 1322.98 3192.76 1357.03 8606.62 0.65
Px W0
N0 1024.72 b 657.27 b 2867.01 c 898.54 c 982.48 b 2081.99 c 731.87 b 6011.75 a 0.68 a
N1 1655.94 a 989.93 a 4681.76 b 1891.40 b 1362.11 a 3199.36 b 1505.76 a 9182.41 a 0.66 bc
N2 1638.72 a 981.22 a 4915.01 ab 1920.15 a 1312.71 a 3332.93 ab 1522.19 a 8952.41 a 0.65 c
均值Average 1439.79 876.14 4154.59 1570.00 1219.10 2871.43 1253.28 8048.86 0.66
W1
N0 1121.58 b 664.59 b 2961.35 c 914.22 c 983.14 b 2230.11 c 735.10 b 6034.48 b 0.67 ab
N1 1731.74 a 1083.37 a 4892.76 ab 1931.60 ab 1379.68 a 3240.28 b 1511.84 a 9333.28 a 0.66 bc
N2 1714.86 a 1050.06 a 5289.58 a 2038.32 a 1315.27 a 3469.19 a 1587.60 a 9211.06 a 0.65 c
均值Average 1522.73 932.67 4381.23 1628.10 1226.03 2979.86 1278.18 8192.94 0.66
Pq
W0

N0 1014.59 b 612.13 b 2702.58 b 758.84 c 960.42 b 1927.36 c 643.92 c 6008.35 b 0.70 a
N1 1648.50 a 980.37 a 4199.52 a 1530.1 b 1358.73 a 2912.69 b 1221.16 b 8481.31 a 0.67 b
N2 1638.79 a 917.29 a 4417.26 a 1664.74 ab 1293.68 a 3067.35 ab 1283.36 ab 8244.25 a 0.65 c
均值Average 1433.96 836.60 3773.13 1317.90 1204.28 2635.80 1049.48 7577.97 0.67
W1

N0 1103.21 b 641.05 b 2613.99 b 786.33 c 967.75 b 1954.44 c 653.04 c 6027.06 b 0.70 a
N1 1708.05 a 992.62 a 4259.65 a 1638.75 ab 1374.99 a 3066.94 ab 1304.95 a 8534.76 a 0.66 bc
N2 1676.24 a 885.18 a 4499.22 a 1702.75 a 1318.13 a 3081.24 a 1305.02 a 8476.73 a 0.66 bc
均值Average 1495.83 839.62 3790.95 1375.90 1220.30 2700.88 1087.67 7679.52 0.67
F
F-value
P 2.60 ns 14.96** 20.01** 94.39** 10.63** 181.21** 28.35** 22.58** 0.78 ns
W 7.51* 11.88** 2.05 ns 12.13** 0.98 ns 21.90** 11.89** 2.79 ns 0.17 ns
N 152.64** 82.21** 232.55** 976.82** 124.78 ns 485.82** 485.21** 318.66** 3.92*
P×W 0.28 ns 6.06* 0.46 ns 0.38 ns 0.14 ns 1.61 ns 1.01 ns 0.55 ns 0.04 ns
P×N 0.30 ns 0.67 ns 3.43** 6.30** 0.54 ns 4.94** 4.16** 2.99* 0.14 ns
W×N 0.26 ns 0.49 ns 1.69 ns 1.55 ns 0.03 ns 0.35 ns 0.64 ns 1.08 ns 0.12 ns
P×W×N 0.58 ns 0.29 ns 0.37 ns 0.64 ns 0.01 ns 0.77 ns 0.32 ns 0.25 ns 0.04 ns

表5

多元化种植模式下秸秆还田配合水氮管理对水稻干物质转运的影响"

处理
Treatment
茎鞘干物质转运 Stem sheath dry matter transport 叶片干物质转运Leaf dry matter transport
转运量
Transfer amount
(kg hm-2)
输出率
Output rate
(%)
贡献率Contribution rate (%) 转运量
Transfer amount
(kg hm-2)
输出率
Output rate
(%)
贡献率Contribution rate (%)
Py W0
N0 862.39 bc 29.05 b 14.16 b 176.37 b 19.21 b 2.85 c
N1 1659.60 ab 32.14 a 17.88 a 423.58 a 21.12 ab 4.53 a
N2 1755.93 a 32.63 a 19.44 a 435.93 a 22.05 ab 4.82 a
均值Average 1425.98 31.28 17.16 345.30 20.80 4.07
W1
N0 694.55 c 23.32 b 11.25 b 183.81 b 19.56 ab 2.97 bc
N1 1890.49 a 33.39 a 19.29 a 439.40 a 21.05 ab 4.45 ab
N2 2116.62 a 35.98 a 21.76 a 494.38 a 22.75 a 5.09 a
均值Average 1567.22 30.89 17.44 372.53 21.12 4.17
Px W0
N0 785.01 b 27.31 b 13.03 b 166.67 b 18.53 b 2.77 b
N1 1482.39 a 31.51 a 16.27 a 385.63 a 20.49 ab 4.24 a
N2 1582.08 a 31.91 a 17.77 a 397.96 a 20.85 ab 4.44 a
均值Average 1283.16 30.24 15.69 316.77 19.95 3.82
W1
N0 731.23 b 24.52 b 12.15 b 179.12 b 19.46 ab 2.92 b
N1 1652.47 a 33.76 a 17.69 a 419.76 a 21.71 ab 4.51 a
N2 1820.38 a 33.82 a 19.81 a 450.76 a 22.03 a 4.91 a
均值Average 1401.36 30.70 16.55 349.88 21.07 4.12
Pq
W0 N0 775.21 bc 28.61 a 13.03 b 114.91 b 14.50 b 1.87 c
N1 1286.83 ab 30.44 a 15.13 a 308.94 a 20.24 a 3.69 ab
N2 1349.91 ab 30.51 a 16.34 a 381.38 a 22.62 a 4.67 a
均值Average 1137.33 29.86 14.84 268.41 19.12 3.41
W1 N0 659.54 c 25.22 b 11.04 b 133.28 b 16.93 b 2.24 b
N1 1192.70 abc 26.99 b 14.13 a 333.79 a 20.30 a 3.89 a
N2 1417.98 a 31.22 a 16.64 a 397.72 a 23.15 a 4.69 a
均值Average 1090.07 27.81 13.94 288.27 20.13 3.60
F
F-value
P 6.33* 0.87 ns 1.92 ns 13.61** 1.79 ns 7.70*
W 0.26 ns 0.09 ns 0.01 ns 6.26* 1.12 ns 2.37 ns
N 33.77** 5.93** 8.81** 45.82** 4.94** 18.33**
P×W 0.18 ns 0.11 ns 0.14 ns 0.06 ns 0.10 ns 0.20 ns
P×N 3.89* 0.39 ns 0.28 ns 0.19 ns 0.37 ns 0.22 ns
W×N 0.99 ns 1.22 ns 0.71 ns 3.12* 0.03 ns 0.01 ns
P×W×N 0.13 ns 0.18 ns 0.06 ns 0.04 ns 0.03 ns 0.05 ns

表6

多元化种植模式下秸秆还田配合水氮管理对水稻氮素积累量的影响"

处理
Treatment
拔节期Jointing 齐穗期Heading 成熟期Maturity
茎鞘
Stem sheath

Leaf
茎鞘
Stem sheath

Leaf

Panicle
茎鞘
Stem sheath

Leaf

Panicle
Py W0
N0 11.65 c 17.04 c 16.93 c 17.02 b 11.40 c 8.46 b 8.55 b 60.33 b
N1 17.64 a 34.26 a 50.28 b 54.67 a 20.09 a 24.02 a 22.04 a 106.41 a
N2 16.85 b 32.93 b 55.29 a 54.71 a 19.23 b 25.33 a 22.10 a 93.83 a
均值Average 15.39 28.08 40.84 42.15 16.91 19.28 17.57 86.86
W1
N0 11.17 c 16.38 c 19.68 c 23.35 c 12.89 b 9.72 b 10.67 b 58.19 b
N1 23.36 a 36.61 a 53.39 b 55.69 b 23.62 a 25.31 a 25.26 a 107.96 a
N2 21.39 b 32.99 b 56.74 a 59.69 a 22.75 a 26.37 a 26.78 a 96.25 a
均值Average 18.65 28.66 43.27 46.25 19.76 20.14 20.91 87.48
Px W0
N0 11.09 c 17.17 c 15.99 b 17.76 c 11.42 b 9.48 b 6.48 c 57.74 b
N1 18.95 a 28.94 a 45.40 a 47.73 b 18.27 a 16.99 a 16.98 b 104.61 a
N2 17.37 b 26.35 b 47.17 a 52.77 a 17.42 a 17.21 a 18.50 a 98.26 a
均值Average 15.81 24.16 36.19 39.43 15.71 14.55 13.99 86.88
W1
N0 11.06 c 18.60 c 19.22 c 20.64 c 11.83 b 9.54 c 7.47 c 61.83 b
N1 19.65 a 29.77 a 48.18 b 50.50 b 20.71 a 17.78 b 17.27 b 115.72 a
N2 17.09 b 26.97 b 54.82 a 56.99 a 19.70 a 19.71 a 19.15 a 106.75 a
均值Average 15.94 25.12 40.75 42.72 17.41 15.68 14.64 94.77
Pq
W0
N0 8.80 c 13.91 c 12.94 b 13.71 b 10.48 b 7.54 b 4.78 b 57.48 b
N1 17.52 a 24.34 a 43.11 a 44.50 a 18.93 a 17.34 a 13.87 a 103.22 a
N2 15.98 b 21.48 b 44.15 a 45.93 a 18.79 a 17.47 a 14.19 a 99.40 a
均值Average 14.11 19.91 33.40 34.72 16.07 14.13 10.96 86.71
W1
N0 10.27 c 15.46 c 14.25 c 15.30 c 11.87 b 7.60 b 5.71 b 60.05 b
N1 18.31 a 24.35 a 43.94 b 46.51 b 19.74 a 17.71 a 16.26 a 106.67 a
N2 16.60 b 21.61 b 45.75 a 48.59 a 19.26 a 18.02 a 16.60 a 101.63 a
均值Average 15.06 20.48 34.65 36.80 16.97 14.44 12.87 89.46
F
F-value
P 160.12** 2052.90* 522.32** 168.68** 97.47** 286.05** 5841.70** 8.54*
W 118.68** 255.48** 60.21** 152.28** 193.97** 13.91** 35.62** 26.19**
N 1495.94** 13,019.27** 4718.69** 6628.52** 729.50** 1944.95** 1365.30** 1950.72**
P×W 49.37** 8.44* 7.45* 5.25* 193.97** 1.33 ns 5.59* 8.69*
P×N 3.82* 698.13** 13.62** 16.46** 3.60* 77.31** 18.86** 5.47*
W×N 20.13** 10.59** 1.70 ns 5.11* 3.15 ns 1.01 ns 2.79 ns 2.95 ns
P×W×N 24.17** 31.90** 3.64* 3.71* 2.24 ns 3.49* 1.66 ns 0.83 ns

表7

多元化种植模式下秸秆还田配合水氮管理对水稻氮素转运的影响"

处理
Treatment
茎鞘氮素转运Stem sheath N transport 叶片氮素转运Leaf N transport
转运量
Transfer amount (kg hm-2)
输出率
Output rate
(%)
贡献率Contribution rate (%) 转运量
Transfer amount (kg hm-2)
输出率
Output rate
(%)
贡献率Contribution rate (%)
Py W0
N0 8.46 c 50.01 a 14.03 c 8.47 b 49.75 b 14.04 c
N1 26.25 b 52.19 a 24.70 b 32.62 a 59.65 a 30.78 b
N2 29.95 a 54.16 a 31.95 a 32.61 a 59.60 a 34.76 a
均值Average 21.56 52.12 23.56 24.57 56.34 26.53
W1
N0 9.95 c 50.58 a 17.11 c 12.68 c 54.30 a 21.79 c
N1 28.07 b 52.54 ab 25.99 b 30.43 b 54.63 a 28.18 b
N2 31.37 a 55.28 a 32.59 a 32.91 a 55.12 a 34.19 a
均值Average 23.14 52.80 25.23 25.34 54.69 28.05
Px W0
N0 6.50 b 40.65 b 11.27 c 11.28 c 63.50 a 19.53 c
N1 28.46 a 62.61 a 27.20 b 30.75 b 64.39 a 29.39 b
N2 29.96 a 63.46 a 30.50 a 34.26 a 64.91 a 34.89 a
均值Average 21.64 55.58 22.99 25.43 64.27 27.94
W1

N0 9.68 c 50.31 b 15.64 c 13.17 c 63.79 b 21.33 c
N1 30.40 b 63.09 a 26.28 b 33.23 b 65.79 a 28.75 b
N2 35.10 a 64.03 a 32.88 a 37.83 a 66.37 a 35.44 a
均值Average 25.07 59.45 24.94 28.08 65.32 28.51
Pq
W0

N0 5.39 b 41.59 b 9.38 b 8.93 b 65.08 a 15.54 b
N1 25.77 a 59.76 a 24.98 a 30.62 a 68.85 a 29.67 a
N2 26.67 a 60.35 a 26.90 a 31.74 a 69.04 a 31.98 a
均值Average 19.28 53.90 20.42 23.77 67.75 25.74
W1

N0 6.64 b 46.61 b 11.09 c 9.58 b 62.63 a 15.96 c
N1 26.34 a 59.93 a 24.69 b 30.24 a 65.07 a 28.36 b
N2 27.63 a 60.37 a 27.20 a 31.99 a 65.81 a 31.47 a
均值Average 20.21 55.64 20.99 23.94 64.50 25.27
F
F-value
P 65.74** 42.28** 238.25** 25.18** 2025.45** 10.83*
W 35.55** 19.56** 18.17** 15.43** 3.20* 3.28*
N 1244.18** 178.65** 490.53** 2058.42** 15.91** 436.07**
P×W 5.08* 3.49 ns 1.64 ns 5.98* 3.09 ns 2.56 ns
P×N 3.65* 24.66** 4.29** 2.71 ns 1.38 ns 3.43*
W×N 0.59 ns 6.22** 3.61* 4.29* 3.19* 10.38**
P×W×N 0.67 ns 2.11 ns 0.71 ns 4.02* 3.39* 3.75*

表8

多元化种植模式下秸秆还田配合水氮管理对水稻氮素利用的影响"

处理
Treatment
氮肥农学利用率
Agronomic efficiency of N (kg kg-1)
氮肥偏生产力
Partial factor productivity of N (kg kg-1)
Py W0
N0
N1 21.56 a 62.02 c
N2 21.59 a 72.16 b
均值Average 21.57 67.09
W1
N0
N1 24.31 a 65.30 c
N2 29.57 a 80.82 a
均值Average 26.94 73.06
Px W0
N0
N1 23.66 a 61.11 b
N2 23.76 a 63.88 ab
均值Average 23.71 62.49
W1
N0
N1 24.07 a 63.05 ab
N2 24.19 a 65.95 a
均值Average 24.13 64.50
Pq W0
N0
N1 19.63 a 54.40 a
N2 18.88 a 54.85 a
均值Average 19.26 54.63
W1
N0
N1 20.87 a 56.88 a
N2 20.72 a 58.27 a
均值Average 20.79 57.58
F
F-value
P 3.33* 123.52**
W 3.85* 24.11**
N 3.95* 46.24**
P×W 3.45* 7.59*
P×N 1.21 20.60**
W×N 3.50* 6.74*
P×W×N 0.93 3.01
[1] 左琴, 刘彦伶, 李渝, 黄兴成, 张雅蓉, 朱华清, 杨叶华, 熊涵, 张文安, 蒋太明. 长期不同轮作方式对黄壤区水稻产量和养分吸收及土壤养分含量的影响. 土壤通报, 2023, 54: 881-888.
Zuo Q, Liu Y L, Li Y, Huang X C, Zhang Y R, Zhu H Q, Yang Y H, Xiong H, Zhang W A, Jiang T M. Effects of long-term different cropping rotations on rice yield, nutrient uptake and soil nutrient contents in yellow soil region. Chin J Soil Sci, 2023, 54: 881-888 (in Chinese with English abstract).
[2] 褚光, 陈松, 徐春梅, 刘元辉, 王丹英, 章秀福. 我国稻田种植制度的演化及展望. 中国稻米, 2021, 27(4): 63-65.
doi: 10.3969/j.issn.1006-8082.2021.04.013
Chu G, Chen S, Xu C M, Liu Y H, Wang D Y, Zhang X F. Development status and prospect of paddy multiple cropping system in China. China Rice, 2021, 27(4): 63-65 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.04.013
[3] Mehmood K, Wu Y J, Wang L Q, Yu S C, Li P F, Chen X, Li Z, Zhang Y B, Li M Y, Liu W P, Wang Y S, Liu Z R, Zhu Y N, Rosenfeld D H, Seinfeld J. Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions. Atmos Chem Phys, 2020, 20: 2419-2443.
doi: 10.5194/acp-20-2419-2020
[4] Zhang S J, Zhang G, Wang D J, Liu Q. Abiotic and biotic effects of long-term straw retention on reactive nitrogen runoff losses in a rice-wheat cropping system in the Yangtze Delta region. Agric Ecosyst Environ, 2021, 305: 107162.
doi: 10.1016/j.agee.2020.107162
[5] Fan W, Wu J G, Ahmed S, Hu J, Chen X D, Li X H, Zhu W Y, Opoku-K Y. Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE China. Sustainability, 2020, 12: 64-76.
doi: 10.3390/su12010064
[6] Fang Y Y, Nazaries L, Singh B K, Singh B P. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biol, 2018, 24: 2775-2790.
doi: 10.1111/gcb.14154 pmid: 29603502
[7] Li Y, Ihsan M, Chi Y X, Wang D, Zhou X B. Straw return and nitrogen fertilization to maize regulate soil properties, microbial community, and enzyme activities under a dual cropping system. Front Microb, 2022, 13: 823963.
doi: 10.3389/fmicb.2022.823963
[8] Tolomio M, Borin M. Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy. Agric Water Manag, 2018, 201: 1-10.
doi: 10.1016/j.agwat.2018.01.009
[9] Dong Y J, Yuan J, Zhang G B, Ma J, Hilario P, Liu X J, Lu S H. Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of southwest China. Pedosphere, 2020, 30: 759-768.
doi: 10.1016/S1002-0160(20)60036-4
[10] 张斯梅, 顾克军, 张传辉, 顾东祥, 段增强. 麦秸全量还田下减氮施肥对粳稻产量形成和氮素吸收利用的影响. 江苏农业学报, 2023, 39(2): 360-367.
Zhang S M, Gu K J, Zhang C H, Gu D X, Duan Z Q. Effects of reduced nitrogen fertilization on yield formation and nitrogen uptake and utilization of japonica rice under total wheat straw returning. J Jiangsu Agric, 2023, 39(2): 360-367 (in Chinese with English abstract).
[11] 张刚, 王德建, 俞元春, 王灿, 庄锦贵. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响. 植物营养与肥料学报, 2016, 22: 877-885.
Zhang G, Wang D J, Yu Y C, Wang C, Zhuang J G. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss. J Plant Nutr Fert, 2016, 22: 877-885 (in Chinese with English abstract).
[12] 吴宗钊, 原保忠. 水肥耦合对水稻生长、产量及氮素利用效率的影响. 水资源与水工程学报, 2020, 31(4): 199-207.
Wu Z Z, Yuan B Z. Effect of water and fertilizer coupling on growth, yield and nitrogen use efficiency of rice. J Water Res Hydra Engin, 2020, 31(4): 199-207 (in Chinese with English abstract).
[13] 张宇杰, 王志强, 马鹏, 杨志远, 孙永健, 马均. 麦秆还田下水氮耦合对水稻氮素吸收利用及产量的影响. 中国水稻科学, 2022, 36: 388-398.
doi: 10.16819/j.1001-7216.2022.210803
Zhang Y J, Wang Z Q, Ma P, Yang Z Y, Sun Y J, Ma J. Effects of water-nitrogen coupling on nitrogen uptake, utilization and yield of rice under wheat straw returning. Chin J Rice Sci, 2022, 36: 388-398 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.210803
[14] 凌启鸿, 张洪程, 戴其根, 丁艳锋, 凌励, 苏祖芳, 徐茂, 阙金华, 王绍华. 水稻精确定量施氮研究. 中国农业科学, 2005, 38: 2457-2467.
Ling Q H, Zhang H C, Dai Q G, Ding Y F, Ling L, Su Z F, Xu M, Que J H, Wang S H. Study on precise and quantitative N application in rice. Sci Agric Sin, 2005, 38: 2457-2467 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.as-2003-2033
[15] 王春雨, 余华清, 何艳, 郭长春, 张绍文, 杨志远, 马均. 播栽方式与施氮量对杂交籼稻氮肥利用特征及产量的影响. 中国生态农业学报, 2017, 25: 1792-1801.
Wang C Y, Yu H Q, He Y, Guo C C, Zhang S W, Yang Z Y, Ma J. Characteristics of nitrogen accumulation and utilization in indica hybrid rice under different planting methods and nitrogen rates. Chin J Eco-Agric, 2017, 25: 1792-1801 (in Chinese with English abstract).
[16] Mi W H, Wu L H, Brookes P C, Liu Y L, Zhang X, Yang X. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil Tillage Res, 2016, 163: 64-70.
doi: 10.1016/j.still.2016.05.009
[17] 裴鹏刚, 张均华, 朱练峰, 胡志华, 金千瑜. 秸秆还田耦合施氮水平对水稻光合特性、氮素吸收及产量形成的影响. 中国水稻科学, 2015, 29: 282-290.
doi: 10.3969/j.issn.1001G7216.2015.03.007
Pei P G, Zhang J H, Zhu L F, Hu Z H, Jin Q Y. Effects of straw returning coupled with N application on rice photosynthetic characteristics, nitrogen uptake and grain yield formation. Chin J Rice Sci, 2015, 29: 282-290 (in Chinese with English abstract).
[18] 殷尧翥, 郭长春, 孙永健, 武云霞, 余华清, 孙知白, 张桥, 王海月, 杨志远, 马均. 稻油轮作下油菜秸秆还田与水氮管理对杂交稻群体质量和产量的影响. 中国水稻科学, 2019, 33: 257-268.
doi: 10.16819/j.1001-7216.2019.8102
Yin Y Z, Guo C C, Sun Y J, Wu Y X, Yu H Q, Sun Z B, Zhang Q, Wang H Y, Yang Z Y, Ma J. Effects of rape straw retention and water and nitrogen management on population quality and yield of hybrid rice under rice-rape rotation. Chin J Rice Sci, 2019, 33: 257-268 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8102
[19] 谌洁, 吕腾飞, 王志强, 王仲林, 林郸, 李郁, 杨志远, 孙永健, 马均. 青菜/油菜茬口下水稻栽植方式对温光资源利用和产量的影响. 应用生态学报, 2022, 33: 405-414.
doi: 10.13287/j.1001-9332.202201.024
Chen J, Lyu T F, Wang Z Q, Wang Z L, Lin D, Li Y, Yang Z Y, Sun Y J, Ma J. Effects of planting methods on the utilization of temperature and sunshine resources and yield of rice under cabbage/rape-paddy cropping system. Chin J Appl, 2022, 33: 405-414 (in Chinese with English abstract).
[20] 严奉君. 多元种植模式下秸秆还田对作物产量形成及秸秆与土壤养分协同利用的影响. 四川农业大学博士学位论文, 四川成都, 2018.
Yan F J. Effects of Straw Returning on Crop Yield Formation and Synergistic Utilization of Straw and Soil Nutrients in Multi- cropping System. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2018 (in Chinese with English abstract).
[21] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01026
[22] Liu B, Xia H, Jiang C C, Riaz M, Yang L, Chen Y F, Fan X P, Xia X. 14-year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Sci Total Environ, 2022, 841: 15608.
[23] 王子阳, 陈婉华, 袁伟, 马贤超, 周正萍, 刘世平. 双季稻地区不同类型水稻秸秆与还田深度对还田秸秆腐解进程的影响. 中国土壤与肥料, 2022, 2(2): 170-174.
Wang Z Y, Chen W H, Yuan W, Ma X C, Zhou Z P, Liu S P. Effects of different types of rice straw and returning depth on decomposition course of straw in double cropping rice region. Soil Fert Sci China, 2022, 2(2): 170-174 (in Chinese with English abstract).
[24] 李逢雨, 孙锡发, 冯文强, 秦鱼生, 王昌全, 涂仕华. 麦秆、油菜秆还田腐解速率及养分释放规律研究. 植物营养与肥料学报, 2009, 15: 374-380.
Li F Y, Sun X F, Feng W Q, Qin Y S, Wang C Q, Tu S H. Nutrient release patterns and decomposing rates of wheat and rapeseed straw. J Plant Nutr Fert, 2009, 15: 374-380 (in Chinese with English abstract).
[25] 代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律. 中国生态农业学报, 2017, 25(2): 188-199.
Dai W C, Gao M, Lan M L, Huang R, Wang J Z, Wang Z F, Han X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chin J Eco-Agric, 2017, 25(2): 188-199 (in Chinese with English abstract).
[26] 曾莉, 张鑫, 张水清, 王秀斌, 梁国庆, 周卫, 艾超, 张跃强. 不同施氮量下潮土中小麦秸秆腐解特性及其养分释放和结构变化特征. 植物营养与肥料学报, 2020, 26: 1565-1577.
Zeng L, Zhang X, Zhang S Q, Wang X B, Liang G Q, Zhou W, Ai C, Zhang Y Q. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates. J Plant Nutr Fert, 2020, 26: 1565-1577 (in Chinese with English abstract).
[27] Álvaro-Fuentes J, Morell F, Madejón E, Lampurlanés J, Arrúe J, Cantero-Martínez C. Soil biochemical properties in a semiarid mediterranean agroecosystem as affected by long-term tillage and N fertilization. Soil Tillage Res, 2013, 129: 69-74.
doi: 10.1016/j.still.2013.01.005
[28] Guo L J, Zhang L, Liu L, Sheng F, Cao C G, Li C F. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China. Agric Ecosyst Environ, 2021, 322: 107650.
doi: 10.1016/j.agee.2021.107650
[29] 严奉君, 孙永健, 马均, 徐徽, 李玥, 杨志远, 蒋明金, 吕腾飞. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015, 21: 23-35.
Yan F J, Sun Y J, Ma J, Xu H, Li Y, Yang Z Y, Jiang M J, Lyu T F. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice. J Plant Nutr Fert, 2015, 21: 23-35 (in Chinese with English abstract).
[30] 唐海明, 肖小平, 汤文光, 李超, 汪柯, 程凯凯, 郭立君, 孙耿. 冬季覆盖作物秸秆还田对水稻植株养分积累与转运的影响. 中国农业科技导报, 2018, 20(8): 63-73.
doi: 10.13304/j.nykjdb.2017.0566
Tang H M, Xiao X P, Tang W G, Li C, Wang K, Cheng K K, Guo L J, Sun G. Effects of covering paddy field by crop straw in winter on nutrition accumulation and translocation of rice plant. J Agric Sci Technol, 2018, 20(8): 63-73 (in Chinese with English abstract).
[31] 顾俊荣, 董明辉, 赵步洪, 陈培峰, 季红娟, 韩立宇. 不同水氮管理对水稻干物质积累和茎鞘物质运转及产量的影响. 核农学报, 2016, 30: 347-354.
doi: 10.11869/j.issn.100-8551.2016.02.0347
Gu J R, Dong M H, Zhao B H, Chen P F, Ji H J, Han L Y. Effects of dry matter accumulation and photosynthate transportation of stem and sheath and grain production under different water and nitrogen management in rice. J Nucl Agric Sci, 2016, 30: 347-354 (in Chinese with English abstract).
[32] 唐海明, 汤文光, 肖小平, 杨光立. 双季稻区冬季覆盖作物残茬还田对水稻生物学特性和产量的影响. 江西农业大学学报, 2012, 34(2): 213-219.
Tang H M, Tang W G, Xiao X P, Yang G L. Effects of straw recycling of winter covering crop on biological characteristics of plants and yield of rice in paddy field. J Jiangxi Agric Univ, 2012, 34(2): 213-219 (in Chinese with English abstract).
[33] Pan J F, Liu Y Z, Zhong X H, Rubenito M L, Grant R S, Huang N R, Liang K M, Peng B L, Tian K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric Water Manag, 2017, 184: 191-200.
doi: 10.1016/j.agwat.2017.01.013
[34] 孔丽丽, 侯云鹏, 尹彩侠, 李前, 张磊, 赵胤凯, 徐新朋. 秸秆还田下寒地水稻实现高产高氮肥利用率的氮肥运筹模式. 植物营养与肥料学报, 2021, 27: 1282-1293.
Kong L L, Hou Y P, Yin C X, Li Q, Zhang L, Zhao Y K, Xu X P. Nitrogen fertilizer management for high nitrogen utilization efficiency and rice yield under straw incorporation in a cold region. J Plant Nutr Fert, 2021, 27: 1282-1293 (in Chinese with English abstract).
[35] 徐国伟, 谈桂露, 王志琴, 刘立军, 杨建昌. 秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响. 中国农业科学, 2009, 42: 2736-2746.
Xu G W, Tan G L, Wang Z Q, Liu L J, Yang J C. Effects of wheat-residue application and site-specific nitrogen management on grain yield and quality and nitrogen use efficiency in direct-seeding rice. Sci Agric Sin, 2009, 42: 2736-2746 (in Chinese with English abstract).
[36] 孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾现文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. 作物学报, 2011, 37: 2221-2232.
doi: 10.3724/SP.J.1006.2011.02221
Sun Y J, Sun Y Y, Liu S J, Yang Z Y, Cheng H B, Jia X W, Ma J. Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice. Acta Agron Sin, 2011, 37: 2221-2232 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.02221
[37] 徐国伟, 陆大克, 刘聪杰, 王贺正, 陈明灿, 李友军. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7): 137-146.
Xu G W, Lu D K, Liu C J, Wang H Z, Chen M C, Li Y J. Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization. Trans CSAE, 2018, 34(7): 137-146 (in Chinese with English abstract).
[38] 赵锋, 程建平, 张国忠, 徐得泽, 吴建平, 吴继洪, 杨兆林, 马焕新. 氮肥运筹和秸秆还田对直播稻氮素利用和产量的影响. 湖北农业科学, 2011, 50: 3701-3704.
Zhao F, Cheng J P, Zhang G Z, Xu D Z, Wu J P, Wu J H, Yang Z L, Ma H X. Effect of nitrogen fertilizer regimes and returning straw on n availability and forming yield of direct-sowing rice. Hubei Agric Sci, 2011, 50: 3701-3704 (in Chinese with English abstract).
[1] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[2] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[3] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[4] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[5] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[6] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[7] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[8] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[9] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[10] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[11] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[12] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[13] 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75.
[14] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[15] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .