欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1223-1235.doi: 10.3724/SP.J.1006.2024.34202

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆籽粒Ve含量的全基因组关联分析

张红梅1(), 张威1, 王琼1, 贾倩茹1, 孟珊2, 熊雅文3, 刘晓庆1, 陈新1, 陈华涛1,3,*()   

  1. 1江苏省农业科学院经济作物研究所, 江苏南京 210014
    2江苏省农业科学院种质资源与生物技术研究所, 江苏南京 210014
    3南京农业大学生命科学学院, 江苏南京 210095
  • 收稿日期:2023-12-01 接受日期:2024-01-31 出版日期:2024-05-12 网络出版日期:2024-02-09
  • 通讯作者: 陈华涛, E-mail: cht@jaas.ac.cn
  • 作者简介:E-mail: zhm@jaas.ac.cn
  • 基金资助:
    江苏省农业自主创新基金项目(CX(22)5002);国家自然科学基金项目(32001455);国家自然科学基金项目(30771360)

Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed

ZHANG Hong-Mei1(), ZHANG Wei1, WANG Qiong1, JIA Qian-Ru1, MENG Shan2, XIONG Ya-Wen3, LIU Xiao-Qing1, CHEN Xin1, CHEN Hua-Tao1,3,*()   

  1. 1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    3College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2023-12-01 Accepted:2024-01-31 Published:2024-05-12 Published online:2024-02-09
  • Contact: E-mail: cht@jaas.ac.cn
  • Supported by:
    Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)5002);National Natural Science Foundation of China(32001455);National Natural Science Foundation of China(30771360)

摘要:

维生素E (Ve)是大豆油中一种天然抗氧化剂, 是评价大豆油营养价值的重要指标。本研究利用含有264份的大豆自然群体在2021年和2022年测定了籽粒中α-、γ-和δ-生育酚含量, 并进行全基因组关联分析(Genome-wide association study, GWAS)。本研究共检测到199个与大豆Ve含量显著关联的SNP位点, 其中9个可在2个环境或者2个性状被重复检测到, 分别位于3号、7号、11号、12号、13号、15号、17号和18号染色体上。其中位于7号染色体上的显著关联信号是控制α-生育酚含量的主效位点, 可在2年环境中被检测到, 表型变异解释率为9.83%。对该位点候选基因进行筛选, 获得一个编码myb转录因子的基因Glyma.07G054000, 可能是这个位点的效应基因。另外, 在12号染色体上得到2个编码γ-生育酚甲基转移酶的基因Glyma.12G014200Glyma.12G014300, 有可能是影响Ve含量的重要基因。本研究结果有助于解析大豆籽粒Ve含量的遗传基础及其调控机制, 为大豆品质遗传改良奠定了基础。

关键词: 大豆, 籽粒, Ve含量, 全基因组关联分析, 候选基因

Abstract:

Vitamin E (Ve) is a natural antioxidant in soybean oil and an important index to evaluate the nutritional value of soybean oil. In this study, α-, γ-, and δ- contents of seed were determined from a natural soybean population containing 264 germplasm resources in 2021 and 2022, and genome-wide association study (GWAS) was conducted. A total of 199 SNPs significantly associated with soybean Ve content were detected in this study, among which 9 SNPs that could be repeatedly detected in two different environments or two traits, which located on chromosomes 3, 7, 11, 12, 13, 15, 17, and 18, respectively. Among them, the significant association signal on chromosome 7 was a major effect site controlling α-tocopherol content, which can be detected in two environments, with the explanation rate of phenotypic variation 9.83%. By screening the candidate genes of this site, Glyma.07G054000 encoding myb transcription factor was obtained, which may be the effect gene of this site. In addition, two genes encoding γ-tocopherol methyltransferase Glyma.12G014200 and Glyma.12G014300 obtained on chromosome 12, may be important genes affecting Ve content. The results of this study are helpful to analyze the genetic basis and regulatory mechanism of Ve content in soybean seed, and lay a foundation for genetic improvement of soybean quality.

Key words: soybean, seed, Ve content, GWAS, candidate gene

表1

大豆籽粒Ve含量表型变异"

性状
Trait
年份
Year
平均值
Mean
标准差
SD
变幅
Range
变异系数
CV (%)
α-Toc 2021 20.22 6.18 5.62-40.26 30.57
2022 15.00 8.37 1.79-59.72 55.78
γ-Toc 2021 164.37 33.56 56.69-269.85 20.42
2022 188.31 73.68 46.57-426.70 39.13
δ-Toc 2021 19.96 4.63 4.53-35.04 23.19
2022 22.26 8.49 5.26-47.24 38.16
TVe 2021 204.48 40.47 75.69-321.98 19.79
2022 225.57 87.78 54.70-498.38 38.92

图1

不同年份大豆籽粒Ve含量的频率分布图"

附表1

不同年份大豆籽粒Ve含量的方差分析"

年份
Year
生育酚
Tocopherol
变异来源
Source of variation
自由度
DF
均方
MS
F
F-value
2021 α-生育酚α-Toc 基因型Genotype 253 114.61 37.78**
重复Replication 2 5.45 1.80
误差Residual error 506 3.03
γ-生育酚γ-Toc 基因型Genotype 253 3379.16 28.53**
重复Replication 2 1588.32 13.41**
误差Residual error 506 118.43
δ-生育酚δ-Toc 基因型Genotype 253 64.15 52.03**
重复Replication 2 5.50 4.46*
误差Residual error 506 1.23
总生育酚TVe 基因型Genotype 253 4914.24 16.96**
重复Replication 2 2022.39 6.98**
误差Residual error 506 289.80
2022 α-生育酚α-Toc 基因型Genotype 208 182.18 118.53**
重复Replication 2 0.77 0.50
误差Residual error 416 1.54
γ-生育酚γ-Toc 基因型Genotype 208 16,365.00 90.26**
重复Replication 2 315.28 1.74
误差Residual error 416 181.31
δ-生育酚δ-Toc 基因型Genotype 209 210.00 79.66**
重复Replication 2 4.74 1.80
误差Residual error 416 2.64
总生育酚TVe 基因型Genotype 208 23,217.00 130.40**
重复Replication 2 10,967.00 61.60**
误差Residual error 416 178.04

表2

大豆籽粒Ve含量的相关性分析"

性状Trait 年份Year α-Toc γ-Toc δ-Toc
γ-Toc 2021 0.46** 1.00
2022 0.73** 1.00
δ-Toc 2021 0.37** 0.77** 1.00
2022 0.62** 0.92** 1.00
TVe 2021 0.58** 0.99** 0.81**
2022 0.77** 1.00 0.93**

图2

不同年份大豆籽粒Ve含量的曼哈顿图和Q-Q图 A: 2021年和2022年α-生育酚含量关联分析Manhattan图和Q-Q plot图; B: 2021年和2022年δ-生育酚含量关联分析Manhattan图和Q-Q plot图; C: 2021年和2022年γ-生育酚含量关联分析Manhattan图和Q-Q plot图; D: 2021年和2022年总生育酚含量关联分析Manhattan图和Q-Q plot图。当SNP阈值-log10(P) ≥ 5.0 (红线以上)时, 则认为该SNP位点显著。"

表3

大豆籽粒Ve显著关联SNP位点"

代表性SNP
Lead SNP
性状
Trait
染色体
Chr.
位置
Position
-log10(P) 表型变异
R2 (%)
S03_22378753 γ-Toc (2022), δ-Toc (2022) 3 22,378,753 6.46 11.05
S07_4623771 α-Toc (2021, 2022) 7 4,623,771 5.49 9.83
S11_5633216 γ-Toc (2022), TVe (2022) 11 5,633,216 5.81 9.36
S12_980498 γ-Toc (2022), δ-Toc (2022), TVe (2022) 12 980,498 5.75 9.62
S13_26738088 γ-Toc (2022), δ-Toc (2022), TVe (2022) 13 26,738,088 5.77 9.68
S15_15320539 γ-Toc (2022), TVe (2022) 15 15,320,539 5.19 8.20
S17_21854720 γ-Toc (2021), TVe (2021) 17 21,854,720 5.66 8.02
S18_51917901 γ-Toc (2022), TVe (2022) 18 51,917,901 6.34 10.24
S18_55638538 γ-Toc(2022), TVe(2022) 18 55,638,538 5.61 7.94

图3

大豆自然群体Ve显著关联SNP单倍型分析 A: 2022年携有SNP S03_22378753-G/T的大豆种质γ-生育酚和δ-生育酚含量箱线图; B: 2021年和2022年携有SNP S07_4623771- C/T的大豆种质α-生育酚含量箱线图; C: 2022年携有SNP S11_5633216- C/A的大豆种质γ-生育酚和TVe含量箱线图; D: 2022年携有SNP S12_980498- A/T的大豆种质γ-生育酚、δ-生育酚和TVe含量箱线图; E: 2022年携有SNP S13_26738088-G/A的大豆种质γ-生育酚、δ-生育酚和TVe含量箱线图; F: 2022年携有SNP S15_15320539-T/C的大豆种质γ-生育酚和TVe含量箱线图; G: 2021年携有SNP S17_21854720-G/A的大豆种质γ-生育酚和TVe含量箱线图; H: 2022年携有SNP S18_51917901-A/C的大豆种质γ-生育酚和TVe含量箱线图; I: 2022年携有SNP S18_55638538-G/A的大豆种质γ-生育酚和TVe含量箱线图。α-Toc: α-生育酚; γ-Toc: γ-生育酚; δ-Toc: δ-生育酚; TVe: Ve总含量。显著性分析使用t检验。*、**和***分别表示在P < 0.05、P < 0.01和P < 0.001水平显著。"

表4

大豆自然群体籽粒Ve关键候选基因"

基因ID
Gene ID
染色体
Chr.
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
Glyma.03G081900 3 22,433,399-22,436,557 AT2G37630 myb类HTH转录调控家族蛋白
myb-like HTH transcriptional regulator family protein
Glyma.07G054000 7 4,722,086-4,723,755 AT5G49330 myb结构域蛋白111 myb domain protein 111
Glyma.11G074900 11 5,593,155-5,596,693 AT4G38960 B-box型锌指家族蛋白 B-box type zinc finger family protein
Glyma.12G014200 12 1,025,584-1,029,095 AT1G64970 γ-生育酚甲基转移酶 Gamma-tocopherol methyltransferase
Glyma.12G014300 12 1,033,151-1,037,054 AT1G64970 γ-生育酚甲基转移酶 Gamma-tocopherol methyltransferase
Glyma.13G153200 13 26,821,405-26,825,518 AT3G44460 bZIP转录因子家族蛋白
Basic-leucine zipper (bZIP) transcription factor family protein

图4

大豆籽粒发育过程中6个Ve含量相关候选基因的表达模式"

表5

入选的Ve相关性状的特异资源"

性状
Trait
材料编号
Material No.
名称
Name
类型
Type
来源
Origin
优异等位变异位点
Excellent allelic variation site
α-Toc
(μg g-1)
TVe
(μg g-1)
2021 2022 2022
α-Toc NPS001 9 地方种
Landrace
河北
Hebei
S07_4623771-C 37.86 33.60
NPS020 NX-NC-39 栽培种
Cultivar
宁夏
Ningxia
S07_4623771-C 31.08 33.17
NPS023 NX-9484 栽培种
Cultivar
宁夏
Ningxia
S07_4623771-C 34.25 35.09
NPS027 NX-F5-5 栽培种
Cultivar
宁夏
Ningxia
S07_4623771-C 38.72 37.89
TVe NPS017 NX-F4-2 栽培种
Cultivar
宁夏
Ningxia
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 424.20
NPS018 NX-23-25 栽培种
Cultivar
宁夏
Ningxia
S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 426.32
NPS019 NX-F5-1 栽培种
Cultivar
宁夏
Ningxia
S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 467.84
NPS020 NX-NC-39 栽培种
Cultivar
宁夏
Ningxia
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A, S18_51917901-C 498.38
NPS023 NX-9484 栽培种
Cultivar
宁夏
Ningxia
S13_26738088-G, S15_15320539-T, S18_51917901-C 417.22
NPS029 NX-F7-59 栽培种
Cultivar
宁夏
Ningxia
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A 413.86
NPS203 滇豆4号
Diandou 4
栽培种
Cultivar
云南
Yunnan
S12_980498-T, S13_26738088-G, S15_15320539-T, S18_55638538-A 409.55
[1] Barouh N, Bourlieu-Lacanal C, Figueroa-Espinoza M C, Durand E, Villeneuve P. Tocopherols as antioxidants in lipid-based systems: the combination of chemical and physicochemical interactions determines their efficiency. Compr Rev Food Sci Food Saf, 2022, 21: 642-688.
doi: 10.1111/crf3.v21.1
[2] Cho E A, Lee C A, Kim Y S, Baek S H, de los Reyes B G, Yun S J. Expression of gamma-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells, 2005, 19: 16-22.
doi: 10.1016/S1016-8478(23)13131-1
[3] Tavva V S, Kim Y H, Kagan I A, Dinkins R D, Kim K H, Collins G B. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Rep, 2007, 26: 61-70.
doi: 10.1007/s00299-006-0218-2 pmid: 16909228
[4] Ujile A, Yamada T, Fujimoto K, Endo Y, Kitamura K. Identification of soybean varieties with high α-tocopherol content. Breed Sci, 2005, 55: 123-125.
doi: 10.1270/jsbbs.55.123
[5] Kanwischer M, Porfirova S, Bergmüller E, Dörmann P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol, 2005, 137: 713-723.
pmid: 15665245
[6] Dwiyanti M S, Ujiie A, Thuy L T B, Yamada T, Kitamura K. Genetic analysis of high α-tocopherol content in soybean seeds. Breed Sci, 2007, 57: 23-28.
doi: 10.1270/jsbbs.57.23
[7] Dwiyanti M S, Yamada T, Sato M, Abe J, Kitamura K. Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds. BMC Plant Biol, 2011, 11: 152.
doi: 10.1186/1471-2229-11-152 pmid: 22053941
[8] Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 2010, 120: 1405-1413.
doi: 10.1007/s00122-010-1264-2 pmid: 20069414
[9] 张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国. 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015, 41: 187-196.
doi: 10.3724/SP.J.1006.2015.00187
Zhang H H, Li H C, Wen Z X, Gu H P, Yuan X X, Chen H T, Cui X Y, Chen X, Lu W G. Identification of QTL associated with vitamin E content in soybean seeds. Acta Agron Sin, 2015, 41: 187-196 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00187
[10] Shaw E, Rajcan I. Molecular mapping of soybean seed tocopherols in the cross ‘OAC Bayfield’בOAC Shire’. Plant Breed, 2017, 136: 83-93.
doi: 10.1111/pbr.2017.136.issue-1
[11] Park C, Dwiyanti M S, Nagano A J, Liu B, Yamada T, Abe J. Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biol, 2019, 19: 510.
doi: 10.1186/s12870-019-2117-z pmid: 31752696
[12] Knizia D, Yuan J, Lakhssassi N, El Baze A, Cullen M, Vuong T, Mazouz H, T Nguyen H, Kassem M A, Meksem K. QTL and candidate genes for seed tocopherol content in ‘Forrest’ by ‘Williams 82’ recombinant inbred line (RIL) population of soybean. Plants (Basel), 2022, 11: 1258.
doi: 10.3390/plants11091258
[13] Park C, Liu D, Wang Q, Xu D. Identification of quantitative trait loci and candidate genes controlling the tocopherol synthesis pathway in soybean (Glycine max). Plant Breed, 2023, 142: 489-499.
doi: 10.1111/pbr.v142.4
[14] Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee Suk-Ha, Wang W, Tian Z. Resequencing wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096
[15] Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[16] Zhang S, Hao D, Zhang S, Zhang D, Wang H, Du H, Kan G, Yu D. Genome-wide association mapping for protein, oil and water- soluble protein contents in soybean. Mol Genet Genomics, 2021, 296: 91-102.
doi: 10.1007/s00438-020-01704-7
[17] Zhang J, Wang X, Lu Y, Bhusal S J, Song Q, Cregan P B, Yen Y, Brown M, Jiang G L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant, 2018, 11: 460-472.
doi: S1674-2052(17)30386-6 pmid: 29305230
[18] Sui M, Jing Y, Li H, Zhan Y, Luo J, Teng W, Qiu L, Zheng H, Li W, Zhao X, Han Y. Identification of loci and candidate genes analyses for tocopherol concentration of soybean seed. Front Plant Sci, 2020, 11: 539460.
doi: 10.3389/fpls.2020.539460
[19] Chu D, Zhang Z, Hu Y, Fang C, Xu X, Yuan J, Zhang J, Tian Z, Wang G. Genome-wide scan for oil quality reveals a coregulation mechanism of tocopherols and fatty acids in soybean seeds. Plant Commun, 2023, 4: 100598.
doi: 10.1016/j.xplc.2023.100598
[20] Yu K, Miao H, Liu H, Zhou J, Sui M, Zhan Y, Xia N, Zhao X, Han Y. Genome-wide association studies reveal novel QTLs, QTL-by-environment interactions and their candidate genes for tocopherol content in soybean seed. Front Plant Sci, 2022, 13: 1026581.
doi: 10.3389/fpls.2022.1026581
[21] Zhang W, Xu W, Zhang H, Liu X, Cui X, Li S, Song L, Zhu Y, Chen X, Chen H. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor Appl Genet, 2021, 134: 1329-1341.
doi: 10.1007/s00122-021-03774-6 pmid: 33507340
[22] Xu W, Wang Q, Zhang W, Zhang H, Liu X, Song Q, Zhu Y, Cui X, Chen X, Chen H. Using transcriptomic and metabolomic data to investigate the molecular mechanisms that determine protein and oil contents during seed development in soybean. Front Plant Sci, 2022, 13: 1012394.
doi: 10.3389/fpls.2022.1012394
[23] Kamal-Eldin A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur J Lipid Sci Technol, 2006, 108: 1051-1061.
doi: 10.1002/ejlt.v108:12
[24] Savidge B, Weiss J D, Wong Y H, Lassner M W, Mitsky T A, Shewmaker C K, Post-Beittenmiller D, Valentin H E. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol, 2002, 129: 321-332.
doi: 10.1104/pp.010747 pmid: 12011362
[25] Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P. Isolation of an Arabidopsis mutant lacking Vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA, 2002, 19: 12495-12500.
[26] Mao T, Jiang Z, Han Y, Teng W, Zhao X, Li W, Morris B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.2013.132.issue-6
[27] Bachlava E, Dewey R E, Burton J W, Cardinal A J. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci, 2009, 49: 433-442.
doi: 10.2135/cropsci2008.06.0324
[28] Yao Y, You Q, Duan G, Ren J, Chu S, Zhao J, Li X, Zhou X, Jiao Y. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biol, 2020, 20: 51.
doi: 10.1186/s12870-019-2199-7 pmid: 32005156
[29] Li H, Wang Y, Han Y, Teng W, Zhao X, Li Y, Li W. Mapping quantitative trait loci (QTLs) underlying seed vitamin E content in soybean with main, epistatic and QTL × environment effects. Plant Breed, 2016, 135: 208-214.
doi: 10.1111/pbr.2016.135.issue-2
[30] 刘焕成. 大豆维生素E 遗传变异、QTL及环境互作效应分析. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2017.
Liu H C. Genetic Variation, QTL and QTL-by-environment Interactions for Seed Vitamin E in Soybean. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2017 (in Chinese with English abstract).
[31] Zhang L, Luo Y, Liu B, Zhang L, Zhang W, Chen R, Wang L. Overexpression of the maize γ-tocopherol methyltransferase gene (ZmTMT) increases α-tocopherol content in transgenic Arabidopsis and maize seeds. Transgenic Res, 2020, 29: 95-104.
doi: 10.1007/s11248-019-00180-z pmid: 31673914
[32] Guo Y, Li D, Liu T, Liao M, Li Y, Zhang W, Liu Z, Chen M. Effect of overexpression of γ-Tocopherol Methyltransferase on α-tocopherol and fatty acid accumulation and tolerance to salt stress during seed germination in Brassica napus L. Int J Mol Sci, 2022, 23: 15933.
doi: 10.3390/ijms232415933
[33] Cao Y, Li K, Li Y, Zhao X, Wang L. MYB Transcription factors as regulators of secondary metabolism in plants. Biology (Basel), 2020, 9: 61.
doi: 10.3390/biology9030061
[34] Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie A R, Weisshaar B. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol, 2010, 188: 985-1000.
doi: 10.1111/j.1469-8137.2010.03421.x pmid: 20731781
[35] Wang C Q, Guthrie C, Sarmast M K, Dehesh K. BBX19 interacts with constant to repress flowering locus transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell, 2014, 26: 3589-3602.
doi: 10.1105/tpc.114.130252
[36] 孟珊. 中国大豆地方品种群体异黄酮性状的全基因组关联分析、区域分化和优化组合设计. 南京农业大学博士学位论文, 江苏南京, 2014.
Meng S. Genome-wide Association Dissection, Regional Differentiation and Optimal Cross Design of Seed Isoflavone Traits of Chinese Soybean Landrace Population. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract).
[1] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[2] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[3] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[4] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[5] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[6] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[7] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[8] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[9] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[10] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[11] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[12] 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575.
[13] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[14] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[15] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .