欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1091-1103.doi: 10.3724/SP.J.1006.2024.34142

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位

苗龙1**(), 舒阔1**(), 李娟1, 黄茹1, 王业杏1, Soltani Muhammad YOUSOF1, 许竞好1, 吴传磊1, 李佳佳1, 王晓波1,*(), 邱丽娟2,*()   

  1. 1安徽农业大学农学院, 安徽合肥 230036
    2中国农业科学院作物科学研究所 / 农业农村部作物基因资源与遗传改良重大科学工程 / 农业农村部作物基因资源与种质创制重点实验室, 北京 100081
  • 收稿日期:2023-07-20 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-08
  • 通讯作者: 王晓波, E-mail: wxbphd@163.com; 邱丽娟, E-mail: qiulijuan@caas.cn
  • 作者简介:苗龙, E-mail: lmiao5@163.com;
    舒阔, E-mail: 1125974604@qq.com第一联系人:

    **同等贡献

  • 基金资助:
    国家重点研发计划项目(2021YFD1201605);安徽省自然科学基金项目(2308085MC88);安徽省自然科学基金项目(2108085QC114);安徽农业大学自然科学基金项目(k2031005)

Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone

MIAO Long1**(), SHU Kuo1**(), LI Juan1, HUANG Ru1, WANG Ye-Xing1, Soltani Muhammad YOUSOF1, XU Jing-Hao1, WU Chuan-Lei1, LI Jia-Jia1, WANG Xiao-Bo1,*(), QIU Li-Juan2,*()   

  1. 1College of Agriculture, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / the National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), the Ministry of Agriculture and Rural Affairs / Key Laboratory of Crop Gene Resource and Germplasm Enhancement, the Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2023-07-20 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-08
  • Contact: E-mail: wxbphd@163.com; E-mail: qiulijuan@caas.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2021YFD1201605);Natural Science Foundation of Anhui Province(2308085MC88);Natural Science Foundation of Anhui Province(2108085QC114);Natural Science Foundation Project of Anhui Agricultural University(k2031005)

摘要:

植物根茎过渡区(root-stem transition zone, RSTZ)将根和茎相互连接, 其发育形态决定了大豆的地上部株型和抗倒伏潜力。本研究通过EMS诱变获得一个RSTZ弯曲或旋转的大豆突变体Mrstz, 其形态特征能够稳定遗传, 是探究大豆茎秆发育规律的特异材料。将该突变体和栽培大豆中黄13杂交构建重组自交系群体, 对群体中直立和弯曲型后代的RSTZ进行解剖结构比较, 发现弯曲型株系比直立型株系的维管形成层较宽、次生木质部细胞层数较多、细胞形状不规则, 表明维管组织分化可能是导致RSTZ形态发生差异的重要因素之一。进一步对化学组分测定发现, 木质素和粗纤维含量越高越不易弯曲。选取RIL群体中弯曲型和直立型2种极端株系进行BSA-Seq, 采用SNP-index和InDel-index关联分析方法鉴定到调控RSTZ形态的关联区域Chr19: 43030943~45849854, 该区间共含有319个基因。结合生物信息学分析、基因注释信息和表达丰度分析筛选到7个候选基因, 分别为Glyma.19G170200Glyma.19G201500Glyma.19G187800Glyma.19G178200Glyma.19G197000Glyma.19G179100Glyma.19G196900。其中, Glyma.19G187800Glyma.19G178200Glyma.19G196900在大豆驯化中潜在影响RSTZ形态建成。本研究为解析大豆RSTZ组织形成及其遗传基础提供了材料基础, 并为挖掘调控大豆茎秆发育基因提供新的见解。

关键词: 大豆, 根茎过渡区, 突变体, BSA-seq, 候选基因

Abstract:

Root-stem transition zone (RSTZ) connects roots and stems, and its morphology modifies the structure of aerial part and lodging resistance potential in soybean. In this study, a soybean mutant Mrstz, appearing with curved or rotated RSTZ, was obtained by EMS mutagenesis. Its morphological characteristics were stably inherited and could provide specific sources for exploring the development patterns of soybean stems. Therefore, this mutant was crossed with Zhonghuang 13 to construct a recombinant inbred line population. By comparing the anatomical structure of vertical RSTZ and curved RSTZ, the wider vascular cambium, more secondary xylem cell layers and irregular cell shape were identified in curved lines, indicating that vascular cambium differentiation may be one of the important factors leading to the difference of RSTZ morphology. Subsequently, the chemical compositions of lines with vertical RSTZ or curved RSTZ were determined, respectively. It was found that the higher lignin and crude fiber content in the RSTZ, the more difficult to bend. The RSTZ with curved or vertical lines were further selected for BSA-seq. SNP-index and InDel-index methods were employed to mine a significant association region, Chr. 19: 43,030,943-45,849,854 containing 319 genes, which may regulate RSTZ morphology. Combined bioinformatics analysis, gene annotation information and expression abundance analysis, seven candidate genes (Glyma.19G170200, Glyma.19G201500, Glyma.19G187800, Glyma.19G178200, Glyma.19G197000, Glyma.19G179100, Glyma.19G196900) were screened. Among them, Glyma.19G187800, Glyma.19G178200, and Glyma.19G196900 potentially affected RSTZ morphogenesis in soybean domestication. This study not only provides germplasm resources for the understanding of soybean RSTZ tissue formation and its genetic basis, but also provides new insights for further exploration of genes regulating soybean stalk development.

Key words: soybean, root and stem transition zone, mutant, BSA-seq, candidate genes

图1

根茎过渡区直立型与弯曲型植株及其解剖结构比较 A: VC、V6、R5、R8时期根茎过渡区直立型与弯曲型大豆植株; B: R5时期直立型与弯曲型株系下胚轴解剖结构。Vc: 维管形成层; Sx: 次生木质部; Sp: 次生韧皮部。A图标尺表示2 cm, B图标尺表示50 μm。VC: 子叶期; V6: 六叶期; R5: 始粒期; R8: 完熟期。"

图2

弯曲型与直立型根茎过渡区的化学组分分布及比较 A、B、C分别为弯曲型与直立型根茎过渡区中粗纤维、纤维素、木质素化学组分分布图; D、E、F柱状图代表平均值±标准差(*: P < 0.05, **: P < 0.01, t检验)。"

表1

样品测序数据的质量评估"

样本类型
Sample type
纯化后读数
Clean reads
纯化后碱基数
Clean base
GC
(%)
Q30
(%)
比对上的序列
Mapped reads (%)
中黄13 Zhonghuang 13 37,644,247 11,293,274,100 36.24 94.85 98.40
根茎过渡区弯曲突变体MRstz 43,314,597 12,994,379,100 35.16 94.54 98.32
RSTZ直立型株系Vertical RSTZ lines 126,937,624 38,081,287,200 35.10 94.94 97.99
RSTZ弯曲型株系Curved RSTZ lines 130,489,056 39,146,716,800 35.88 94.56 98.14

图3

SNP-index和InDel-index关联值在染色体上的分布 RSTZ两种类型的delta-SNP-index (A)和delta-InDel-index (B)拟合图; 横坐标表示染色体的位置, 黑色曲线表示相应的关联值, 最上侧的红线代表置信度为99%的阈值线, 红色箭头指示定位的候选区域。"

表2

BSA-seq关联分析获得大豆根茎过渡区形态的候选区域"

关联分析方法
Association analysis methods
染色体
Chr.
起点
Start
(bp)
终点
End
(bp)
区间大小
Region size (Mb)
基因数
Number of genes
已报道倒伏性状相关候选位点
Candidate loci for inversion reported
Delta-SNP-index 19 43,030,943 46,037,125 3.01 346 Lodging 1-1, Lodging 4-2, Lodging 4-3, Lodging 8-4, Lodging 9-5[32]
Delta-InDel-index 19 42,975,089 45,849,854 2.87 323 Lodging 1-1, Lodging 4-2, Lodging 4-3, Lodging 8-4, Lodging 9-5[32]
Delta-SNP-index and delta-InDel-index 19 43,030,943 45,849,854 2.82 319 Lodging 1-1, Lodging 4-2, Lodging 4-3, Lodging 8-4, Lodging 9-5[32]

图4

候选区域内基因GO注释分类 横坐标为GO各分类内容, 纵坐标左边和右边分别表示基因数目所占百分比和基因数目。"

图5

一致性关联区间内所有基因在不同大豆组织中的表达水平聚类热图"

图6

根茎过渡区弯曲型和直立型株系中候选基因表达水平比较 GmCYP2用作内参, 候选基因在不同株系中的相对表达量进行t检验(*: P < 0.05; **: P < 0.01; ***: P < 0.001)。"

表3

大豆根茎过渡区形态候选基因的遗传多样性分析"

基因
Gene
单倍型
Haplotype
频率* Frequency* 核苷酸多态性 π 遗传
分化指数 FST
野生品种
Wild
当地品种
Landrace
育成品种
Cultivar
野生大豆
Wild soybean
栽培大豆
Cultivated soybean
Glyma.19G170200 Hap0-Hap6 0.095, 0.05, 0.139, 0.275, 0.160, 0.142, 0.139 0.616, 0.352, 0.032, 0, 0, 0, 0 0.719, 0.262, 0.020, 0, 0, 0, 0 0.00364 0.00198 0.22
Glyma.19G201500 Hap0-Hap6 0.305, 0.006, 0.013, 0.242, 0.082, 0.198, 0.154 0.524, 0.408, 0.052, 0, 0.013, 0, 0.002 0.612, 0.323, 0.055, 0, 0.001, 0, 0 0.00257 0.00171 0.16
Glyma.19G187800 Hap0-Hap3 0.212, 0.361, 0.206, 0.222 0.737, 0.126, 0.137, 0 0.862, 0.099, 0.039, 0 0.00373 0.00173 0.26
Glyma.19G178200 Hap0-Hap9 0.075, 0.024, 0.008, 0.012, 0.811, 0.004, 0.028, 0.004, 0.035, 0 0.258, 0.066, 0.171, 0.136, 0.002, 0.116, 0.116, 0.073, 0.021, 0.041 0.338, 0.316, 0.123, 0.082, 0.003, 0.075, 0.008, 0.026, 0.019, 0.012 0.00170 0.00107 0.32
Glyma.19G197000 Hap0-Hap2 0.695, 0.194, 0.111 0.83, 0.168, 0.002 0.727, 0.273, 0 0.00322 0.00258 0.16
Glyma.19G179100 Hap0-Hap2 0.46, 0.003, 0.537 0.965, 0.035, 0 0.937, 0.062, 0 0.00223 0.00069 0.17
Glyma.19G196900 Hap0-Hap4 0.05, 0.528, 0.142, 0.184, 0.096 0.437, 0.385, 0.174, 0.003, 0.002 0.512, 0.212, 0.275, 0, 0 0.00195 0.00123 0.28
[1] 杨红燕, 沈会权, 胡哲, 栾海业, 乔海龙, 臧慧, 徐肖, 张英虎. 黄淮海地区大豆品种蛋白质、油脂含量和百粒质量的表型分析及籽粒蛋白质含量的改良. 江苏农业科学, 2021, 49(22): 84-87.
Yang H Y, Shen H Q, Hu Z, Luan H Y, Qiao H L, Zang H, Xu X, Zhang Y H. Phenotypic analysis of protein, oil content and 100-grain weight of soybean varieties in Huanghuaihai area and improvement of grain protein content. Jiangsu Agric Sci, 2021, 49(22): 84-87 (in Chinese with English abstract).
[2] 倪福太. 植物根-茎过渡区的研究现状. 吉林师范大学学报(自然科学版), 2004, (1): 51-53.
Ni F T. The present conditions of research of root-stem transition region. J Jilin Norm Univ (Nat Sci Edn), 2004, (1): 51-53 (in Chinese with English abstract).
[3] 谷安根, 王立军, 汪牟, 谷颐. 被子植物根-茎过渡区研究的新进展. 植物研究, 1991, (3): 85-90.
Gu A G, Wang L J, Wang M, Gu Y. Advances in the study of root-stem transition region of the angiosperm. Bull Bot Res, 1991, (3): 85-90 (in Chinese with English abstract).
[4] 张东来, 徐瑶, 王家睿, 刘博, 张锐, 龚振平. 大豆生育期间抗倒伏性状变化规律的研究. 作物杂志, 2016, (2): 112-117.
Zhang D L, Xu Y, Wang J R, Liu B, Zhang R, Gong Z P. Studies on the regulation of lodging traits variation during soybean growth stages. Crops, 2016, (2): 112-117 (in Chinese with English abstract).
[5] 胡珀, 韩天富. 植物茎秆性状形成与发育的分子基础. 植物学通报, 2008, 25(1): 1-13.
Hu P, Han T F. Molecular basis of stem trait formation and development in plants. Bull Bot, 2008, 25(1): 1-13 (in Chinese with English abstract).
[6] Raza A, Asghar M A, Ahmad B, Bin C, Iftikhar Hussain M, Li W, Iqbal T, Yaseen M, Shafiq I, Yi Z, Ahmad I, Yang W, Liu W. Agro-techniques for lodging stress management in maize- soybean intercropping system: a review. Plants (Basel), 2020, 9: 1592.
doi: 10.3390/plants9111592
[7] 杨菁, 董忠民. 双子叶植物出土幼苗根茎转变区维管组织发育动态. 西北植物学报, 2003, 23: 1111-1115.
Yang J, Dong Z M. Vascular development in the transition region of dicotyledonary epigeal seedlings. Acta Bot Boreali-Occident Sin, 2003, 23: 1111-1115 (in Chinese with English abstract).
[8] 牛佳田. 根-茎间“过渡区”及其维管组织的转变与联系. 生物学通报, 1997, 32(4): 12-13.
Niu J T. The “transition zone” between root and stem and the transformation and connection of its vascular tissue. Bull Biol, 1997, 32(4): 12-13 (in Chinese with English abstract).
doi: 10.1007/s10525-005-0003-8
[9] 赵翠兰, 王丕武, 秦迪, 潘丽丹, 刘婷婷, 曲静. 拔节期玉米自交系茎秆纤维素合成酶基因的表达及其与抗倒伏的关系. 吉林农业大学学报, 2017, 39: 513-517.
Zhao C L, Wang P W, Qin D, Pan L D, Liu T T, Qu J. Correlation between expression of cellulose synthetase genes and lodging resistance at elongation stage in maize inbred lines. Jilin Agric Univ, 2017, 39: 513-517 (in Chinese with English abstract).
[10] Esau K, Cheadle V I. Significance of cell divisions in differentiating secondary phloem. Acta Bot Neerl, 1955, 4: 348-357.
doi: 10.1111/plb.1955.4.issue-3
[11] Spicer R, Groover A. Evolution of development of vascular cambia and secondary growth. New Phytol, 2010, 186: 577-592.
doi: 10.1111/j.1469-8137.2010.03236.x pmid: 20522166
[12] 陈华华, 李俊, 万洪深, 王玲玲, 彭正松, 杨武云. 实心小麦86-741茎秆的解剖分析及壁厚特性的SSR标记. 作物学报, 2008, 34: 1381-1385.
doi: 10.3724/SP.J.1006.2008.01381
Chen H H, Li J, Wan H S, Wang L L, Peng Z S, Yang W Y. Microsatellite markers for culm wall thickness and anatomical features of solid stem wheat 86-741. Acta Agron Sin, 2008, 34: 1381-1385 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.01381
[13] 王芬娥, 黄高宝, 郭维俊, 张锋伟, 吴建民, 赵多佳. 小麦茎秆力学性能与微观结构研究. 农业机械学报, 2009, 40(5): 92-95.
Wang F E, Huang G B, Guo W J, Zhang F W, Wu J M, Zhao D J. Mechanical properties and micro-structure of wheat stems. Trans CSAM, 2009, 40(5): 92-95 (in Chinese with English abstract).
[14] Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. A conserved super locus regulates above- and belowground root initiation. Science, 2022, 375: eabf4368.
doi: 10.1126/science.abf4368
[15] 刘东尧, 闫振华, 陈艺博, 杨琴, 贾绪存, 李洪萍, 董鹏飞, 王群. 增温对玉米茎秆生长发育、抗倒性和产量的影响. 中国农业科学, 2021, 54: 3609-3622.
doi: 10.3864/j.issn.0578-1752.2021.17.005
Liu D Y, Yan Z H, Chen Y B, Yang Q, Jia X C, Li H P, Dong P F, Wang Q. Effects of elevated temperature on maize stem growth, lodging resistance characters and yield. Sci Agric Sin, 2021, 54: 3609-3622 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.005
[16] 马青美, 许荣荣, 赵美爱, 宋希云, 裴玉贺. 玉米茎秆抗倒伏相关生理生化指标及关键酶基因的表达分析. 植物生理学报, 2019, 55: 1123-1132.
Ma Q M, Xu Y Y, Zhao M A, Song X Y, Pei Y H. Physiological and biochemical indexes related to lodging resistance of maize stalk and expression analysis of key enzyme genes. Plant Physiol J, 2019, 55: 1123-1132 (in Chinese with English abstract).
doi: 10.1104/pp.55.6.1123
[17] 王群瑛, 胡昌浩. 玉米茎秆抗倒特性的解剖研究. 作物学报, 1991, 17: 70-75.
Wang Q Y, Hu C H. Studies on the anatomical structures of the stalks of maize with different resistance to lodging. Acta Agron Sin, 1991, 17: 70-75 (in Chinese with English abstract).
[18] 罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346-2353.
Luo M C, Tian C T, Li X J, Lin J X. Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L.). Acta Bot Boreali-Occident Sin, 2007, 27: 2346-2353 (in Chinese with English abstract).
[19] Duan C, Wang B, Wang P, Wang D, Cai S. Relationship between the minute structure and the lodging resistance of rice stems. Colloids Surf B Biointerfaces, 2004, 35: 155-158.
doi: 10.1016/j.colsurfb.2004.03.005
[20] 袁新捷, 刘潇, 陈国兴. 水稻核心种质资源茎秆抗倒伏性研究. 华中农业大学报, 2021, 40(1): 147-153.
Yuan X J, Liu X, Chen G X. Stem lodging resistance of rice core germplasm. J Huazhong Agric Univ, 2021, 40(1): 147-153 (in Chinese with English abstract).
[21] 邹俊林, 刘卫国, 袁晋, 蒋涛, 叶素琴, 邓榆川, 杨晨雨, 罗玲, 杨文钰. 套作大豆苗期茎秆木质素合成与抗倒性的关系. 作物学报, 2015, 41: 1098-1104.
doi: 10.3724/SP.J.1006.2015.01098
Zou J L, Liu W G, Yuan J, Jiang T, Ye S Q, Deng Y C, Yang C Y, Luo L, Yang W Y. Relationship between lignin synthesis and lodging resistance at seedlings stage in soybean intercropping system. Acta Agron Sin, 2015, 41: 1098-1104 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01098
[22] Yu M, Wang M, Gyalpo T, Basang Y. Stem lodging resistance in hulless barley: transcriptome and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes. Genomics, 2021, 113: 935-943.
doi: 10.1016/j.ygeno.2020.10.027 pmid: 33127582
[23] Wang X, Shi Z, Zhang R, Sun X, Wang J, Wang S, Zhang Y, Zhao Y, Su A, Li C, Wang R, Zhang Y, Wang S, Wang Y, Song W, Zhao J. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biol, 2020, 20: 515.
doi: 10.1186/s12870-020-02728-2 pmid: 33176702
[24] 张丰转, 金正勋, 马国辉, 万宜珍, 刘海英, 徐美兰. 水稻抗倒性与茎秆形态性状和化学成分含量间相关分析. 作物杂志, 2010, (4): 15-19.
Zhang F Z, Jin Z X, Ma G H, Wan Y Z, Liu H Y, Xu M L. Correlation analysis between lodging resistance and morphological characters of physical and chemical components in Rice's Culms. Crops, 2010, (4): 15-19 (in Chinese with English abstract).
[25] Silva B R S, Batista B L, Lobato A K S. Anatomical changes in stem and root of soybean plants submitted to salt stress. Plant Biol (Stuttg), 2021, 23: 57-65.
doi: 10.1111/plb.v23.1
[26] Vignols F, Rigau J, Torres M A, Capellades M, Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell, 1995, 7: 407-416.
doi: 10.1105/tpc.7.4.407 pmid: 7773015
[27] 蒋家焕, 朱永生, 陈丽萍, 郑艳梅, 蔡秋华, 谢华安, 王爱荣, 张建福. 利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1. 福建农业学报, 2022, 37(2): 131-137.
Jiang J H, Zhu Y S, Chen L P, Zheng Y M, Cai Q H, Xie H A, Wang A R, Zhang J F. Using BSA-Seq method to locate a rice progeria related gene OsBRCA1. Fujian J Agric Sci, 2022, 37(2): 131-137 (in Chinese with English abstract).
[28] 崔彦芹, 郭元章, 侯少锋, 李思达, 关中波, 徐桂珍. 基于BSA-seq技术挖掘芝麻株高相关候选基因. 华北农学报, 2021, 36(增刊1): 8-15.
Cui Y Q, Guo Y Z, Hou S F, Li S D, Guan Z B, Xu G Z. Mining of sesame plant height-related candidate genes based on BSA-seq technology. Acta Agric Boreali-Sin, 2021, 36(S1): 8-15 (in Chinese with English abstract).
[29] Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel phytophthora resistance gene RpsHC18 in soybean. Theor Appl Genet, 2018, 131: 525-538.
doi: 10.1007/s00122-017-3016-z pmid: 29138903
[30] 张东来, 徐瑶, 王家睿, 刘博, 张锐, 龚振平. 大豆生育期间抗倒伏性状变化规律的研究. 作物杂志, 2016, (2): 112-117.
Zhang D L, Xu Y, Wang J R, Liu B, Zhang R, Gong Z P. Study on the variation of lodging resistance during soybean growth period. Crops, 2016, (2): 112-117 (in Chinese with English abstract).
[31] Nleya T, Sexton P, Gustafson K, Moriles Miller J. Soybean growth stages. In: Clay D E, Carlson C G, Clay S A, Wagner L, Deneke D, Hay C, eds. I. Grow soybean: Best Management Practices for Soybean Production. South Dakota State University, SDSU Extension, Brookings, SD, USA, 2013. pp 3-34.
[32] 尹振功, 王强, 孟宪欣, 郭怡璠, 魏淑红. 基于物理图谱的大豆倒伏性状QTL整合及元分析. 黑龙江农业科学, 2018, 291(9): 1-5.
Yin Z G, Wang Q, Meng X X, Guo Y F, Wei S H. QTL integration and meta-analysis of physical mapping-based traits for backwardness in soybean. Heilongjiang Agric Sci, 2018, 291(9): 1-5 (in Chinese with English abstract).
[33] Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran LP, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019, 19: 131.
doi: 10.1186/s12870-019-1746-6
[34] Yang Z, Wang S, Huang Y, Luo C, Fang C, Liu B, Yang Q Y, Kong F. 4kSoyGVP provides a referenced variation map for genetic research in soybean. Plant Biotechnol J, 2023: 8.
[35] Kong X, Liu G, Liu J, Ding Z. The root transition zone: a hot spot for signal crosstalk. Trends Plant Sci, 2018, 23: 403-409.
doi: S1360-1385(18)30023-2 pmid: 29500073
[36] Langer M, Speck T, Speck O. Petiole-lamina transition zone: a functionally crucial but often overlooked leaf trait. Plants (Basel), 2021, 10: 774.
doi: 10.3390/plants10040774
[37] Shah A N, Tanveer M, Abbas A, Yildirim M, Shah A A, Ahmad M I, Wang Z, Sun W, Song Y. Combating dual challenges in maize under high planting density: stem lodging and kernel abortion. Front Plant Sci, 2021, 12: 699085.
doi: 10.3389/fpls.2021.699085
[38] 贾燕杰, 油清波, 赵为, 郭葳, 沈欣杰, 李祥, 张永兴, 周蓉, 赵剑, 周新安, 矫永庆. 野生大豆(Glycine soja) YD63和栽培大豆(G. max) ZD19茎秆解剖结构比较. 中国油料作物学报, 2018, 40: 199-208.
Jia Y J, You Q B, Zhao W, Guo W, Shen X J, Li X, Zhang Y X, Zhou R, Zhao J, Zhou X A, Jiao Y Q. Comparison of stem anatomical structure between wild soybean (Glycine soja) YD63 and cultivated soybean (G. max) ZD19. Chin J Oil Crop Sci, 2018, 40: 199-208 (in Chinese with English abstract).
[39] 任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转绿组分析. 作物学报, 2016, 42: 1319-1331.
doi: 10.3724/SP.J.1006.2016.01319
Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of stem morphogenesis under shade stress in soybean. Acta Agron Sin, 2016, 42: 1319-1331 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01319
[40] 杨伟林. 腐木和玉米秸秆降解菌的筛选及转基因菌1-5功能初步分析. 南阳师范学院硕士学位论文, 河南南阳, 2018.
Yang W L. creening of Decomposing Bacteria from Rotten Wood and Corn Stalk and Preliminary Analysis of 1-5 Function of Transgenic Bacteria. MS Thesis of Nanyang Normal University, Nanyang, Henan, China, 2018 (in Chinese with English abstract).
[41] Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9: 689-701.
doi: 10.1105/tpc.9.5.689 pmid: 9165747
[42] Lewis N G, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 455-496.
doi: 10.1146/arplant.1990.41.issue-1
[43] Zhang Y, Wang J L, Du J J, Zhao Y X, Lu J X, Wen W L, Gu S H, Fan C J, Wang Y C, Wu S, Wang Y J, Liao S J, Zhao J, Guo X Y. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnol J, 2021, 19: 35-50.
doi: 10.1111/pbi.v19.1
[44] Hussain S, Liu T, Iqbal N, Brestic M, Pang T, Mumtaz M, Shafiq I, Li S, Wang L, Gao Y, Khan A, Ahmad I, Allakhverdiev S I, Liu W, Yang W. Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochem Photobiol Sci, 2020, 19: 462-472.
doi: 10.1039/c9pp00369j
[45] 胡丹, 刘星贝, 汪灿, 杨浩, 李鹤鑫, 阮仁武, 袁晓辉, 易泽林. 不同抗倒性甜荞茎秆木质素合成关键酶基因的表达分析. 中国农业科学, 2015, 48: 1864-1872.
doi: 10.3864/j.issn.0578-1752.2015.09.20
Hu D, Liu X B, Wang C, Yang H, Li H X, Ruan R W, Yuan X H, Yi Z L. Expression analysis of key enzyme genes in lignin synthesis of culm among different lodging resistances of common buckwheat. Sci Agric Sin, 2015, 48: 1864-1872 (in Chinese with English abstract).
[46] 周蓉, 王贤智, 陈海峰, 张晓娟, 单志慧, 吴学军, 蔡淑平, 邱德珍, 周新安, 吴江生. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35: 57-65.
doi: 10.3724/SP.J.1006.2009.00057
Zhou R, Wang X Z, Chen H F, Zhang X J, Shan Z H, Wu X J, Cai S P, Qiu D Z, Zhou X A, Wu J S. QTL analysis of lodging and related traits in soybean. Acta Agron Sin, 2009, 35: 57-65 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00057
[47] 向达兵, 郭凯, 雷婷, 于晓波, 罗庆明, 杨文钰. 磷钾营养对套作大豆茎秆形态和抗倒性的影响. 中国油料作物学报, 2010, 32: 395-402.
Xiang D B, Guo K, Lei T, Yu X B, Luo Q M, Yang W Y. Effects of phosphorus and potassium on stem characteristics and lodging resistance of relay cropping soybean. Chin J Oil Crop Sci, 2010, 32: 395-402 (in Chinese with English abstract).
[48] Hwang S, Lee T G. Integration of lodging resistance QTL in soybean. Sci Rep, 2019, 9: 6540.
doi: 10.1038/s41598-019-42965-6 pmid: 31024048
[49] Lee S H, Bailey M A, Mian M A, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet, 1996, 92: 516-523.
doi: 10.1007/BF00224553 pmid: 24166318
[50] 刘硕, 郭勇, 罗玲, 邱丽娟. 大豆倒伏性相关QTL的整合及Overview分析. 植物遗传资源学报, 2014, 15: 137-143.
doi: 10.13430/j.cnki.jpgr.2014.01.017
Liu S, Guo Y, Luo L, Qiu L J. Integration and overview analysis of QTLs related to lodging in soybean (Glycine max). J Plant Genet Resour, 2014, 15: 137-143 (in Chinese with English abstract).
[51] Caffall K H, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res, 2009, 344: 1879-1900.
doi: 10.1016/j.carres.2009.05.021
[52] Assefa T, Otyama P I, Brown A V, Kalberer S R, Kulkarni R S, Cannon S B. Genome-wide associations and epistatic interactions for internode number, plant height, seed weight and seed yield in soybean. BMC Genomics, 2019, 20: 527.
doi: 10.1186/s12864-019-5907-7 pmid: 31242867
[53] Hongo S, Sato K, Yokoyama R, Nishitani K. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell, 2012, 24: 2624-2634.
doi: 10.1105/tpc.112.099325
[54] Wang C Y, Zhang S, Yu Y, Luo Y C, Liu Q, Ju C, Zhang Y C, Qu L H, Lucas W J, Wang X, Chen Y Q. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J, 2014, 12: 1132-1142.
doi: 10.1111/pbi.2014.12.issue-8
[55] Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X, Wang X, Lin J, Li X. MicroRNA857 is is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol, 2015, 169: 2539-2552.
[1] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[2] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[3] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[4] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[5] 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968.
[6] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
[7] 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575.
[8] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[9] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[10] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[11] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[12] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[13] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[14] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[15] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .