作物学报 ›› 2024, Vol. 50 ›› Issue (4): 957-968.doi: 10.3724/SP.J.1006.2024.34080
宋梦媛1,2(), 郭中校1, 苏禹霏1,2, 邓昆鹏1, 兰天娇1, 程钰鑫1, 包淑英1, 王桂芳1, 窦金光1, 姜泽锴1,2, 王明海1,*(), 徐宁1,*()
SONG Meng-Yuan1,2(), GUO Zhong-Xiao1, SU Yu-Fei1,2, DENG Kun-Peng1, LAN Tian-Jiao1, CHENG Yu-Xin1, BAO Shu-Ying1, WANG Gui-Fang1, DOU Jin-Guang1, JIANG Ze-Kai1,2, WANG Ming-Hai1,*(), XU Ning1,*()
摘要:
柱头外露作为提高作物异交率、制种纯度和降低制种成本的优良性状, 在杂交制种中得到了广泛的利用。绿豆是一种闭花授粉的作物, 被报道的柱头外露突变体很少。通过对冀绿7号的化学诱变, 发现了1个柱头外露突变体se2, 为明确该突变体柱头外露的分子机制, 对该突变体及其野生型冀绿7号即将开放的花蕾进行了转录组测序(RNA-seq)分析。根据差异倍数|log2 (Fold Change)|≥1, P≤0.05的标准筛选, 在se2中共得到572个差异表达基因(differentially expressed genes, DEGs), 其中262个DEGs上调, 310个DEGs下调。在基因本体(gene ontology, GO)数据库中, 差异表达基因显著富集到代谢和生物合成等生物过程, 定位在质外体和细胞壁、细胞膜等区域, 与结合、氧化还原等分子功能有关。在京都基因与基因组百科全书(kyoto encyclopedia of genes and genome, KEGG)数据库中, 差异表达基因显著富集在植物激素信号传导、次生代谢物生物合成等通路。功能注释发现许多有关细胞壁合成和代谢、细胞分裂和细胞扩张、植物激素相关的基因, 因此推测se2突变体中龙骨瓣的细胞分裂、细胞扩张以及植物激素信号传导过程受到影响, 从而导致了柱头外露。本研究为今后探究绿豆柱头外露的分子机制以及该性状在绿豆杂种优势中的利用奠定了基础。
[26] | 胡育玮. 烟草细胞质遗传柱头外露发生机制研究. 河南农业大学硕士学位论文, 河南郑州, 2019. |
Hu Y W. Study on the Stigma Exsertion Formation Mechanism in Cytoplasmic Inheritance of Stigma Exsertion Tobacco. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. (in Chinese with English abstract) | |
[27] |
Li J X, Li M, Wang W M, Wang D, Hu Y W, Zhang Y Y, Zhang X Q. Morphological and physiological mechanism of cytoplasmic inheritance stigma exsertion trait expression in tobacco (Nicotiana tabacu). Plant Sci, 2023, 326: 111528.
doi: 10.1016/j.plantsci.2022.111528 |
[28] |
Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure J D. The C terminus of the immunophilin pasticcino1 is required for plant development and for interaction with a NAC-like transcription factor. J Biol Chem, 2006, 281: 25475-25484.
doi: 10.1074/jbc.M601815200 pmid: 16803883 |
[29] |
Garcia M A, Koonrugsa N, Toda T. Two kinesin-like KIN I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol, 2002, 12: 610-621.
doi: 10.1016/s0960-9822(02)00761-3 pmid: 11967147 |
[30] |
Becraft P W, Stinard P S, McCarty D R. Crinkly4: a tnfr-like receptor kinase involved in maize epidermal differentiation. Science, 1996, 273: 1406-1409.
doi: 10.1126/science.273.5280.1406 pmid: 8703079 |
[31] | Kang S G, Lee H J, Suh S G. The maize Crinkly4 gene is expressed spatially in vegetative and floral organs. Plant Biol, 2002, 45: 219-224. |
[32] |
Pu C X, Ma Y, Wang J, Zhang Y C, Jiao X W, Hu Y H, Wang L L, Zhu Z G, Sun D, Sun Y. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J, 2012, 70: 940-953.
doi: 10.1111/tpj.2012.70.issue-6 |
[33] | Cosgrove D J. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 2005, 6: 850-861. |
[34] |
Chen K Y, Cong B, Wing R, Vrebalov J, Tanksley S D. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science, 2007, 318: 643-645.
doi: 10.1126/science.1148428 |
[35] |
Cheng M, Gong C, Zhang B, Qu W, Qi H, Chen X, Wang X, Zhang Y, Liu J, Ding X, Qiu Y, Wang A. Morphological and anatomical characteristics of exserted stigma sterility and the location and function of SLLST (Solanum lycopersicum long styles) gene in tomato. Theor Appl Genet, 2021, 134: 505-518.
doi: 10.1007/s00122-020-03710-0 pmid: 33140169 |
[36] |
Guo N, Wang Y, Chen W, Tang S, An R, Wei X, Hu S, Tang S, Shao G, Jiao G, Xie L, Wang L, Sheng Z, Hu P. Fine mapping and target gene identification of QSE4, a QTL for stigma exsertion rate in rice (Oryza sativa L.). Front Plant Sci, 2022, 13: 959859.
doi: 10.3389/fpls.2022.959859 |
[37] |
Zhao M, Han Y, Feng Y, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep, 2012, 31: 671-685.
doi: 10.1007/s00299-011-1185-9 |
[38] |
Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin-Samu A T, Wang Q, Xu X, Fei Z, Lu G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant Cell Environ, 2019, 42: 1205-1221.
doi: 10.1111/pce.v42.4 |
[39] |
Cheng H, Qin L, Lee S, Fu X, Richards D E, Cao D, Luo D, Harberd N P, Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development, 2004, 131: 1055-1064.
doi: 10.1242/dev.00992 pmid: 14973286 |
[40] | 王燕, 潘长田, 王洁, 秦力, 邹滔, 卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响. 浙江大学学报(农业与生命科学版), 2015, 41: 449-457. |
Wang Y, Pan C T, Wang J, Qin L, Zou T, Lu G. Effects of gibberellin on tomato stigma exsertion and hormone-related gene expression under moderate heat stress. J Zhejiang Univ (Agric Life Sci Edn), 2015, 41: 449-457. (in Chinese with English abstract) | |
[41] |
Carrera E, Ruiz-Rivero O, Peres L E P, Atares A, Garcia-Martinez J L. Characterization of the procera tomato mutant shows novel functions of the sldella protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol, 2012, 160: 1581-1596.
doi: 10.1104/pp.112.204552 pmid: 22942390 |
[42] |
Rieu I, Ruiz R O, Fernandez G N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G, Phillips A L, Hedden P. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J, 2008, 53: 488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939 |
[43] |
Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, Bellvert F, Bertrand C, Bendahmane M. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J, 2009, 60: 1070-1080.
doi: 10.1111/tpj.2009.60.issue-6 |
[44] | Dong S, Tarkowska D, Sedaghatmehr M, Welsch M, Gupta S, Mueller-Roeber B, Balazadeh S. The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. Mol Plant, 2022, 15: 322-339. |
[45] |
Son O, Hur Y S, Kim Y K, Lee H J, Kim S, Kim M R, Nam K H, Lee M S, Kim B Y, Park J, Park J, Lee S C, Hanada A, Yamaguchi S, Lee I J, Kim S K, Yun D J, Söderman E, Cheon C I. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD- Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol, 2010, 51: 1537-1547.
doi: 10.1093/pcp/pcq108 |
[1] | 郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 141-166. |
Zheng Z J. Food Legumes in China. Beijing: China Agriculture Press, 1995. pp 141-166. (in Chinese) | |
[2] | 田静, 程须珍, 范保杰, 王丽侠, 刘建军, 刘长友, 王素华, 曹志敏, 陈红霖, 王彦, 王珅. 我国绿豆品种现状及发展趋势. 作物杂志, 2021, (6): 15-21. |
Tian J, Cheng X J, Fan B J, Wang L X, Liu J J, Liu C Y, Wang S H, Cao Z M, Chen H L, Wang Y, Wang K. Current situation and development trend of mungbean varieties in China. Crops, 2021, (6): 15-21. (in Chinese with English abstract) | |
[3] | 王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009, 42: 1519-1527. |
Wang L X, Cheng X Z, Wang S H. Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.). Sci Agric Sin, 2009, 42: 1519-1527. (in Chinese with English abstract) | |
[4] | 黄穗兰, 郭宝德, 冀丽霞, 牛永章, 姜艳丽. 棉花种间杂交长柱头种质系TY35的培育与应用. 山西农业科学, 2015, 43: 777-779. |
Huang S L, Guo B D, Ji L X, Niu Y Z, Jiang Y L. The selection and application of germplasm line TY35 with long stigma from interspecific crossing in cotton. J Shanxi Agric Sci, 2015, 43: 777-779. (in Chinese with English abstract) | |
[5] | 杨保汉. 不育系柱头外露率及其结实率研究. 杂交水稻, 1997, (1): 15-17. |
Yang B H. Studies on stigma exsertion rate and outcrossing rate of CMS Lines in rice. Hybrid Rice, 1997, (1): 15-17. (in Chinese) | |
[6] | 崔贵梅, 牛天堂, 张福耀, 袁爱萍, 孙毅. 谷子(Setaria italica Beauv.)高异交结实雄性不育系“81-16”的柱头性状观察. 作物学报, 2007, 33: 149-153. |
Cui G M, Niu T T, Zhang F Y, Yuan A P, Sun Y. The stigma observation on foxtail millet (Setaria italica Beauv.) male-sterile line “81-16” with high outcross seed setting. Acta Agron Sin, 2007, 33: 149-153. (in Chinese with English abstract) | |
[7] |
Lin Y, Laosatit K, Chen J, Yuan X, Wu R, Amkul K, Chen X, Somta P. Mapping and functional characterization of stigma exposed 1, a DUF1005 gene controlling petal and stigma cells in mungbean (Vigna radiata). Front Plant Sci, 2020, 11: 575922.
doi: 10.3389/fpls.2020.575922 |
[8] | Yan H, Zhang B, Zhang Y, Chen X, Xiong H, Matsui T, Tian X. High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Front Plant Sci, 2017, 7: 1960. |
[9] |
Elshamey E A Z, Hamad H S, Alshallash K S, Alghuthaymi M A, Ghazy M I, Sakran R M, Selim M E, ElSayed M A A, Abdelmegeed T M, Okasha S A, Behiry S I, Boudiar R, Mansour E. Growth regulators improve outcrossing rate of diverse rice cytoplasmic male sterile lines through affecting floral traits. Plants (Basel), 2022, 11: 1291.
doi: 10.3390/plants11101291 |
[10] | Matthias Benoit. From non-self to self: stepwise mutations in transcription factors promote the transition to self-pollination in tomato. Plant Cell, 2021, 10: 3183-3184. |
[11] |
Riccini A, Picarella M E, De Angelis F, Mazzucato A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Mol Biol, 2021, 105: 263-285.
doi: 10.1007/s11103-020-01086-9 pmid: 33104942 |
[12] |
Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu G. Identification and expression profiling of micrornas involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics, 2017, 18: 843.
doi: 10.1186/s12864-017-4238-9 pmid: 29096602 |
[13] |
Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621-628.
doi: 10.1038/nmeth.1226 pmid: 18516045 |
[14] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511-515.
doi: 10.1038/nbt.1621 pmid: 20436464 |
[15] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[16] |
Bashline L, Lei L, Li S, Gu Y. Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant, 2014, 7: 586-600.
doi: 10.1093/mp/ssu018 pmid: 24557922 |
[17] |
Tsabary G, Shani Z, Roiz L, Levy I, Riov J, Shoseyov O. Abnormal ‘wrinkled’ cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1,4-β-glucanase (cell) antisense. Plant Mol Biol, 2003, 51: 213-224.
pmid: 12602880 |
[18] |
Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr Biol, 2019, 29: 851-858.
doi: S0960-9822(19)30884-X pmid: 31505187 |
[19] |
Fendrych M, Synek L, Pečenková T, Toupalová H, Cole R, Drdová E, Nebesářová J, Šedinová M, Hála M, Fowler J E, Žárský V. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell, 2010, 22: 3053-3065.
doi: 10.1105/tpc.110.074351 |
[20] |
Wen T J, Hochholdinger F, Sauer M, Bruce W, Schnable P S. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol, 2005, 138: 1637-1643.
doi: 10.1104/pp.105.062174 |
[21] |
To J P C, Haberer G, Ferreira F J, Deruère J, Mason M G, Schaller G E, Alonso J M, Ecker J R, Kieber J J. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 2004, 16: 658-671.
doi: 10.1105/tpc.018978 |
[22] | 吴健, 孙玥, 张融雪, 李军玲, 王晓静, 闫双勇, 马忠友, 孙林静, 苏京平, 王胜军, 刘学军. 水稻柱头外露率相关性状的调查及高柱头外露率不育系的创制. 天津农业科学, 2017, 23(11): 55-60. |
Wu J, Sun Y, Zhang R X, Li J L, Wang X J, Yan S Y, Ma Z Y, Sun L J, Su J P, Wang S J, Liu X J. Investigation of characters related to stigma exserted rate in rice and establishment of male sterile line with high stigma exposure. Tianjin Agric Sci, 2017, 23(11): 55-60. (in Chinese with English abstract) | |
[23] |
Shang L, Song J, Yu H, Wang X, Yu C, Wang Y, Li F, Lu Y, Wang T, Ou-Yang B, Zhang J, Larkin R M, Ye Z, Zhang Y. A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. Plant Cell, 2021, 33: 3293-3308.
doi: 10.1093/plcell/koab201 |
[24] | 张栩佳, 胡灵芝, 陈哲皓, 李颖, 王利琳. 花器官大小调控机制的研究进展. 植物生理学报, 2014, 50: 691-697. |
Zhang X J, Hu L Z, Chen Z H, Li Y, Wang L L. Research progress in regulation mechanism of floral organ size. Plant Physiol J, 2014, 50: 691-697. (in Chinese with English abstract) | |
[25] | 张鋆鋆. 烟草细胞质遗传柱头外露性状发育特征研究. 河南农业大学硕士学位论文, 河南郑州, 2018. |
Zhang Y Y. Study on the Developmental Characteristic of Cytoplasmic Inheritance of Tobacco Stigma Exsertion. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. (in Chinese with English abstract) |
[1] | 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad yousof, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103. |
[2] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[3] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[4] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[5] | 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956. |
[6] | 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819. |
[7] | 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685. |
[8] | 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309. |
[9] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[10] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[11] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
[12] | 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[13] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[14] | 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050. |
[15] | 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096. |
|