欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 669-685.doi: 10.3724/SP.J.1006.2024.34055

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于RNA-Seq筛选高粱低氮胁迫相关候选基因

王瑞1(), 张福耀1, 詹鹏杰1, 楚建强1, 晋敏姗2, 赵威军1, 程庆军1,*()   

  1. 1山西农业大学高粱研究所 / 高粱遗传与种质创新山西省重点实验室, 山西晋中 030600
    2西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2023-03-16 接受日期:2023-10-23 出版日期:2024-03-12 网络出版日期:2023-11-17
  • 通讯作者: *程庆军, E-mail: chqj7002@163.com
  • 作者简介:E-mail: wangrui989@163.com
  • 基金资助:
    国家自然科学基金项目(32272164);山西省回国留学人员科研资助项目(2020-161);“十四五”生物育种工程项目(YZGC058)

Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum

WANG Rui1(), ZHANG Fu-Yao1, ZHAN Peng-Jie1, CHU Jian-Qiang1, JIN Min-Shan2, ZHAO Wei-Jun1, CHENG Qing-Jun1,*()   

  1. 1Institute of Sorghum, Shanxi Agricultural University / Key Laboratory of Genetic and Germplasm Innovation in Sorghum for Shanxi, Jinzhong 030600, Shanxi, China
    2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2023-03-16 Accepted:2023-10-23 Published:2024-03-12 Published online:2023-11-17
  • Contact: *E-mail: chqj7002@163.com
  • Supported by:
    National Natural Science Foundation of China(32272164);Shanxi Scholarship Council of China(2020-161);“14th Five-Year Plan” Biological Breeding Project(YZGC058)

摘要:

研究低氮胁迫条件下不同高粱材料间的基因差异表达, 为耐低氮型高粱品种选育和耐低氮胁迫的分子机制探究提供参考。选取2个耐低氮型高粱(BSX44和BTx378)为试验材料, 设置正常和低氮胁迫2个处理, 利用RNA-Seq技术对高粱苗期、抽穗期和开花期的基因表达进行分析, 通过生物信息学对差异基因的生物学功能和代谢途径进行研究, 筛选可能参与低氮调控的基因, 了解氮高效基因型在氮素吸收利用过程中可能的分子途径。结果表明, 在正常和低氮胁迫下, BTx378和BSX44在苗期分别筛选出937个和787个差异表达基因, 抽穗期分别筛选出1305个和935个差异表达基因, 开花期分别筛选出1402个和963个差异表达基因。对3个时期的差异表达基因进行鉴定, 发现在苗期、抽穗期和开花期分别有246、371和306个基因在2个耐低氮高粱品种中共同差异表达, 有28个基因在2个耐低氮品种的不同生育时期均差异表达, 其中有5个基因上调表达, 23个基因下调表达; 对共同差异表达基因的KEGG相关代谢通路富集分析, 发现主要集中在氮代谢、丙氨酸, 天冬氨酸和谷氨酸代谢、甘油磷脂代谢、氨基酸的生物合成等途径, 表明耐低氮型高粱可能通过这些途径相关基因的表达影响其对低氮胁迫的耐受性。

关键词: 高粱, 转录组测序, 低氮胁迫, 差异表达基因(DEGs)

Abstract:

The objective of this study is to explore gene differential expression between different sorghum materials under low nitrogen stress conditions and to provide the references for probing into the breeding of low-nitrogen-tolerant sorghum varieties and the molecular mechanism of low-nitrogen-stress tolerance in sorghum. Two low-nitrogen-tolerant sorghum varieties (BSX44 and BTx378) were selected as experimental materials, and both of them were subjected to normal-growth treatment and low-nitrogen-stress treatment respectively before the gene expression of sorghum was detected at seedling stage, heading stage and flowering stage via RNA-Seq technology. The biological functions and metabolic pathways of the differentially expressed genes (DEGs) were analyzed by bioinformatics to screen genes that may be involved in the low-nitrogen regulation, and to understand the possible molecular pathways for nitrogen efficient materials in the process of nitrogen absorption and utilization. The results showed that: For BTx378 and BSX44, under normal-growth and low-nitrogen-stress treatments, 937 and 787 DEGs were detected at the seedling stage, 1305 and 935 at the heading stage, and 1402 and 963 at the flowering stage, for BTx378 and BSX44 respectively. Then the converged DEGs at the three stages were identified, and it was found that 246 genes were differentially expressed in the two low-nitrogen-tolerant sorghum varieties at the seedling stage, 371 at the heading stage, and 306 at the flowering stage. Furthermore, a total of 28 genes were consistently detected as DEGs at all three stages in the two low-nitrogen tolerant varieties, among which 5 genes were up-regulated and 23 genes were down-regulated. The KEGG analysis of the 28 common DEGs showed that they were mainly enriched in nitrogen metabolism, alanine, aspartic acid and glutamic acid metabolism, glycerophospholipid metabolism, and amino acid biosynthesis. This suggested that regulation of the genes in these pathways mainly affects the low nitrogen stress tolerance in sorghum.

Key words: sorghum, transcriptome sequencing, low nitrogen stress, differentially expressed genes (DEGs)

表1

转录组样品"

品种
Variety
生育期
Growth stage
处理Treatment
正常氮Normal nitrogen 低氮Low nitrogen
BTx378 苗期 Seedling stage T1 (NN-R1-S1) T4 (LN-R1-S1)
抽穗期 Heading stage T2 (NN-R1-S2) T5 (LN-R1-S2)
开花期 Flowering stage T3 (NN-R1-S3) T6 (LN-R1-S3)
BSX44 苗期 Seedling stage T7 (NN-R2-S1) T10 (LN-R2-S1)
抽穗期 Heading stage T8 (NN-R2-S2) T11 (LN-R2-S2)
开花期 Flowering stage T9 (NN-R2-S3) T12 (LN-R2-S3)

表2

转录组样品分组"

对比组
Compare group
对照组vs处理组
Control group vs Treatment group
A 1 T1 vs T4 NN-R1-S1 vs LN-R1-S1 正常氮-BTx378-苗期 vs低氮-BTx378-苗期
Normal nitrogen-BTx378-Seedling stage vs Low nitrogen-BTx378-Seedling stage
2 T7 vs T10 NN-R2-S1 vs LN-R2-S1 正常氮-BSX44-苗期 vs低氮-BSX44-苗期
Normal nitrogen-BSX44-Seedling stage vs Low nitrogen-BSX44-Seedling stage
B 3 T2 vs T5 NN-R1-S2 vs LN-R1-S2 正常氮-BTx378-抽穗期 vs低氮-BTx378-抽穗期
Normal nitrogen-BTx378-Heading stage vs Low nitrogen-BTx378-Heading stage
4 T8 vs T11 NN-R2-S2 vs LN-R2-S2 正常氮-BSX44-抽穗期 vs低氮-BSX44-抽穗期
Normal nitrogen-BSX44-Heading stage vs Low nitrogen-BSX44-Heading stage
C 5 T3 vs T6 NN-R1-S3 vs LN-R1-S3 正常氮-BTx378-开花期 vs低氮-BTx378-开花期
Normal nitrogen-BTx378-Flowering stage vs Low nitrogen-BTx378-Flowering stage
6 T9 vs T12 NN-R2-S3 vs LN-R2-S3 正常氮-BSX44-开花期 vs低氮-BSX44-开花期
Normal nitrogen-BSX44-Flowering stage vs Low nitrogen-BSX44-Flowering stage

表3

引物信息"

引物名称
Primer ID
序列
Sequence (5′-3′)
产物大小
Product length (bp)
Sb01g006100-F TTGTCTCGGTGGAGAGGCTA 104
Sb01g006100-R ATAACTCTGGCCCTCCCAGT
Sb01g015190-F CTGATAATGGGTCTGGCGGT 157
Sb01g015190-R CTTTTCCGAACGGCGACAAC
Sb01g029470-F TCTGACCCGGACTTGCTCTA 107
Sb01g029470-R TGGTCGAGGAACCTGCATTC
Sb04g032280-F TGTGGGCGCACATAGACAAG 127
Sb04g032280-R TCATACATGCAGCGGCTCTC
Sb06g016540-F CGAAGGTGGCTACAACGAGT 171
Sb06g016540-R TCGTTGGTGCCCGATTTGTT
Sb06g031460-F ATGATGGGTCAAGCACAGGG 99
Sb06g031460-R TGTTGTTGCCACCTCGGAAT
SbActin-F ATTCACGAGACTACCTACAAC 84
SbActin-R ACCAGAGAGGACGATGTT

表4

测序数据质量评估"

百迈客样品编号
BMK-ID
样品
Sample
过滤序列
Clean reads
过滤碱基
Clean bases
GC 含量
GC content (%)
Q30
(%)
T1 NN-R1-S1 16,868,217 4,978,049,154 55.45 92.73
T2 NN-R1-S2 19,294,220 5,706,447,154 56.06 92.41
T3 NN-R1-S3 19,051,651 5,623,880,026 57.58 92.19
T4 LN-R1-S1 16,490,988 4,854,433,778 56.78 91.65
T5 LN-R1-S2 15,070,044 4,433,027,812 56.47 92.03
T6 LN-R1-S3 15,956,808 4,691,702,406 56.77 92.72
T7 NN-R2-S1 14,343,423 4,221,379,930 57.01 92.55
T8 NN-R2-S2 15,743,754 4,605,121,084 56.21 92.98
T9 NN-R2-S3 13,847,707 4,095,501,214 56.07 92.13
T10 LN-R2-S1 14,905,380 4,407,032,326 56.80 91.53
T11 LN-R2-S2 13,986,375 4,119,603,114 56.65 92.66
T12 LN-R2-S3 17,798,466 5,262,344,634 56.17 91.74

图1

部分差异表达基因qRT-PCR验证 NN: 正常氮; LN: 低氮。S1: 苗期; S2: 抽穗期; S3: 开花期。R1: BTx378; R2: BSX44。"

表5

差异表达基因数目统计"

对比组
Compare group
比对组
Compare group
上调基因
Up-regulated genes
下调基因
Down-regulated genes
差异表达基因数目
DEG number
A 1 NN-R1-S1 vs LN-R1-S1 464 473 937
2 NN-R2-S1 vs LN-R2-S1 264 523 787
B 3 NN-R1-S2 vs LN-R1-S2 637 668 1305
4 NN-R2-S2 vs LN-R2-S2 432 503 935
C 5 NN-R1-S3 vs LN-R1-S3 394 1008 1402
6 NN-R2-S3 vs LN-R2-S3 384 579 963

图2

差异表达基因韦恩分析 R1: BTx378; R2: BSX44。NN-R1 vs LN-R1: 正常氮-BTx378 vs低氮-BTx378; NN-R2 vs LN-R2: 正常氮-BSX44 vs低氮-BSX44。"

图3

苗期差异表达基因富集分析 A图为苗期差异基因的GO富集注释图; B图为苗期差异基因的KEGG通路富集图。"

图4

抽穗期差异表达基因富集分析 A图为抽穗期差异基因的GO富集注释图; B图为抽穗期差异基因的KEGG通路富集图。"

图5

开花期期差异表达基因富集分析 A图为开花期差异基因的GO富集注释图; B图为开花期差异基因的KEGG通路富集图。"

图6

差异表达基因韦恩分析"

图7

共同差异表达基因表达热图 LN-R2-S1: 低氮-BSX44-苗期; LN-R2-S2: 低氮-BSX44-抽穗期; LN-R2-S3: 低氮-BSX44-开花期; LN-R1-S1: 低氮-BTx378-苗期; LN-R1-S2: 低氮-BTx378-抽穗期; LN-R1-S3: 低氮-BTx378-开花期; NN-R1-S1: 正常氮-BTx378-苗期; NN-R1-S2: 正常氮-BTx378-抽穗期; NN-R1-S3: 正常氮-BTx378-开花期; NN-R2-S1: 正常氮-BSX44-苗期; NN-R2-S2: 正常氮-BSX44-抽穗期; NN-R2-S3: 正常氮- BSX44-开花期。"

表6

共同差异表达基因相关信息"

序号 基因编号 基因功能注释
Number Gene ID Gene function annotation
1 Sb01g006100 铁氧还蛋白——NADP还原酶, 根同工酶, 叶绿体
Ferredoxin—NADP reductase, root isozyme, chloroplastic
2 Sb01g007010 PAC2家族 PAC2 family
3 Sb01g015190 异天冬酰胺肽酶/L-天冬酰胺酶1亚基β
Isoaspartyl peptidase/L-asparaginase 1 subunit beta
4 Sb01g023750 丙氨酸转氨酶2 Alanine aminotransferase 2
5 Sb01g029470 硝酸盐转运蛋白1.1 POT家族
Nitrate transporter 1.1 POT family
6 Sb01g032250 二酰基甘油激酶1 Diacylglycerol kinase 1
7 Sb02g006060 抗病蛋白RPM1 Disease resistance protein RPM1
8 Sb02g042310 磷脂酶A1-Igamma2, 叶绿体
Phospholipase A1-Igamma2, chloroplastic
9 Sb03g012720 磷脂酶D p1 Phospholipase D p1
10 Sb03g036210 紫色酸性磷酸酶2 Purple acid phosphatase 2
11 Sb03g045170 蛋白SRG1 Protein SRG1
12 Sb04g005740 细胞色素P450 71D10 Cytochrome P450 71D10
13 Sb04g006250 氯通道样蛋白CLC-g
Putative chloride channel-like protein CLC-g
14 Sb04g006740 枯草杆菌蛋白酶Subtilisin-like protease
15 Sb04g021010 甘油磷酸二酯磷酸二酯酶家族
Glycerophosphoryl diester phosphodiesterase family
16 Sb04g032280 分歧的CRAL/TRIO域 Divergent CRAL/TRIO domain
17 Sb04g034160 铁氧还蛋白——亚硝酸盐还原酶, 叶绿体
Ferredoxin—nitrite reductase, chloroplastic
18 Sb04g035040 20 kD伴侣蛋白, 叶绿体20 kD chaperonin, chloroplastic
19 Sb05g016820 精氨酸/丝氨酸蛋白45 Arginine/serine-rich protein 45
20 Sb06g016540 脱落胁迫成熟蛋白2 Abscisic stress-ripening protein 2
21 Sb06g025950 含SPX结构域的膜蛋白 SPX domain-containing membrane protein
22 Sb06g031460 谷氨酰胺合成酶, 叶绿体Glutamine synthetase, chloroplastic
23 Sb07g008300 紫色酸性磷酸酶15 Purple acid phosphatase 15
24 Sb07g026000 营养细胞壁蛋白gp1 Vegetative cell wall protein gp1
25 Sb07g028630 含BTB/POZ结构域的蛋白 BTB/POZ domain-containing protein
26 Sb08g003180 转录因子GLK2 Probable transcription factor GLK2
27 Sb09g028090 营养细胞壁蛋白gp1 Vegetative cell wall protein gp1
28 Sorghum_bicolor_newGene_166 未知蛋白Unknown protein

表7

共同差异表达基因KEGG富集通路"

KO编号KO ID KEGG通路
KEGG pathway
KEGG同源基因KEGG orthology 基因编号
Gene ID
ko00910 氮代谢Nitrogen metabolism K00366+K01915 Sb04g034160; Sb06g031460
ko00250 丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolism
K00814+K01915 Sb01g023750; Sb06g031460
ko00564 甘油磷脂代谢Glycerophospholipid metabolism K00901+K01115 Sb01g032250; Sb03g012720
ko01230 氨基酸的生物合成Biosynthesis of amino acids K00814+K01915 Sb01g023750; Sb06g031460
ko00565 醚脂代谢Ether lipid metabolism K01115 Sb03g012720
ko01210 2-氧羧酸代谢2-Oxocarboxylic acid metabolism K00814 Sb01g023750
ko00630 乙醛酸和二羧酸代谢Glyoxylate and dicarboxylate metabolism K01915 Sb06g031460
ko04070 磷脂酰肌醇信号系统Phosphatidylinositol signaling system K00901 Sb01g032250
ko00195 光合作用Photosynthesis K02641 Sb01g006100
ko00561 甘油脂代谢Glycerolipid metabolism K00901 Sb01g032250
ko00330 精氨酸和脯氨酸代谢Arginine and proline metabolism K01915 Sb06g031460
ko00710 光合生物的碳固定
Carbon fixation in photosynthetic organisms
K00814 Sb01g023750
ko04144 内吞作用Endocytosis K01115 Sb03g012720
ko01200 碳代谢Carbon metabolism K00814 Sb01g023750

图8

共同差异表达基因KEGG富集分析"

表8

高粱氮吸收和代谢途径中的15个基因和玉米、水稻的同源基因及在不同时期的表达情况"

基因编号
Genome ID
功能
Function
同源基因
Orthologous genes
苗期
Seedling stage
抽穗期
Heading stage
开花期
Flowering stage
玉米
Maize
水稻
Rice
T1 vs T4 T7 vs T10 T2 vs T5 T8 vs T11 T3 vs T6 T9 vs T12
Sb01g001970 铵转运蛋白 AMT2 GRMZM2G338809 Os03g62200
Sb01g010270 谷氨酰胺合成酶 GS GRMZM2G024104 Os03g50490 -- --
Sb01g029470 低亲和硝酸盐转运蛋白 NRT1/PTR GRMZM2G161459 Os10g40600
Sb02g025100 谷氨酰胺合成酶 GS GRMZM2G036783 Os09g25610 -- --
Sb02g033100 谷氨酰胺合成酶 GS GRMZM2G459854
Sb03g035270 低亲和硝酸盐转运蛋白 NRT1/PTR GRMZM2G035790 -- -- --
Sb03g039530 亚硝酸还原酶 NiR GRMZM2G367668 --
Sb03g041190 低亲和硝酸盐转运蛋白 NRT1/PTR GRMZM2G470454 Os01g65100 --
Sb03g043020 低亲和硝酸盐转运蛋白 NRT1/PTR GRMZM2G419328 --
Sb04g002810 谷草转氨酶 AST Os02g04170 --
Sb04g031320 硝酸盐转运蛋白 NRT1/PTR Os02g46460 --
Sb05g002760 亚硝酸还原酶 NiR --
Sb06g020180 高亲和硝酸盐转运蛋白 NRT3 GRMZM2G163494 Os04g40410 --
Sb06g028990 谷氨酸合成酶 GOGAT GRMZM2G076239 Os04g53210 --
Sb10g026090 低亲和硝酸盐转运蛋白 NRT1/PTR
[1] Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA, 2013, 110: 453-458.
doi: 10.1073/pnas.1215985110 pmid: 23267105
[2] 李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in China. Sci Agric Sin, 2021, 54: 471-482 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.002
[3] 邹剑秋, 王艳秋, 柯福来. 高粱产业发展现状及前景展望. 山西农业大学学报(自然科学版), 2020, 40(3): 2-8.
Zou J Q, Wang Y Q, Ke F L. Developing situation and prospect forecast of sorghum industry in China. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(3): 2-8 (in Chinese with English abstract).
[4] 张福耀, 平俊爱, 赵威军. 中国酿造高粱品质遗传改良研究进展. 农学学报, 2019, 9(3): 21-25.
doi: 10.11923/j.issn.2095-4050.cjas18030019
Zhang F Y, Ping J A, Zhao W J. Genetic quality improvement of brewing sorghum in China: research progress. J Agric, 2019, 9(3): 21-25 (in Chinese with English abstract).
doi: 10.11923/j.issn.2095-4050.cjas18030019
[5] 李嵩博, 唐朝臣, 陈峰, 谢光辉. 中国粒用高粱改良品种的产量和品质性状时空变化. 中国农业科学, 2018, 51: 246-256.
doi: 10.3864/j.issn.0578-1752.2018.02.005
Li S B, Tang C C, Chen F, Xie G H. Temporal and spatial changes in yield and quality with grain sorghum variety improvement in China. Sci Agric Sin, 2018, 51: 246-256 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.02.005
[6] Vogan P J, Sage R F. Water-use efficiency and nitrogen-use efficiency of C(3)-C(4) intermediate species of Flaveria juss. (Asteraceae). Plant Cell Environ, 2011, 34: 1415-1430.
doi: 10.1111/pce.2011.34.issue-9
[7] Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462.
doi: 10.1038/nature11917
[8] Yang Y Y, Liu L, Zhang F, Zhang X Y, Xu W, Liu X J, Li Y, Wang Z, Xie Y W. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China. Environ Sci Pollut Res Int, 2021, 28: 15350-15360.
doi: 10.1007/s11356-020-11591-5
[9] 米国华. 论作物养分效率及其遗传改良. 植物营养与肥料学报, 2017, 23: 1525-1535.
Mi G H. Nutrient use efficiency in crops and its genetic improvement. J Plant Nutr Fert, 2017, 23: 1525-1535 (in Chinese with English abstract).
[10] 凌宏清, 袁力行. 我国作物养分高效研究的现状与未来发展趋势. 中国基础科学, 2016, 18(2): 54-60.
Ling H Q, Yuan L X. Research status of crop nutrient efficiency and its future development in China. China Basic Sci, 2016, 18(2): 54-60 (in Chinese with English abstract).
[11] Tantray A Y, Hazzazi Y, Ahmad A. Physiological, agronomical, and proteomic studies reveal crucial players in rice nitrogen use efficiency under low nitrogen supply. Int J Mol Sci, 2022, 23: 6410.
doi: 10.3390/ijms23126410
[12] Hou M M, Yu M, Li Z Q, Ai Z Y, Chen J G. Molecular regulatory networks for improving nitrogen use efficiency in rice. Int J Mol Sci, 2021, 22: 9040.
doi: 10.3390/ijms22169040
[13] Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[14] Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 2019, 10: 5207.
doi: 10.1038/s41467-019-13110-8 pmid: 31729387
[15] Lupini A, Preiti G, Badagliacca G, Abenavoli M R, Sunseri F, Monti M, Bacchi M. Nitrogen use efficiency in durum wheat under different nitrogen and water regimes in the Mediterranean Basin. Front Plant Sci, 2021, 11: 607226.
doi: 10.3389/fpls.2020.607226
[16] Cormier F, Gouis J L, Dubreuil P, Lafarge S, Praud S. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet, 2014, 127: 2679-2693.
doi: 10.1007/s00122-014-2407-7 pmid: 25326179
[17] Sandhu N, Kaur A, Sethi M, Kaur S, Varinderpal-Singh, Sharma A, Bentley A R, Barsby T, Chhuneja P. Genetic dissection uncovers genome-Wide marker-trait associations for plant growth, yield, and yield-related traits under varying nitrogen levels in nested synthetic wheat introgression libraries. Front Plant Sci, 2021, 12: 738710.
doi: 10.3389/fpls.2021.738710
[18] Ciampitti I A, Lemaire G. From use efficiency to effective use of nitrogen: a dilemma for maize breeding improvement. Sci Total Environ, 2022, 826: 154125.
doi: 10.1016/j.scitotenv.2022.154125
[19] Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas C D, Lea P J, Bertrand Hirel B. Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. J Exp Bot, 2014, 65: 5657-5671.
doi: 10.1093/jxb/eru227
[20] Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004, 55: 295-306.
doi: 10.1093/jxb/erh006 pmid: 14739258
[21] 刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51: 3074-3083.
doi: 10.3864/j.issn.0578-1752.2018.16.004
Liu P, Wu A L, Wang J S, Nan J K, Dong E W, Jiao X Y, Ping J A, Bai W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Sci Agric Sin, 2018, 51: 3074-3083 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.16.004
[22] Singh P, Kumar K, Jha A K, Yadava P, Pal M, Rakshit S, Singh I. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.). Sci Rep, 2022, 12: 4211.
doi: 10.1038/s41598-022-07709-z
[23] Ge L H, Dou Y N, Li M M, Qu P J, He Z, Liu Y, Xu Z S, Chen J, Chen M, Ma Y Z. SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants. Int J Mol Sci, 2019, 20: 5741.
doi: 10.3390/ijms20225741
[24] Sultana N, Islam S, Juhasz A, Yang R C, She M Y, Alhabbar Z, Zhang J J, Ma W J. Transcriptomic study for identification of major nitrogen stress responsive genes in australian bread wheat cultivars. Front Genet, 2020, 11: 583785.
doi: 10.3389/fgene.2020.583785
[25] Ding Q Q, Wang X T, Hu L Q, Qi X, Ge L H, Xu W Y, Xu Z S, Zhou Y B, Jia G Q, Diao X M, Min D H, Ma Y Z, Chen M. MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress. Hereditas, 2018, 40: 327-338.
[26] Yan H S, Shi H W, Hu C M, Luo M Z, Xu C J, Wang S G, Li N, Tang W S, Zhou Y B, Wang C X, Xu Z S, Chen J, Ma Y Z, Sun D Z, Chen M. Transcriptome differences in response mechanisms to low-nitrogen stress in two wheat varieties. Int J Mol Sci, 2021, 22: 12278.
doi: 10.3390/ijms222212278
[27] Zhang C J, Hou Y Q, Hao Q N, Chen H F, Chen L M, Yuan S L, Shan Z H, Zhang X J, Yang Z L, Qiu D Z, Zhou X N, Huang W J. Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PLoS One, 2015, 10: e0125174.
doi: 10.1371/journal.pone.0125174
[28] Jagadhesan B, Sathee L, Meena H S, Jha S K, Chinnusamy V, Kumar A, Kumar S. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice. Sci Rep, 2020, 10: 9368.
doi: 10.1038/s41598-020-66338-6 pmid: 32523127
[29] Gelli M, Duo Y C, Konda A R, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15: 179.
doi: 10.1186/1471-2164-15-179 pmid: 24597475
[30] Zhu Z X, Li D, Wang P, Li J H, Lu X C. Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theor Exp Plant Physiol, 2020, 32: 271-285.
doi: 10.1007/s40626-020-00183-w
[31] Massel K, Campbell B C, Mace E S, Tai S S, Tao Y F, Worland B G, Jordan D R, Botella J R, Godwin I D. Whole genome sequencing reveals potential new targets for improving nitrogen uptake and utilization in Sorghum bicolor. Front Plant Sci, 2016, 7: 1544.
pmid: 27826302
[32] 王瑞, 平俊爱, 张福耀, 詹鹏杰, 楚建强. 高粱育种资源耐瘠性鉴定及评价. 作物杂志, 2020, (6): 30-37.
Wang R, Ping J A, Zhang F Y, Zhan P J, Chu J Q. Identification and evaluation of sorghum breeding resources for barren tolerance. Crops, 2020, (6): 30-37 (in Chinese with English abstract).
[33] Chalmel F, Lardenois A, Thompson J D, Muller J, Sahel J-A, Léveillard T, Poch O. GOAnno: GO annotation based on multiple alignment. Bioinformatics, 2005, 21: 2095-2096.
pmid: 15647299
[34] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173
[35] Kanehisa M, Araki M, Goto S, Hattor M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008, 36: D480-D484.
doi: 10.1093/nar/gkm882 pmid: 18077471
[36] Mao X Z, Cai T, Olyarchuk J G, Wei L P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21: 3787-3793.
doi: 10.1093/bioinformatics/bti430 pmid: 15817693
[37] Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M, Akada S. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol Biol, 2003, 53: 237-245.
pmid: 14756320
[38] Lea U S, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007, 225: 1245-1253.
doi: 10.1007/s00425-006-0414-x pmid: 17053893
[39] 胡利斧. 谷子低氮胁迫转录组分析及SiMYB3基因特性与功能鉴定. 中国农业科学院硕士学位论文, 北京, 2015.
Hu L F. Transcriptome Analysis of Foxtail millet (Setaria italic) under Low Nitrogen Stress and Characteristics and Functional Identification of SiMYB3. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[40] 张玉宁, 史宏志, 王景, 周炎, 杨惠娟. 高、低硝态氮营养条件下烟草根系基因表达谱及代谢途径的差异分析. 烟草科技, 2019, 52(4): 1-8.
Zhang Y N, Shi H Z, Wang J, Zhou Y, Yang H J. Analysis of gene expression profile and metabolic pathway of tobacco root at high and low levels of nitrate nitrogen. Tobacco Sci Technol, 2019, 52(4): 1-8 (in Chinese with English abstract).
[41] 刘天奇, 高红秀, 谢威, 张雪晴, 陈娜娜, 梅雪锋, 邢佳妮, 徐振华, 张忠臣. 水稻分蘖期氮素应答的转录组动态分析. 华北农学报, 2021, 36(1): 44-53.
doi: 10.7668/hbnxb.20191406
Liu T Q, Gao H X, Xie W, Zhang X Q, Chen N N, Mei X F, Xing J N, Xu Z H, Zhang Z C. Dynamic transcriptome analysis of rice response to nitrogen treatment at tillering stage. Acta Agric Boreali-Sin, 2021, 36(1): 44-53 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191406
[42] Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol, 2008, 147: 316-330.
doi: 10.1104/pp.108.115733 pmid: 18375600
[43] 王娇, 李萍, 宗毓铮, 张东升, 史鑫蕊, 杨净, 郝兴宇. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响. 中国生态农业学报, 2023, 31: 325-335.
Wang J, Li P, Zong Y Z, Zhang D S, Shi X R, Yang J, Hao X Y. Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage. Chin J Eco-Agric, 2023, 31: 325-335 (in Chinese with English abstract).
[44] 师进霖, 陈恩波, 姜跃丽. PEG6000渗透胁迫对甜瓜幼苗叶片渗透调节物质及膜脂过氧化的影响. 西北农业学报, 2010, 19(1): 186-189.
Shi J L, Chen E B, Jiang Y L. Effect of osmotic stress with PEG6000 on smolytes and lipid peroxidation in muskmelon seedling leaves. Acta Agric Boreali-occident Sin, 2010, 19(1): 182-185 (in Chinese with English abstract).
[45] Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NKN, Kluger B, Schuster K, Krska R, Adam G, Lemmens M, Schuhmacher R. GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 2015, 11: 722-738.
pmid: 25972772
[46] Dhiman A, Nanda A, Ahmad S A. Quest for staunch effects of flavonoids: utopian protection against hepatic ailments. Arab J Chem, 2012, 12: 1702-1711.
[47] Masclaux D C, Daniel V F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105: 1141-1157.
doi: 10.1093/aob/mcq028
[48] Xu G, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[49] Krapp A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol, 2015, 25: 115-122.
doi: 10.1016/j.pbi.2015.05.010 pmid: 26037390
[50] Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol, 2015, 56: 769-778.
doi: 10.1093/pcp/pcv005 pmid: 25634963
[51] 王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展. 分子植物育种, 2019, 17: 1373-1377.
Wang J W, Wu G, Xu Y M. Research progress of glutamine synthetase in plant nitrogen assimilation and recycling. Mol Plant Breed, 2019, 17: 1373-1377 (in Chinese with English abstract).
[52] Zhong C, Cao X C, Hu J J, Zhu L F, Zhang J H, Huang J L, Jin Q Y. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci, 2017, 8: 1079.
doi: 10.3389/fpls.2017.01079 pmid: 28690622
[53] 姜苏育. 低氮营养对小麦幼苗根系生长与氮素吸收利用的影响及其生理机制. 南京农业大学博士学位论文, 江苏南京, 2018.
Jiang S Y. Effects of N-deficiency Supply on Root Growth and Nitrogen Uptake in Wheat Seedlings and its Physiological Mechanism. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2018 (in Chinese with English abstract).
[1] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[2] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[3] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[4] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[5] 陆梦琪, 谢若涵, 李想, 杨明冲, 何紫薇, 高杰, 赵晓燕, 沈祥陵, 陈燕, 王继斌, 胡利华, 段明政, 王令强. 基于“LabelmeP1.0”提取的高粱维管束参数与农艺性状关联研究[J]. 作物学报, 2023, 49(7): 1954-1967.
[6] 李邦, 刘春娟, 郭俊杰, 武宇昕, 邓志成, 张敏, 崔彤, 刘畅, 周宇飞. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用[J]. 作物学报, 2023, 49(5): 1372-1385.
[7] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[8] 王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响[J]. 作物学报, 2023, 49(3): 845-855.
[9] 陈冰嬬, 于淼, 葛占宇, 李洪奎, 黄炎, 李海青, 石贵山, 谢利, 徐宁, 闫峰, 高士杰, 周紫阳, 王鼐. 春播早熟区高粱杂种优势群及杂种优势模式分析[J]. 作物学报, 2023, 49(2): 343-353.
[10] 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249.
[11] 刘秋霞, 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕. 不同生态区高粱籽粒产量和品质对氮肥施用的响应[J]. 作物学报, 2023, 49(10): 2766-2776.
[12] 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉不同倍性材料叶片转录组差异表达分析[J]. 作物学报, 2022, 48(11): 2733-2748.
[13] 王倩, 刘少雄, 柴晓娇, 李海, 张芬, 陆平, 王瑞云, 刘敏轩. 中国不同省(市、自治区)糯高粱籽粒酚类物质含量差异分析[J]. 作物学报, 2022, 48(10): 2505-2516.
[14] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响[J]. 作物学报, 2021, 47(2): 342-350.
[15] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .