欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2528-2538.doi: 10.3724/SP.J.1006.2023.24243

• 耕作栽培·生理生化 • 上一篇    下一篇

乙矮合剂对粒用高粱根系建构和产量的影响

房孟颖1(), 任粱1,2, 卢霖1, 董学瑞1, 武志海2, 闫鹏1,*(), 董志强1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京 100081
    2吉林农业大学, 吉林长春 130118
  • 收稿日期:2022-10-28 接受日期:2023-02-10 出版日期:2023-09-12 网络出版日期:2023-02-23
  • 通讯作者: *闫鹏, E-mail: yanpeng01@caas.cn; 董志强, E-mail: dongzhiqiang@caas.cn
  • 作者简介:房孟颖, E-mail: fangmengying166@163.com
  • 基金资助:
    国家重点研发计划项目(2020YFD1000801);国家重点研发计划项目(2019YFD1001703)

Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum

FANG Meng-Ying1(), REN Liang1,2, LU Lin1, DONG Xue-Rui1, WU Zhi-Hai2, YAN Peng1,*(), DONG Zhi-Qiang1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2022-10-28 Accepted:2023-02-10 Published:2023-09-12 Published online:2023-02-23
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000801);National Key Research and Development Program of China(2019YFD1001703)

摘要:

塑造良好的根系结构是发挥高粱高产潜力, 提高粒用高粱产量亟待解决的关键问题。为研究乙矮合剂(ECK)对高粱根系形态建构和产量的调控效用及其作用机制, 2020—2021年设置田间试验, 以中高秆型高粱品种辽杂19 (Liaoza 19, LZ19)和矮秆型品种辽杂37 (Liaoza 37, LZ37)为试验材料, 采用随机区组试验设计, 设置高粱五叶期叶面喷施0.75 L hm-2的ECK处理, 对照喷施等量清水(CK)。结果表明, 高粱根系干重从开花期后呈逐渐下降趋势, 乙矮合剂(ECK)显著增加LZ19和LZ37灌浆期和成熟期根系干重, 根系干重分别较CK增加11.4%和19.7%、10.6%和9.9%。在灌浆期, ECK提高LZ19在灌浆期的细根和中根(根系直径<4 mm)根长和根表面积以及LZ37不同直径下的根长、根表面积和根体积; 在成熟期, ECK提高LZ19的根长、根表面积、根体积和根系平均直径以及LZ37的根长、根表面积和根体积, 并且2个品种的上述根系形态指标中粗根(根直径≥4 mm)的增幅最大。相比CK, ECK处理下2020年和2021年LZ19增产3.3%和13.4%; LZ37增产11.4%和9.8%。综上, ECK处理促进了高粱根系发育、延缓了根系衰老并显著提高了高粱单产, 可作为夏播区粒用高粱促根增产的重要栽培措施。

关键词: 高粱, 乙矮合剂, 根系, 产量

Abstract:

Shaping good root structure is the key problem to play the high yield potential of sorghum and increase the yield of grain sorghum. To investigate the effect of ethylene-chlormequat-potassium (ECK) on sorghum root morphology and yield, field trials were conducted in 2020 and 2021 using the medium to tall sorghum variety Liaoza 19 (LZ19) and the dwarf variety Liaoza 37 (LZ37). A randomized zonal experimental design was used to set up the ECK treatment with a foliar spray of 0.75 L hm-2 at the five-leaf stage of sorghum and a control spray with an equal amount of clean water (CK). The results showed that compared with CK, sorghum root dry weight showed a gradual decrease from the flowering stage. ECK significantly increased root dry weight of LZ19 and LZ37 at filling and maturity stages by 11.4% and 19.7%, 10.6% and 9.9%, respectively. ECK increased root length and root surface area of fine and medium roots (root system diameter < 4 mm) of LZ19 and root length, root surface area, and root volume of LZ37 at different diameters at grain filling stage. At maturity stage, ECK increased root length, root surface area, root volume, and root mean diameter of LZ19 and that of LZ37, and the increase of system morphological indexes was the largest in the two varieties. ECK treatment increased the yield of LZ19 by 3.3% and 13.4%, and LZ37 by 11.4% and 9.8% in 2020 and 2021, respectively, compared with CK. In conclusion, ECK treatment promoted sorghum root development and significantly increased sorghum yields, which can be used as an important cultivation measure for sorghum root promotion and yield increase in summer sown areas.

Key words: sorghum, ethylene-chlormequat-potassium, root, grain yield

图1

2020年和2021年高粱生育期内日均温和日降水量"

图2

乙矮合剂对辽杂19和辽杂37成熟期根系影响 CK: 对照; ECK: 乙矮合剂。"

图3

乙矮合剂对辽杂19和辽杂37开花期、灌浆期和成熟期根系干重的影响 CK: 对照; ECK: 乙矮合剂; LZ37: 辽杂37; LZ19: 辽杂19。ns表示在0.05概率水平差异不显著; *、**分别表示在0.05和0.01概率水平差异显著。"

表1

乙矮合剂对高粱开花期根系形态的影响"

品种
Variety name
处理
Treatment
根长
Root length (cm)
根表面积
Total surface area (cm2)
根体积
Root volume (cm3)
根系直径
Root diameter (mm)
辽杂19
Liaoza 19
CK 3560.1 a 932.2 a 21.5 a 0.80 a
ECK 3239.8 a 877.2 a 21.6 a 0.85 a
均值Average value 3399.9 B 904.7 A 21.6 A 0.83 B
辽杂37
Liaoza 37
CK 4262.9 a 1046.9 a 22.7 a 0.73 a
ECK 4243.6 a 1015.8 a 21.2 a 0.72 a
均值Average value 4253.2 A 1031.4 A 21.9 A 0.73 A

表2

乙矮合剂对高粱灌浆期根系形态的影响"

品种
Variety name
处理
Treatment
根长
Root length (cm)
根表面积
Total surface area (cm2)
根体积
Root volume (cm3)
根系直径
Root diameter (mm)
辽杂19
Liaoza 19
CK 2422.8 a 710.9 a 18.9 a 0.86 a
ECK 2654.5 a 732.7 a 18.2 a 0.83 a
均值Average value 2538.6 B 721.8 B 18.6 A 0.84 B
辽杂37
Liaoza 37
CK 3078.2 b 775.5 b 16.9 b 0.75 a
ECK 4587.2 a 1169.7 a 26.2 a 0.77 a
均值Average value 3832.7 A 972.6 A 21.5 A 0.76 A

表3

乙矮合剂对高粱成熟期根系形态的影响"

品种
Variety name
处理
Treatment
根长
Root length (cm)
根表面积
Total surface area (cm2)
根体积
Root volume (cm3)
根系直径
Root diameter (mm)
辽杂19
Liaoza 19
CK 2188.0 b 563.6 b 12.7 b 0.73 b
ECK 2693.0 a 792.6 a 20.5 a 0.89 a
均值Average value 2440.5 B 678.1 B 16.6 B 0.81 A
辽杂37
Liaoza 37
CK 3621.7 b 972.3 b 22.3 b 0.80 a
ECK 4439.8 a 1232.2 a 29.1 a 0.84 a
均值Average value 4030.8 A 1102.3 A 25.7 A 0.82 A

表4

乙矮合剂对高粱开花期不同直径根系生长参数的影响"

根系形态
Root morphology index
品种
Variety name
处理
Treatment
根系直径Root diameter (mm)
0<D≤0.5 0.5<D≤4 D>4
根长
Root length
(cm plant-1)
辽杂19
Liaoza 19
CK 2379.3 a 997.7 a 181.8 a
ECK 2146.0 a 914.0 a 178.6 a
均值 Average value 2262.6 B 955.9 A 180.2 A
辽杂37
Liaoza 37
CK 3058.8 a 981.2 a 220.9 a
ECK 3054.7 a 985.3 a 201.8 a
均值 Average value 3056.8 A 983.2 A 211.4 A
根表面积
Total surface area
(cm2 plant-1)
辽杂19
Liaoza 19
CK 92.0 a 516.5 a 283.2 a
ECK 82.5 a 470.3 a 286.7 a
均值 Average value 87.2 B 493.4 A 284.9 A
辽杂37
Liaoza 37
CK 111.3 a 541.2 a 347.1 a
ECK 114.7 a 551.6 a 304.7 a
均值 Average value 113.0 A 546.4 A 325.9 A
根体积
Root volume
(cm3 plant-1)
辽杂19
Liaoza 19
CK 0.5 a 29.2 a 35.9 a
ECK 0.4 a 26.3 a 37.9 a
均值 Average value 0.5 B 27.7 A 36.9 A
辽杂37
Liaoza 37
CK 0.6 a 32.2 a 44.5 a
ECK 0.6 a 33.4 a 37.3 a
均值 Average value 0.6 A 32.8 A 40.9 A

表5

乙矮合剂对高粱灌浆期不同直径根系生长参数的影响"

根系形态
Root morphology index
品种
Variety name
处理
Treatment
根系直径Root diameter (mm)
0<D≤0.5 0.5<D≤4 D>4
根长
Root length
(cm plant-1)
辽杂19
Liaoza 19
CK 1527.1 a 754.8 a 140.3 a
ECK 1700.9 a 825.0 a 127.8 a
均值 Average value 1614.0 B 789.9 B 134.1 A
辽杂37
Liaoza 37
CK 2072.7 b 873.3 b 131.1 b
ECK 3176.8 a 1168.0 a 240.4 a
均值 Average value 2624.8 A 1020.6 A 185.8 A
根表面积
Total surface area
(cm2 plant-1)
辽杂19
Liaoza 19
CK 59.1 a 376.2 a 238.6 a
ECK 64.1 a 429.0 a 201.6 a
均值 Average value 61.6 B 402.6 B 220.1 A
辽杂37
Liaoza 37
CK 78.9 b 455.1 b 206.0 b
ECK 117.0 a 628.9 a 372.3 a
均值 Average value 97.9 A 542.0 A 289.1 A
根体积
Root volume
(cm3 plant-1)
辽杂19
Liaoza 19
CK 0.3 a 20.7 a 33.7 a
ECK 0.3 a 24.1 a 26.3 a
均值 Average value 0.3 B 22.4 B 30.0 A
辽杂37
Liaoza 37
CK 0.5 b 25.7 b 26.5 b
ECK 0.6 a 36.7 a 47.0 a
均值 Average value 0.5 A 31.2 A 36.7 A

表6

乙矮合剂对高粱成熟期不同直径根系生长参数的影响"

根系形态
Root morphology index
品种
Variety name
处理
Treatment
根系直径Root diameter (mm)
0<D≤0.5 0.5<D≤4 D>4
根长
Root length
(cm plant-1)
辽杂19
Liaoza 19
CK 1416.6 b 676.9 b 93.9 b
ECK 1643.4 a 902.0 a 146.8 a
均值 Average value 1530.0 B 789.4 B 120.3 B
辽杂37
Liaoza 37
CK 2398.8 b 1037.1 a 184.5 b
ECK 3008.4 a 1160.1 a 269.2 a
均值 Average value 2703.6 A 1098.6 A 226.9 A
根表面积
Total surface area
(cm2 plant-1)
辽杂19
Liaoza 19
CK 54.8 b 337.7 b 147.2 b
ECK 65.7 a 469.0 a 223.3 a
均值 Average value 60.3 B 403.3 B 185.3 B
辽杂37
Liaoza 37
CK 90.1 b 544.3 a 291.5 b
ECK 113.3 a 626.4 a 434.0 a
均值 Average value 101.7 A 585.4 A 362.8 A
根体积
Root volume
(cm3 plant-1)
辽杂19
Liaoza 19
CK 0.3 a 18.6 b 18.9 b
ECK 0.4 a 26.5 a 27.7 a
均值 Average value 0.3 B 22.5 B 23.3 B
辽杂37
Liaoza 37
CK 0.5 b 31.3 a 37.8 b
ECK 0.6 a 36.7 a 57.9 a
均值 Average value 0.5 A 34.0 A 47.9 A

图4

乙矮合剂对LZ19和LZ37产量的影响 CK: 对照; ECK: 乙矮合剂; LZ37: 辽杂37; LZ19: 辽杂19。ns表示在0.05概率水平差异不显著; *、**和***分别表示在0.05、0.01和0.001概率水平差异显著。"

[1] 李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in China. Sci Agric Sin, 2021, 54: 471-482. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.03.002
[2] 邹剑秋. 高粱育种与栽培技术研究新进展. 中国农业科学, 2020, 53: 2769-2773.
doi: 10.3864/j.issn.0578-1752.2020.14.001
Zou J Q, New research progress on sorghum breeding and cultivation techniques. Sci Agric Sin, 2020, 53: 2769-2773. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.14.001
[3] 辛宗绪, 刘志, 赵术伟, 肖继兵, 朱晓东, 吴洪生. 高粱大豆间作对高粱生物性状及产量的影响. 中国种业, 2022, (9): 79-84.
Xin Z X, Liu Z, Zhao S W, Xiao J B, Zhu X D, Wu H S. Effects of sorghum and soybean intercropping on biological characters and yield of sorghum. China Seed Ind, 2022, (9): 79-84. (in Chinese)
[4] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响. 作物学报, 2021, 47: 342-350.
doi: 10.3724/SP.J.1006.2021.04091
Wang Y, Wang J S, Dong E W, Wu A L, Jiao X Y. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution. Acta Agron Sin, 2021, 47: 342-350. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04091
[5] Assefa Y, Roozeboom K, Thompson C, Schlegel A, Stone L, Lingenfelser J E. Corn Grain Sorghum Comparison. New York: Academic Press, 2014. pp 57-70.
[6] Ostmeyer T J, Bahuguna R N, Kirkham M B, Bean S, Jagadish S V K. Enhancing sorghum yield through efficient use of nitrogen- challenges and opportunities. Front Plant Sci, 2022, 13: 845443.
doi: 10.3389/fpls.2022.845443
[7] 朱泓劼. 泸州市糯红高粱产业发展策略研究. 西南财经大学硕士学位论文, 四川成都, 2021.
Zhu H J. Research on the Development Strategy of Glutinous Sorghum Industry in Luzhou City. MS Thesis of Southwestern University of Finance and Economics, Chengdu, Sichuan, China, 2021. (in Chinese with English abstract)
[8] 卢庆善. 高粱学. 北京: 中国农业出版社, 1999. pp 168-169.
Lu Q S. Sorghum. Beijing: China Agriculture Press, 1999. pp 168-169. (in Chinese)
[9] 高士杰, 李继洪, 刘勤来, 于凯, 贾俊英. 高粱的食品与饮品. 现代农业科技, 2012, (22): 279-280.
Gao S J, Li J H, Liu Q L, Yu K, Jia J Y. Sorghum food and drink. Modern Agric Sci Technol, 2012, (22): 279-280. (in Chinese)
[10] 刘晨阳, 张蕙杰, 辛翔飞. 世界高粱供需格局变动及趋势分析. 中国食物与营养, 2020, 26(3): 42-46.
Liu C Y, Zhang H J, Xin X F. Analysis on changes and trends in the world's sorghum supply and demand. Food Nutr China, 2020, 26(3): 42-46. (in Chinese with English abstract)
[11] 陈伟立, 李娟, 朱红惠, 陈杰忠, 姚青. 根际微生物调控植物根系构型研究进展. 生态学报, 2016, 36: 5285-5297.
Chen W L, Li J, Zhu H H, Chen J Z, Yao Q. A review of the regulation of plant root system architecture by rhizosphere microorganisms. Acta Ecol Sin, 2016, 36: 5285-5297. (in Chinese with English abstract)
[12] Herder G D, Isterdael G V, Beeckman T, Smet D I. The roots of a new green revolution. Trends Plant Sci, 2010, 15: 600-607.
doi: 10.1016/j.tplants.2010.08.009 pmid: 20851036
[13] Wu Q P, Chen F J, Chen Y L, Yuan L X, Zhang F S, Mi G H. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009. Sci China Life Sci, 2011, 54: 642-650.
doi: 10.1007/s11427-011-4186-6 pmid: 21748587
[14] 张岁岐, 山仑. 磷素营养对春小麦抗旱性的影响. 应用与环境生物学报, 1998, 4: 115-119.
Zhang S Q, Shan L. The effect of phosphorus nutrition on drought resistance of spring wheat. Chin J Appl Environ Biol, 1998, 4: 115-119. (in Chinese with English abstract)
[15] Zhao Y, Xing L, Wang X, Hou Y J, Gao J, Wang P, Duan C G, Zhu X, Zhu J K. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal, 2014, 7: 53.
doi: 10.1126/scisignal.2005051 pmid: 24894996
[16] 吴奇. 干旱胁迫及氮素对高粱根系形态、生理特性及产量形成的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2017.
Wu Q. Effects of Drought Stress and Nitrogen on Root Morphology, Physiological Characteristics and Yield Formation of Sorghum. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2017. (in Chinese with English abstract)
[17] Albert B, Souleymane S, Pulchérie K C. Effect of zaï and micro dose on root biomass and the grain and straw yield so sorghum at Tangaye in the North region in Burkina Faso. IJEAB, 2018, 3: 1913-1921.
doi: 10.22161/ijeab
[18] Rademacher W. Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul, 2015, 34: 845-872.
doi: 10.1007/s00344-015-9541-6
[19] 陈亮, 侯杰, 胡晓蕾, 张纪兆, 王浩达. 植物生长调节剂在土壤中的环境行为综述. 环境科学, 2022, 43(1): 11-25.
Chen L, Hou J, Hu X L, Zhang J Z, Wang H D. Environmental behaviors of plant growth regulators in soil: a review. Environ Sci, 2022, 43(1): 11-25. (in Chinese with English abstract)
[20] 毛景英, 闫振领. 植物生长调节剂调控原理与实用技术. 北京: 中国农业出版社, 2005. pp 12-13.
Mao J Y, Yan Z L. Regulation Principle and Practical Technology of Plant Growth Regulator. Beijing: China Agriculture Press, 2005. pp 12-13. (in Chinese)
[21] 段留生, 田晓莉. 作物化学控制原理与技术. 北京: 中国农业大学出版社, 2005. pp 1-3.
Duan L S, Tian X L. Principles and Techniques of Crop Chemical Control. Beijing: China Agricultural University Press, 2005. pp 1-3. (in Chinese)
[22] 马正波. 矮壮素对不同氮肥水平下华北夏玉米生长及氮素利用的影响. 中国农业科学院硕士学位论文, 北京, 2020.
Ma Z B. Effects of Chlorocholine Chloride on Growth and Nitrogen Use Efficiency of Summer Maize in North China. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract)
[23] Kamran M. 多效唑和缩节胺对玉米根系生长、光合特性、抗倒伏性和产量的影响. 西北农林科技大学博士学位论文, 陕西杨凌, 2018.
Kamran M. Effects of Paclobutrazol and Mepiquat Chloride on Root Growth, Photosynthetic Characteristics, Lodging Resistance and Yield Responses of Maize (Zea mays L.). PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2018. (in Chinese with English abstract)
[24] 李少昆, 王崇桃. 乙烯利对玉米根系影响的研究. 耕作与栽培, 1990, (4): 64-65, 56.
Li S K, Wang C T. Effect of Ethephon on maize root system. Tillage Cult, 1990, (4): 64-65, 56. (in Chinese)
[25] 张帅, 宁芳芳, 黄收兵, 王璞, 廖树华. 化控处理时期对玉米植株-根系形态及产量的影响. 中国农业大学学报, 2020, 25(2): 1-11.
Zhang S, Ning F F, Huang S B, Wang P, Liao S H. Effects of chemical regulation on timing on plant-root morphology and yield maize. J China Agric Univ, 2020, 25(2): 1-11. (in Chinese with English abstract)
[26] 崔佩佩. 不同施肥对高粱生长及根际微生物功能多样性的影响. 山西大学硕士学位论文, 山西太原, 2018.
Cui P P. Effects of Different Fertilization on the Growth of Sorghum and the Functional Diversity of Rhizosphere Microorganisms. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2018. (in Chinese with English abstract)
[27] 黄维娜, 康玉凡. 乙烯在幼苗根生长发育中调控作用的研究进展. 中国农学通报, 2013, 29(12): 6-12.
Huang W N, Kang Y F. Research advances in ethylene regulation to growth and development of seedling root. Chin Agric Sci Bull, 2013, 29(12): 6-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2012-2983
[28] Negi S, Ivanchenko M G, Muday G K. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J: Mol Biol Cell, 2008, 55: 175-187.
doi: 10.1111/tpj.2008.55.issue-2
[29] 叶德练, 管大海, 张钰石, 张明才, 李召虎. 雨养条件下植物生长调节剂对冬小麦根系生长和产量形成的调控研究. 华北农学报, 2016, 31(2): 125-130.
doi: 10.7668/hbnxb.2016.02.021
Ye D L, Guan D H, Zhang Y S, Zhang M C, Li Z H. Effect of plant growth regulator on the root growth and yield formation of Winter Wheat under rain-fed Condition. Acta Agric Boreali-Sin, 2016, 31(2): 125-130. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2016.02.021
[30] 房孟颖, 闫鹏, 卢霖, 王庆燕, 董志强. 乙矮合剂对不同氮水平夏玉米氮代谢及产量的调控效应. 作物杂志, 2022, (2): 96-103.
Fang M Y, Yan P, Lu L, Wang Q Y, Dong Z Q. Effects of ethylene-chlormequat-potassium on nitrogen metabolism and yield of summer maize under different nitrogen levels. Crops, 2022, (2): 96-103. (in Chinese with English abstract)
[31] 李光彦, 王庆燕, 许艳丽, 卢霖, 焦浏, 董学瑞, 董志强. 双重化控对春玉米灌浆期穗位叶和籽粒蔗糖代谢关键酶活性的影响. 作物学报, 2016, 42: 1215-1223.
doi: 10.3724/SP.J.1006.2016.01215
Li G Y, Wang Q Y, Xu Y L, Lu L, Jiao L, Dong X R, Dong Z Q. Effect of plant growth regulators on key enzymes in sucrose metabolism of ear leaf and grain at filling stage of spring maize. Acta Agron Sin, 2016, 42: 1215-1223. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01215
[32] 卢霖. 乙矮合剂对不同密度夏玉米抗倒防衰的调控效应. 中国农业科学院硕士学位论文, 北京, 2015.
Lu L. Effects of Ethylene-Chlormequat-Potassium on the Stem Lodging Resistance and Antisenescence of Summer Maize under Different Sowing Densities. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. (in Chinese with English abstract)
[33] 兰宏亮. 东北春玉米密度对根系质量的影响与化学调控机理研究. 中国农业科学院硕士学位论文, 北京, 2011.
Lan H L. Effects of Planting density on Root duality of High-yield Spring maize and Chemical Regulation. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011. (in Chinese with English abstract)
[34] Bektas H, Hohn C E, Waines J G. Root and shoot traits of bread wheat (Triticum aestivum L.)landraces and cultivars. Euphytica, 2016, 212: 297-311.
doi: 10.1007/s10681-016-1770-7
[35] Lal R. Effects of constant and fluctuating soil temperature on growth, development and nutrient uptake of maize seedlings. Plant Soil, 1974, 40: 589-606.
doi: 10.1007/BF00010516
[36] Knipfer T, Fricke W. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). J Exp Bot, 2011, 62: 717-733.
doi: 10.1093/jxb/erq312
[37] Chun L, Mi G H, Li J S, Chen F J, Zhang F S. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil, 2005, 276: 369-382.
doi: 10.1007/s11104-005-5876-2
[38] 彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用. 中国农业科学, 2009, 42: 84-853.
Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. Sci Agric Sin, 2009, 42: 843-853. (in Chinese with English abstract)
[39] Postma J A, Dathe A, Lynch J P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol, 2014, 166: 590-602.
doi: 10.1104/pp.113.233916 pmid: 24850860
[40] 袁园, 张怡明, 赵江, 郭丽, 张凤路. 喷施生长调节剂对夏玉米生长发育的影响. 玉米科学, 2011, 19(3): 110-112.
Yuan Y, Zhang Y M, Zhao J, Guo L, Zhang F L. Effects of plant growth regulator on the growth and development of summer maize. J Maize Sci, 2011, 19(3): 110-112. (in Chinese with English abstract)
[41] 田晓东. 乙烯利对夏玉米抗倒伏能力的影响研究. 河北农业大学硕士学位论文, 河北保定, 2014.
Tian X D. Studies on the Effect of Ethephon on Lodging Resistance of Summer Maize. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2014. (in Chinese with English abstract)
[42] Ghuman L, Ram H. Enhancing wheat grain yield and quality by managing lodging with growth regulators under different nutrition levels. J Plant Nutr, 2021, 44: 1916-1929.
doi: 10.1080/01904167.2021.1884698
[43] 杨钧贺, 刘畅, 钮世辉, 李伟. 茎部形成层赤霉素在植物生长发育中的调控作用. 北京林业大学学报, 2019, 41(7): 68-74.
Yang J H, Liu C, Niu S H, Li W. Regulatory effect of stem cambium gibberellin growth and development on plant. J Beijing For Univ, 2019, 41(7): 68-74. (in Chinese with English abstract)
[44] Kundu S, Dey A, Bandyopadhyay A. Chlorocholine chloride mediated resistance mechanism and protection against leaf spot disease of Stevia rebaudiana Bertoni. Eur J Plant Pathol, 2014, 139: 511-524.
doi: 10.1007/s10658-014-0407-8
[45] 陶群, 刘盈茹, 郭豫灵, 周于毅, 谭伟明, 张明才, 段留生. 冠菌素对玉米基部节间和根部特性的调控研究. 中国农业大学学报, 2019, 24(3): 1-9.
Tao Q, Liu Y R, Guo Y L, Zhou Y Y, Tan W M, Zhang M C, Duan L S. Study of coronatine in regulating the basal internode and root characteristics of maize. J China Agric Univ, 2019, 24(3): 1-9. (in Chinese with English abstract)
[46] 李田甜, 陈国栋, 万素梅, 翟云龙, 刘婵, 马银虎, 王沛娟. 叶面喷施不同配方植物生长调节剂对棉花苗期根系生长的影响. 山东农业科学, 2022, 54(2): 46-50.
Li T T, Chen G D, Wan S M, Zhai Y L, Liu C, Ma Y H, Wang P J. Effects of foliar application of plant growth regulators with different formula on root growth of cotton at seeding stage. Shandong Agric Sci, 2022, 54(2): 46-50 (in Chinese with English abstract).
[47] 房孟颖. 乙矮合剂对不同施氮量下夏玉米生长发育及产量的影响. 中国农业科学院硕士学位论文, 北京, 2021.
Fang M Y. Effects of Ethylene-Chlormequat-Potassium on Summer Maize Nitrogen Utilization. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[48] 崔凤娟, 王振国, 李岩, 邓志兰, 呼瑞梅, 李默, 徐庆全, 于春国. 高粱茎秆性状及倒伏系数的研究. 作物杂志, 2014, (2): 61-64.
Cui F J, Wang Z G, Li Y, Deng Z L, Hu R M, Li M, Xu Q Q, Yu C G. Study of coronatine in regulating the basal internode and root characteristics of maize. Crops, 2014, (2): 61-64. (in Chinese with English abstract)
[49] 高波. 乙烯利对寒地高产玉米群体结构的调控机制. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2008.
Gao B. Mechanism of Regulation to High-yield Maize Population in Cold Region. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2008. (in Chinese with English abstract)
[50] 李青苗, 杨文钰, 韩惠芳, 关华. 烯效唑浸种对玉米幼苗生长和内源激素含量的影响. 植物生理学通讯, 2005, 41: 752-754.
Li Q M, Yang W Y, Han H F, Guan H. Effects of seed soaking with uniconazole on endogenous hormone content and growth of maize (Zea mays L.)seedling. Plant Physiol Commun, 2005, 41: 752-754. (in Chinese with English abstract)
[51] 马瑞琦, 亓振, 常旭虹, 王德梅, 陶志强, 杨玉双, 冯金凤, 孙敏, 赵广才. 化控剂对冬小麦植株性状及产量品质的调节效应. 作物杂志, 2018, (1): 133-140.
Ma R Q, Qi Z, Chang X H, Wang D M, Tao Z Q, Yang Y S, Feng J F, Sun M, Zhao G C. Regulation effects of growth regulators on plant characters, yield and quality of winter wheat. Crops, 2018, (1): 133-140. (in Chinese with English abstract)
[52] 魏世林. 植物生长调节剂对高粱生长发育的影响及调节剂筛选. 河北农业大学硕士学位论文, 河北保定, 2021.
Wei S L. Effects of Plant Growth Regulators on Growth and Development of Sorghum and Selection of Regulators. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2021. (in Chinese with English abstract)
[53] 赵建武, 范娜, 白文斌, 彭之东. 不同密度和生长调节剂对高粱产量及农艺性状影响的研究. 中国农学通报, 2017, 33(5): 6-9.
doi: 10.11924/j.issn.1000-6850.casb16030120
Zhao J W, Fan N, Bai W B, Peng Z D. Effects of different densities and growth regulators on yield and agronomic characters of sorghum. Chin Agric Sci Bull, 2017, 33(5): 6-9. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16030120
[54] 薛金涛. 化学调控对高产性状的调控效应研究. 中国农业科学院硕士学位论文, 北京, 2008.
Xue J T. Effect of Chemical Regulation on High Yield Properties of Maize. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2008. (in Chinese with English abstract)
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[4] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[5] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[6] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[7] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[8] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[9] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[10] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[11] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[12] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[13] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[14] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[15] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .