欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1895-1905.doi: 10.3724/SP.J.1006.2023.21052

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响

张振1(), 石玉1,*(), 张永丽1, 于振文1, 王西芝2   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室 / 山东农业大学农业部作物生理生态与耕作重点实验室, 山东泰安271018
    2济宁市兖州区农业技术推广中心, 山东济宁 272000
  • 收稿日期:2022-07-26 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-06
  • 通讯作者: *石玉, E-mail: shiyu@sdau.edu.cn
  • 作者简介:E-mail: zhangzhenxiaomai@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(32172114);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03);泰山学者工程专项经费资助

Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf

ZHANG Zhen1(), SHI Yu1,*(), ZHANG Yong-Li1, YU Zhen-Wen1, WANG Xi-Zhi2   

  1. 1College of Agriculture, Shandong Agricultural University / State Key Laboratory of Crop Biology / Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System, Tai’an 271018, Shandong, China
    2Jining Yanzhou Agricultural Technology Extension Center, Jining 272000, Shandong, China
  • Received:2022-07-26 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-06
  • Contact: *E-mail: shiyu@sdau.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(32172114);The China Agriculture Research System of MOF and MARA(CARS-03);The Special funds for Taishan Scholars Project

摘要:

为明确土壤含水量对小麦籽粒产量的影响及其形成的生理原因, 于2019—2021年小麦生长季在山东省兖州区小孟镇史家王子村小麦试验站进行试验, 选用冬小麦品种济麦22, 设置4种土壤含水量处理: 分别为全生育不灌水(W0), 于小麦拔节期和开花期将0~40 cm土层土壤相对含水量均补灌至65% (W1)、75% (W2)、85% (W3), 研究了土壤含水量对小麦耗水特性、旗叶与根系衰老特性和籽粒产量的影响。结果表明: W2处理的穗粒数和千粒重显著高于其他处理, 获得了最高的籽粒产量和水分利用效率, 相较于W0、W1、W3, 籽粒产量分别高48.49%、20.80%、8.68% (2019—2020)和46.87%、17.36%、7.53% (2020—2021), 水分利用效率分别高21.70%、14.25%、15.59% (2019—2020)和25.44%、11.90%、13.39% (2020—2021); W2处理开花后40~100 cm土层根长密度、40~60 cm土层根系超氧化物歧化酶活性和根系活力显著高于其他处理, 丙二醛含量显著低于其他处理; W2处理开花后旗叶超氧化物歧化酶活性显著高于W0、W1处理, 与W3处理无显著差异, 丙二醛含量显著低于W0、W1处理, 与W3处理无显著差异; W2处理显著提高了开花期至成熟期阶段耗水量、日耗水量、耗水模系数和40~120 cm土层土壤贮水消耗量。由此可见, 适宜的土壤含水量能够促进根系下扎, 延缓植株衰老, 提高对深层土壤水分的吸收利用, 保证了籽粒灌浆期水分供应, 显著提高籽粒产量。在本试验条件下以小麦拔节期和开花期将0~40 cm土层土壤相对含水量均补灌至75%的W2处理效果最好。

关键词: 小麦, 耗水特性, 衰老特性, 籽粒产量

Abstract:

The objective of this study is to clarify the effect of soil water content on wheat grain yield and the physiological reasons for its formation. During the winter wheat growing season from 2019 to 2021, four kinds of soil water content treatments were set under the field conditions of the wheat test station in Shijiawangzi village, Xiaomeng town, Yanzhou district, Shandong province: No-irrigation (W0), and the relative water content of the soil in the 0-40 cm soil layer was supplemented to 65% (W1), 75% (W2), and 85% (W3) at jointing and anthesis stages, and the winter wheat variety was Jimai 22. The effects of soil water content on water consumption, leaf and root senescence, and grain yield of wheat were studied. The results showed that the number of kernel number and 1000-kernel weight of W2 treatment were significantly higher than those of other treatments, and the highest grain yield and water use efficiency were obtained. Compared with W0, W1, and W3, the grain yield was 48.49%, 20.80%, 8.68% (2019-2020) and 46.87%, 17.36%, 7.53% (2020-2021), respectively. The water use efficiency was 21.70%, 14.25%, 15.59% (2019-2020) and 25.44%, 11.90%, 13.39% (2020-2021), respectively. Compared with the other treatments, root length density in the 40-100 cm soil layer, superoxide dismutase activity and root activity in the 40-60 cm soil layer in W2 treatment were significantly higher than those in other treatments after anthesis, and the content of malondialdehyde was significantly lower than those in other treatments. After anthesis, the superoxide dismutase activity of flag leaves in W2 treatment was significantly higher than that in W0 and W1 treatments, but there was no significant difference in W3 treatment, and the content of malondialdehyde was significantly lower than that in W0 and W1 treatments, but there was no significant difference in W3 treatment. W2 treatment increased significantly water consumption, daily water consumption, water consumption model coefficient, and soil water storage consumption in the 40-120 cm soil layer from anthesis to maturity. In conclusion, the appropriate soil moisture content could promote root growth, delay plant aging, and then improve the absorption and utilization of deep soil moisture, ensure the supply of water during grain filling, and improve significantly grain yield in wheat. Under the conditions of this experiment, the effect of W2 treatment was the best when the relative water content of 0-40 cm soil layer was increased by 75% at the jointing and anthesis stages in wheat.

Key words: wheat, water consumption characteristics, senescence characteristics, grain yield

表1

不同处理对小麦产量、产量构成因素和水分利用效率的影响"

年份
Year
处理
Treatment
穗数
Spike number
(×104 hm-2)
穗粒数
Kernel number
千粒重
1000-kernel weight
(g)
籽粒产量
Grain yield
(kg hm-2)
水分利用效率
Water use efficiency
(kg hm-2 mm-1)
2019-2020 W0 543.23±19.13 c 32.62±0.77 c 37.26±0.66 c 6285.82±459.86 d 16.27±0.34 c
W1 602.40±14.50 b 33.03±0.96 c 38.47±0.98 c 7726.80±326.98 c 17.33±0.29 b
W2 642.73±16.89 a 38.39±1.06 a 44.25±0.85 a 9333.90±323.69 a 19.80±0.45 a
W3 660.61±16.54 a 34.81±0.68 b 40.56±0.78 b 8588.70±289.65 b 17.13±0.36 b
2020-2021 W0 559.74±17.89 c 33.25±1.25 c 38.61±0.68 c 7042.74±236.95 d 16.94±0.23 c
W1 617.11±17.99 b 33.66±1.22 c 39.03±0.85 c 8813.56±258.97 c 18.99±0.33 b
W2 660.76±13.69 a 40.99±1.36 a 47.65±0.95 a 10,343.60±215.98 a 21.25±0.28 a
W3 682.72±19.78 a 36.50±0.96 b 41.85±0.77 b 9619.27±321.58 b 18.74±0.29 b

图1

不同处理开花后0~100 cm土层根长密度 A、B、C、D、E、F: 2019-2020年开花期、开花后10 d、开花后20 d、2020-2021年开花期、开花后10 d、开花后20 d。柱上小写字母表示在同一土层下不同处理在0.05概率水平差异显著。"

图2

不同处理开花后根系超氧化物歧化酶活性 A、B、C、D、E、F: 2019-2020年开花期、开花后10 d、开花后20 d、2020-2021年开花期、开花后10 d、开花后20 d。柱上小写字母表示在同一土层下不同处理在0.05概率水平差异显著。"

图3

不同处理开花后根系丙二醛含量 A、B、C、D、E、F: 2019-2020年开花期、开花后10 d、开花后20 d、2020-2021年开花期、开花后10 d、开花后20 d。柱上小写字母表示在同一土层下不同处理在0.05概率水平差异显著。"

图4

不同处理开花后根系活力 A、B、C: 2020-2021年开花期、开花后10 d、开花后20 d。柱上小写字母表示在同一土层下不同处理在0.05概率水平差异显著。"

图5

不同处理开花后旗叶超氧化物歧化酶活性 每列小写字母表示在同一生育时期不同处理在0.05概率水平差异显著。"

图6

不同处理开花后旗叶丙二醛含量 每列小写字母表示在同一生育时期不同处理在0.05概率水平差异显著。"

表2

不同处理耗水来源及其占总耗水量的比例"

年份
Year
处理
Treatment
耗水来源
Water consumption sources (mm)
总耗水量
Total water
consumption
amount (mm)
占总耗水量的比例
Ratio of the total water consumption amount (%)
灌水量
I
降雨量
P
土壤贮水消耗量
SWC
灌水量
I
降雨量
P
土壤贮水消耗量
SWC
2019-2020 W0 0 163 224.26±6.36 a 387.26±10.25 d 0 42.09±1.14 a 57.91±2.69 a
W1 88.97±14.56 c 163 200.78±5.69 b 452.75±8.89 c 19.61±1.06 c 36.00±1.21 b 44.35±2.58 b
W2 115.28±12.63 b 163 197.15±4.56 b 475.43±9.58 b 24.25±1.89 b 34.28±1.03 c 41.47±1.21 c
W3 150.00±15.96 a 163 187.52±5.32 c 500.52±10.59 a 29.97±1.59 a 32.57±0.96 d 37.46±2.10 d
2020-2021 W0 0 202.5 213.25±4.36 a 415.75±10.07 d 0 48.71±1.36 a 51.29±2.69 a
W1 59.56±10.26 c 202.5 201.95±3.69 b 464.01±8.26 c 12.84±1.35 c 43.64±1.68 b 43.52±1.05 b
W2 81.40±8.25 b 202.5 202.97±4.69 b 486.87±8.56 b 16.72±1.54 b 41.59±1.64 c 41.69±1.23 c
W3 119.34±11.69 a 202.5 190.56±3.59 c 513.40±9.65 a 22.66±1.14 a 39.44±1.89 d 37.90±1.84 d

表3

不同处理阶段耗水量、日耗水量和耗水模系数"

年份
Year
处理
Treatment
播种-拔节期Sowing-jointing 拔节期-开花期Jointing-anthesis 开花期-成熟期Anthesis-maturity
CW
(mm)
DW
(mm d-1)
PW
(%)
CW
(mm)
DW
(mm d-1)
PW
(%)
CW
(mm)
DW
(mm d-1)
PW
(%)
2019-
2020
W0 185.56±
4.25
1.08±
0.05
47.92±
1.26 a
103.45±
496 c
5.17±
0.23 c
26.71±
2.46 b
98.25±
9.68 c
2.28±
0.65 c
25.37±
1.69 c
W1 185.56±
4.25
1.08±
0.05
40.99±
1.36 b
116.17±
3.69 b
5.81±
0.25 b
25.66±
1.69 b
151.02±
11.26 b
3.51±
0.46 b
33.35±
1.58 b
W2 185.56±
4.25
1.08±
0.05
39.03±
1.65 c
117.14±
5.51 b
5.86±
0.19 b
24.64±
2.18 b
172.73±
8.46 a
4.02±
0.23 a
36.33±
2.36 a
W3 185.56±
4.25
1.08±
0.04
37.07±
0.69 d
157.16±
6.98 a
7.86±
0.21 a
31.40±
2.36 a
157.80±
8.74 b
3.67±
0.31 b
31.53±
2.14 b
2020-
2021
W0 232.54±
5.26
1.27±
0.03
55.93±
1.23 a
64.52±
3.25 c
3.23±
0.29 c
15.52±
2.96 b
118.69±
5.42 d
2.63±
0.15 c
28.55±
1.84 c
W1 232.54±
5.26
1.27±
0.03
50.12±
1.69 b
74.62±
2.69 b
3.73±
0.24 b
16.08±
3.21 b
156.85±
4.26 c
3.49±
0.16 b
33.80±
2.08 b
W2 232.54±
5.26
1.27±
0.03
47.76±
1.24 c
77.05±
3.65 b
3.85±
0.26 b
15.83±
1.98 b
177.28±
4.89 a
3.94±
0.24 a
36.41±
1.69 a
W3 232.54±
5.26
1.27±0.03 45.29±
1.34 d
116.18±
2.85 a
5.81±
027 a
22.63±
2.37 a
164.68±
3.96 b
3.66±
0.19 b
32.08±
1.69 b

图7

不同处理0~200 cm土层土壤贮水消耗量 每行小写字母表示在同一生育时期不同处理在0.05概率水平差异显著。"

[1] Zhang M M, Dong B D, Qiao Y Z, Shi C H, Yang H, Wang Y K, Liu M Y. Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain. J Integr Agric, 2018, 17: 1194-1206.
doi: 10.1016/S2095-3119(17)61883-5
[2] Xu E, Wang R, Zhang H Q, Yu Z X. Coupling index of water consumption and soil fertility correlated with winter wheat production in North China Region. Ecol Indic, 2019, 102: 154-165.
doi: 10.1016/j.ecolind.2019.02.045
[3] Meena R P, Karnam V, Tripathi S C, Jha A, Sharma R K, Singh G P. Irrigation management strategies in wheat for efficient water use in the regions of depleting water resources. Agric Water Manag, 2019, 214: 38-46.
doi: 10.1016/j.agwat.2019.01.001
[4] Li J P, Wang Y Q, Zhang M, Liu Y, Xu X X, Lin G, Wang Z M, Yang Y M, Zhang Y H. Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat. Agric Water Manag, 2019, 211: 59-69.
doi: 10.1016/j.agwat.2018.09.047
[5] Si Z Y, Zain M, Mehmood F, Wang G S, Gao Y, Duan A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric Water Manag, 2020, 231: 106002.
doi: 10.1016/j.agwat.2020.106002
[6] Li J P, Zhang Z, Yao C S, Liu Y, Wang Z M, Fang B T, Zhang Y H. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J Integr Agric, 2021, 20: 606-621.
doi: 10.1016/S2095-3119(20)63407-4
[7] 潘晓莹, 武继承, 张森森, 杨永辉, 王越, 李敏杰, 高翠民, 何方. 分期施肥补灌对小麦产量和水分利用效率的影响. 水利与建筑工程学报, 2020, 18(4): 63-69.
Pan X Y, Wu J C, Zhang S S, Yang Y H, Wang Y, Li M J, Gao C M, He F. Effects of staged fertilization and supplementary irrigation on wheat yield and water use. J Water Resourc Architect Engin, 2020, 18(4): 63-69. (in Chinese with English abstract)
[8] 杨明达, 马守臣, 杨慎骄, 张素瑜, 关小康, 李学梅, 王同朝, 李春喜. 氮肥后移对抽穗后水分胁迫下冬小麦光合特性及产量的影响. 应用生态学报, 2015, 26: 3315-3321.
Yang M D, Ma S C, Yang S J, Zhang S Y, Guan X K, Li X M, Wang T C, Li C X. Effects of postponing nitrogen application on photosynthetic characteristic and grain yield of winter wheat subjected to water stress after heading stage. Chin J Appl Ecol, 2015, 26: 3315-3321. (in Chinese with English abstract)
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响. 作物学报, 2022, 48: 437-447.
doi: 10.3724/SP.J.1006.2022.01093
Xu L L, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat. Acta Agron Sin, 2022, 48: 437-447. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.01093
[10] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响. 作物学报, 2022, 48: 2920-2933.
doi: 10.3724/SP.J.1006.2022.11109
Zheng Y P, Chang Z J, Han Y, Lu Y Z, Chen W N, Tian Y S, Yin J W, Hao L H. Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat. Acta Agron Sin, 2022, 48: 2920-2933. (in Chinese with English abstract)
[11] 韩占江, 于振文, 王东, 张永丽. 测墒补灌对冬小麦干物质积累与分配及水分利用效率的影响. 作物学报, 2010, 36: 457-465.
doi: 10.3724/SP.J.1006.2010.00457
Han Z J, Yu Z W, Wang D, Zhang Y L. Effects of supplemental irrigation based on testing soil moisture on dry matter accumulation and distribution and water use efficiency in winter wheat. Acta Agron Sin, 2010, 36: 457-465 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00457
[12] Xu X X, Zhang M, Li J P. Improving water use efficiency and grain yield of winter wheat by optimizing irrigation in the North China Plain. Field Crops Res, 2018, 221: 219-227.
doi: 10.1016/j.fcr.2018.02.011
[13] Li J, Xu X, Lin G, Wang Y. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci Total Environ, 2018, 643: 367-377.
doi: 10.1016/j.scitotenv.2018.06.157
[14] Li Y, Huang G H, Chen Z J, Xiong Y W, Huang Q Z, Xu X, Huo Z L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of northwest China. Agric Water Manag, 2022, 260: 107277.
doi: 10.1016/j.agwat.2021.107277
[15] Liu W X, Ma G, Wang C Y, Wang J R, Lu H F, Li S S, Feng W, Xie Y X, Ma D Y, Kang G Z. Irrigation and nitrogen regimes promote the use of soil water and nitrate nitrogen from deep soil layers by regulating root growth in wheat. Front Plant Sci, 2018, 9: 32.
doi: 10.3389/fpls.2018.00032 pmid: 29449850
[16] Yan S C, Wu Y, Fan J L, Zhang F C, Qiang S C, Zheng J, Xiang Y Z, Guo J J, Zou H Y. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agric Water Manag, 2019, 213: 983-995.
doi: 10.1016/j.agwat.2018.12.019
[17] Lyu G, Kang Y, Li L, Wan S. Effect of irrigation methods on root development and profile soil water uptake in winter wheat. Irrigation Sci, 2010, 28, 387-398.
doi: 10.1007/s00271-009-0200-1
[18] 董伟欣, 韩立杰, 张月辰. 春季不同水肥处理对小麦形态、生理和产量的影响. 华北农学报, 2020, 35(2): 161-169.
doi: 10.7668/hbnxb.20190603
Dong W X, Han L J, Zhang Y C. Effects of different water and fertilizer treatments on the morphology, physiology and yield of wheat in Spring. Acta Agric Boreali-Sin, 2020, 35(2): 161-169. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20190603
[19] Wu Y, Wang H Z, Yang X W, Meng Z J, He D X. Soil water effect on root activity, root weight density, and grain yield in winter wheat. Crop Sci, 2017, 57: 437-443.
doi: 10.2135/cropsci2015.11.0704
[20] Ali S, Xu Y Y, Jia Q M, Ahmad I, Ma X C, Henchirl M, Ren X L, Zhang P, Cai T, Zhang J H, Jia Z K. Ridge-furrow mulched with plastic film improves the anti-oxidative defence system and photosynthesis in leaves of winter wheat under deficit irrigation. PLoS One, 2018, 13: 0200277.
[21] Ahmed N, Zhang Y S, Li K, Zhou Y Y, Zhang M C, Li Z H. Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. Crop J, 2019, 7: 635-650
doi: 10.1016/j.cj.2019.03.004
[22] Xu X, Zhang M, Li J, Liu Z, Zhao Z, Zhang Y, Zhou S, Wang Z. Improving water use efficiency and grain yield of winter wheat by optimizing irrigation in the North China Plain. Field Crops Res, 2018, 221: 219-227.
doi: 10.1016/j.fcr.2018.02.011
[23] Xu C L, Tao H B, Tian B J, Gao Y B, Ren J H, Wang P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Res, 2016, 196: 268-275.
doi: 10.1016/j.fcr.2016.07.009
[24] Jha S K, Gao Y, Liu H, Huang Z D, Wang G S, Liang Y P, Duan A W. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agric Water Manag, 2017, 182: 139-150.
doi: 10.1016/j.agwat.2016.12.015
[1] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体徐1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[2] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[3] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[4] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[5] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[6] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[7] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[8] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[9] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[10] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
[11] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[12] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[13] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[14] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[15] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .