作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1808-1817.doi: 10.3724/SP.J.1006.2023.21050
李凌雨(), 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来*(), 张文静*()
LI Ling-Yu(), ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai*(), ZHANG Wen-Jing*()
摘要:
小麦孕穗期对低温非常敏感, 低温胁迫后外源喷施6-苄氨基腺嘌呤(6-BA), 能够缓解低温胁迫对小麦造成的伤害, 通过转录组测序技术分析6-BA提高小麦抗寒性的分子机制。选用低温敏感型品种皖麦52和低温迟钝型品种烟农19为试验材料, 在孕穗期低温胁迫后喷施20 mg L-1的6-BA溶液, 以喷施等量蒸馏水处理为对照。观察幼穗形态, 并测定幼穗可溶性糖含量和淀粉含量。再通过转录组测序筛选并分析差异表达基因, 探究差异表达基因的功能及可能参与的调控通路, 采用qRT-PCR方法对测序结果进行验证。外源6-BA处理10 d后, 与对照相比小麦幼穗形态发育良好, 可溶性糖、淀粉含量均升高。转录组结果表明, 在皖麦52和烟农19中分别鉴定出22,770个和9866个差异基因, 其中有661个基因在两个品种中均上调, 从中筛选出ARF5、AGPL1、1-SST、SWEET15等基因, 这些基因与调节植物激素水平、淀粉合成、糖代谢等有关。对筛选出的差异基因进行GO和KEGG富集分析。GO注释表明皖麦52和烟农19差异基因的功能都主要富集于细胞结构稳定性、代谢、催化活性等。KEGG富集分析表示信号转导、内源激素水平的调节、碳代谢、膜结构和功能的改变等途径发生显著变化。选择部分候选基因对其表达模式进行qRT-PCR分析, 结果说明RNA-seq数据准确。综上所述, 6-BA可以通过调节小麦内部抗氧化物质代谢、激素信号转导、碳水化合物代谢、渗透调节等途径缓解低温损伤, 研究结果可为探索减轻春季低温对小麦伤害的栽培措施提供理论基础。
[1] |
Ji H T, Xiao L J, Xia Y M, Song H, Liu B, Tang L, Cao W X, Zhu Y, Liu L L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agric For Meteorol, 2017, 243: 33-42.
doi: 10.1016/j.agrformet.2017.04.016 |
[2] |
Shahandashti S S K, Amiri R M, Zeinali H, Ramezanpour S S. Change in membrane fatty acid compositions and cold-induced responses in chickpea. Mol Biol Rep, 2013, 40: 893-903.
doi: 10.1007/s11033-012-2130-x pmid: 23065233 |
[3] |
Zhang W J, Huang Z L, Xu K F, Liu L, Zeng Y L, Ma S Y, Fan Y H. The effect of plant growth regulators on recovery of wheat physiological and yield-related characteristics at booting stage following chilling stress. Acta Physiol Plant, 2019, 41: 133.
doi: 10.1007/s11738-019-2924-8 |
[4] |
Zhang B, Jia D, Gao Z Q, Dong Q, He L H. Physiological responses to low temperature in spring and winter wheat varieties. J Sci Food Agric, 2016, 96: 1967-1973.
doi: 10.1002/jsfa.2016.96.issue-6 |
[5] |
Wang X Y, Liu D M, Wei M M, Man J G. Spraying 6-BA could alleviate the harmful impacts of waterlogging on dry matter accumulation and grain yield of wheat. PeerJ, 2020, 8: e8193.
doi: 10.7717/peerj.8193 |
[6] |
Li H, Wang J Q, Liu Q. Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. J Plant Physiol, 2020, 253: 153265.
doi: 10.1016/j.jplph.2020.153265 |
[7] |
Yang D Q, Li Y, Shi Y H, Cui Z Y, Luo Y L, Zheng M J, Chen J, Li Y X, Yin Y P, Wang Z L. Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat stress. PLoS One, 2016, 11: e0155437.
doi: 10.1371/journal.pone.0155437 |
[8] |
Chen J L, Wu X X, Yao X F, Zhu Z W, Xu S, Zha D S. Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Braz J Bot, 2016, 39: 409-416.
doi: 10.1007/s40415-015-0241-z |
[9] |
杨东清, 李玉玲, 倪英丽, 尹燕枰, 杨卫兵, 崔正勇, 张永太, 马仁元, 王振林. 外源ABA和6-BA对不同持绿型小麦籽粒灌浆进程及蛋白质含量影响. 作物学报, 2014, 40: 301-312.
doi: 10.3724/SP.J.1006.2014.00301 |
Yang D Q, Li Y L, Ni Y L, Yin Y P, Yang W B, Cui Z Y, Zhang Y T, Ma R Y, Wang Z L. Effects of exogenous ABA and 6-BA on protein content and grain filling process in different types of stay-green wheat. Acta Agron Sin, 2014, 40: 301-312 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00301 |
|
[10] |
杨东清, 王振林, 尹燕枰, 倪英丽, 杨卫兵, 蔡铁, 彭佃亮, 徐彩龙, 崔正勇, 刘铁宁, 徐海成. 外源ABA和6-BA对不同持绿型小麦旗叶衰老的影响及其生理机制. 作物学报, 2013, 39: 1096-1104.
doi: 10.3724/SP.J.1006.2013.01096 |
Yang D Q, Wang Z L, Yin Y P, Ni Y L, Yang W B, Cai T, Peng D L, Xu C L, Cui Z Y, Liu T N, Xu H C. Effects of exogenous ABA and 6-BA on flag leaf senescence in different types of stay-green wheat and relevant physiological mechanisms. Acta Agron Sin, 2013, 39: 1096-1104 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01096 |
|
[11] |
Li H, Li M, Wei X L, Zhang X, Xue R L, Zhao Y D, Zhao H J. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol Genet Genom, 2017, 292: 1091-1110.
doi: 10.1007/s00438-017-1330-4 |
[12] |
Li G G, Liang Z M, Li Y J, Liao Y C, Liu Y. Exogenous spermidine regulates starch synthesis and the antioxidant system to promote wheat grain filling under drought stress. Acta Physiol Plant, 2020, 42: 1-14.
doi: 10.1007/s11738-019-2990-y |
[13] |
Wang C M, Yang Y Y, Chen N H, Zeng Z X, Ji S J, Shan W, Kuang J F, Lu W J, Su X G, Chen J Y, Zhao Y T. Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage. Food Res Int, 2022, 157: 111455.
doi: 10.1016/j.foodres.2022.111455 |
[14] |
Diao J, Liu H J, Hu F W, Li L, Wang X L, Gai C L, Yu X Q, Fan Y, Xu L, Ye H B. Transcriptome analysis of immune response in fat greenling (Hexagrammos otakii) against Vibrio harveyi infection. Fish Shellfish Immunol, 2019, 84: 937-947.
doi: 10.1016/j.fsi.2018.10.067 |
[15] |
Mandal D, Tudu S, Mitra S R, De G C. Effect of common packing materials on keeping quality of sugarcane jaggery during monsoon season. Sugar Tech, 2006, 8: 137-142
doi: 10.1007/BF02943648 |
[16] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[17] | Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Meth, 2015, 12: 356-360. |
[18] | Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 2011, 12: 1-14. |
[19] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, Van B M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511-515.
doi: 10.1038/nbt.1621 pmid: 20436464 |
[20] |
Sorek N, Szemenyei H, Sorek H, Landers A, Knight H, Bauer S, Wemmer D E, Somerville C R. Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1. Proc Natl Acad Sci USA, 2015, 112: 16048-16053.
doi: 10.1073/pnas.1521675112 |
[21] |
Hong P N, Jeong H Y, Kim H, Kim Y C, Lee C. Molecular and biochemical characterization of rice pectin methylesterase inhibitors (OsPMEIs). Plant Physiol Bioch, 2016, 101: 105-112.
doi: 10.1016/j.plaphy.2016.01.021 |
[22] |
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA, 2006, 103: 230-235.
doi: 10.1073/pnas.0509875103 pmid: 16380417 |
[23] |
So H A, Chung E S, Cho C W, Kim K Y, Lee J H. Molecular cloning and characterization of soybean cinnamoyl CoA reductase induced by abiotic stresses. J Plant Pathol, 2010, 26: 380-385.
doi: 10.5423/PPJ.2010.26.4.380 |
[24] | Liu Z N, Miao L M, Huo R X, Song X Y, Johnson C, Kong L J, Sundaresan V, Yu X L. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant Cell Physiol, 2018, 59: 179-189. |
[25] |
Kang G Z, Liu G Q, Peng X Q, Wei L T, Wang C Y, Zhu Y J, Ma Y, Jiang Y M, Guo T C. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol Bioch, 2013, 73: 93-98.
doi: 10.1016/j.plaphy.2013.09.003 |
[26] |
Wang Z B, Li W H, Qi J C, Shi P C, Yin Y G. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J Food Sci Tech Mys, 2014, 51: 419-429.
doi: 10.1007/s13197-011-0520-z pmid: 24587516 |
[27] |
Jiang L L, Yu X M, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C F, Liu B, Pang J S. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res, 2013, 22: 1133-1142.
doi: 10.1007/s11248-013-9717-4 pmid: 23740205 |
[28] |
Shaik S S, Carciofi M, Martens H J, Hebelstrup K H, Blennow A. Starch bioengineering affects cereal grain germination and seedling establishment. J Exp Bot, 2014, 65: 2257-2270.
doi: 10.1093/jxb/eru107 pmid: 24642850 |
[29] |
Van D E W, El-Esawe S K. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses. Environ Exp Bot, 2014, 108: 4-13.
doi: 10.1016/j.envexpbot.2013.09.017 |
[30] |
Kawakami A, Yoshida M. Molecular characterization of sucrose: sucrose 1-fructosyltransferase and sucrose: fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotech Bioch, 2002, 66: 2297-2305.
pmid: 12506964 |
[31] |
Seo P J, Park J M, Kang S K, Kim S G, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8 |
[32] |
Chen L Q, Lin I W, Qu X Q, Sosso D, McFarlane H E, Londono A, Samuels A L, Frommer W B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell, 2015, 27: 607-619.
doi: 10.1105/tpc.114.134585 |
[33] |
Zhao Y, Zhou M, Xu K, Li J H, Li S S, Zhang S H, Yang X J. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop J, 2019, 7: 857-866.
doi: 10.1016/j.cj.2019.09.002 |
[34] |
Fang S, Gao K, Hu W, Snider J L, Wang S S, Chen B L, Zhou Z G. Chemical priming of seed alters cotton floral bud differentiation by inducing changes in hormones, metabolites and gene expression. Plant Physiol Bioch, 2018, 130: 633-640.
doi: 10.1016/j.plaphy.2018.08.010 |
[35] | Jian L C. Accumulation and mobilization of starch during the differentiation of the shoot apex and their correlation to the development of the spikelets in wheat. J Integr Plant Biol, 1964, 12: 309-316. |
[36] |
Carrier D J, Bakar N T A, Swarup R, Callaghan R, Napier R M, Bennett M J, Kerr I D. The binding of auxin to the Arabidopsis auxin influx transporter AUX1. Plant Physiol, 2008, 148: 529-535.
doi: 10.1104/pp.108.122044 pmid: 18614710 |
[37] |
Wu J, Liu S Y, He Y J, Guan X Y, Zhu X F, Cheng L, Wang J, Lu G. Genome-wide analysis of SAUR gene family in Solanaceae species. Gene, 2012, 509: 38-50.
doi: 10.1016/j.gene.2012.08.002 |
[38] |
Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol, 2014, 164: 1759-1771.
doi: 10.1104/pp.113.231720 pmid: 24515831 |
[39] | Wu Z G, Jiang W, Chen S L, Mantri N, Tao Z M, Jiang C X. Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front Plant Sci, 2016, 7: 1653. |
[1] | 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体徐1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143. |
[2] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[3] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[4] | 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258. |
[5] | 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287. |
[6] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[7] | 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905. |
[8] | 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918. |
[9] | 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953. |
[10] | 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600. |
[11] | 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454. |
[12] | 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714. |
[13] | 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667. |
[14] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[15] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
|