欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1808-1817.doi: 10.3724/SP.J.1006.2023.21050

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析

李凌雨(), 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来*(), 张文静*()   

  1. 安徽农业大学农学院, 安徽合肥 230036
  • 收稿日期:2022-07-17 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-01
  • 通讯作者: *张文静, E-mail: zhangwenjing79@126.com; 黄正来, E-mail: xdnyyjs@163.com
  • 作者简介:E-mail: 171650776@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(31801285);安徽省重点研究与开发计划项目(202204c06020040);安徽省科技重大专项(202003a06020014)

Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage

LI Ling-Yu(), ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai*(), ZHANG Wen-Jing*()   

  1. College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2022-07-17 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-01
  • Contact: *E-mail: zhangwenjing79@126.com; E-mail: xdnyyjs@163.com
  • Supported by:
    The National Natural Science Foundation of China(31801285);The Anhui Key Research and Development Plan(202204c06020040);The Major Science and Technology Project of Anhui Province(202003a06020014)

摘要:

小麦孕穗期对低温非常敏感, 低温胁迫后外源喷施6-苄氨基腺嘌呤(6-BA), 能够缓解低温胁迫对小麦造成的伤害, 通过转录组测序技术分析6-BA提高小麦抗寒性的分子机制。选用低温敏感型品种皖麦52和低温迟钝型品种烟农19为试验材料, 在孕穗期低温胁迫后喷施20 mg L-1的6-BA溶液, 以喷施等量蒸馏水处理为对照。观察幼穗形态, 并测定幼穗可溶性糖含量和淀粉含量。再通过转录组测序筛选并分析差异表达基因, 探究差异表达基因的功能及可能参与的调控通路, 采用qRT-PCR方法对测序结果进行验证。外源6-BA处理10 d后, 与对照相比小麦幼穗形态发育良好, 可溶性糖、淀粉含量均升高。转录组结果表明, 在皖麦52和烟农19中分别鉴定出22,770个和9866个差异基因, 其中有661个基因在两个品种中均上调, 从中筛选出ARF5、AGPL1、1-SST、SWEET15等基因, 这些基因与调节植物激素水平、淀粉合成、糖代谢等有关。对筛选出的差异基因进行GO和KEGG富集分析。GO注释表明皖麦52和烟农19差异基因的功能都主要富集于细胞结构稳定性、代谢、催化活性等。KEGG富集分析表示信号转导、内源激素水平的调节、碳代谢、膜结构和功能的改变等途径发生显著变化。选择部分候选基因对其表达模式进行qRT-PCR分析, 结果说明RNA-seq数据准确。综上所述, 6-BA可以通过调节小麦内部抗氧化物质代谢、激素信号转导、碳水化合物代谢、渗透调节等途径缓解低温损伤, 研究结果可为探索减轻春季低温对小麦伤害的栽培措施提供理论基础。

关键词: 小麦, 6-BA, 低温, 幼穗, 转录组分析

Abstract:

In recent years, due to the frequent occurrence of extreme weather, low temperatures (LT) became one of the main disasters restricting wheat production. LT has negative effects on wheat growth and yield formation, especially at booting stage. Exogenous spraying of 6-benzylamino adenine (6-BA) after LT at booting stage can alleviate the damage caused by LT in wheat, but the related molecular regulation mechanism is still unclear. In this study, transcriptome sequencing technology was used to analyze the molecular mechanism of 6-BA improving cold tolerance in wheat. The LT sensitive variety Wanmai 52 and insensitive variety Yannong 19 were selected as the experimental materials. The experiment was carried out in combination of potted and field planting. Two wheat cultivars were planted in plastic pots at a planting density of ten plants per pot. At booting stage, the pots were moved into an artificial climate chamber for low temperature treatment. At the end of the treatment, 20 mg L-1 6-BA solution was sprayed, and an equal volume of distilled water was sprayed as the control. The morphology of young spike, and the content of soluble sugar and starch in young spikes were determined. Some candidate differentially expressed genes (DEGs) were screened and their relative expression patterns were analyzed by qRT-PCR, and the results were verified by qRT-PCR. After 10 days, compared with the control, the morphological development of young spike was better, fuller and longer. The contents of soluble sugar and starch in young spikes increased after 6-BA treatment. The results showed that 22,770 DEGs were identified in Wanmai 52 and 9866 in Yannong 19, respectively, and 661 genes were up-regulated in the two cultivars. ARF5, AGPL1, 1-SST, SWEET15, and other genes were screened out, which were related to the regulation of plant hormone level, starch synthesis, and sugar metabolism. GO and KEGG enrichment analysis were performed on the selected differential genes. GO annotation revealed that the functions of the differential genes of the two varieties were mainly concentrated in cell structure stability, metabolism, and catalytic activity. KEGG enrichment analysis demonstrated that signal transduction, regulation of endogenous hormone levels, carbon metabolism, the changes of membrane structure and function had significant changes. In conclusion, 6-BA could alleviate cold damage by regulating the metabolism of antioxidant substances, hormone signal transduction, carbohydrate metabolism, osmotic adjustment, and other ways in wheat. The results provide a theoretical basis for exploring the cultivation measures to reduce the damage of low temperature on wheat in spring.

Key words: wheat, 6-BA, low temperatures, young spikes, transcriptome

表1

实时荧光定量PCR所用的引物"

基因名称
Gene name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
基因ID
Gene ID
GAPDH CCACTAACTGCCTTGCTCCT CCAGTGCTGCTTGGAATGA
ARF5 TCGACAGAGTATGGGTTGGAA CGGAAACATCGGCTGAAG TraesCS6A02G111900
AGPL1 ACATCACGCAGAAACCTACCA AACGGATTCCAACGACACTG TraesCS5D02G484500
SWEET15 TATCAGTTGGTTTGTGTGTTCGA GTCGGGAGTGGTGAAAGGA TraesCS7B02G050500

图1

外源6-BA处理后幼穗表型变化 Wanmai 52 CK为皖麦52低温处理后喷施清水; Wanmai 52 6-BA为皖麦52低温处理后喷施6-BA溶液; Yannong 19 CK为烟农19低温处理后喷施清水; Yannong 19 6-BA为烟农19低温处理后喷施6-BA溶液。"

图2

幼穗可溶性糖含量及淀粉含量"

图3

差异表达基因的韦恩图"

表2

低温胁迫后喷施外源6-BA差异表达基因的GO注释"

GO号
GO ID
GO功能
GO function
皖麦52基因数目
及其所占百分比
Gene number and ratio in Wanmai 52
烟农19基因数目
及其所占百分比
Gene number and ratio in Yannong 19
GO类别
GO category
GO:0016021 膜的有机成分Integral component of membrane 3990 (23.22%) 1367 (18.73%) C
GO:0005524 ATP结合ATP binding 2195 (12.77%) 764 (10.47%) M
GO:0005515 蛋白质结合Protein binding 2092 (12.17%) 920 (12.61%) M
GO:0016020 细胞膜Membrane 1609 (9.36%) 566 (7.76%) C
GO:0055114 氧化还原过程Oxidation reduction process 1604 (9.33%) 708 (9.70%) B
GO:0005634 细胞核Nucleus 1576 (9.17%) 1076 (14.74%) C
GO:0004672 蛋白激酶活性Protein kinase activity 1503 (8.75%) 428 (5.86%) M
GO:0006468 蛋白磷酸化Protein phosphorylation 1500 (8.73%) 427 (5.85%) B
GO:0003677 DNA结合DNA binding 1410 (8.20%) 1034 (14.17%) M
GO:0006355 调控转录, DNA模板化
Regulation of transcription, DNA templating
1083 (6.30%) 410 (5.62%) B
GO:0003824 催化活性Catalytic activity 1005 (5.85%) 372 (5.10%) M
GO:0046872 金属离子结合Metal ion binding 953 (5.55%) 432 (5.92%) M
GO:0016491 氧化还原酶活性Oxidoreductase activity 901 (5.24%) 385 (5.28%) M
GO:0055085 跨膜转运Transmembrane transport 799 (4.65%) 266 (3.64%) B
GO:0003700 DNA结合转录因子活性
DNA-binding transcription factor activity
648 (3.77%) 232 (3.18%) M
GO:0020037 血红素结合Heme binding 617 (3.59%) 301 (4.12%) M
GO:0005975 碳水化合物代谢过程Carbohydrate metabolic process 535 (3.11%) 256 (3.51%) B

图4

KEGG通路富集散点图"

图5

IAA信号通路基因表达模式分析 红蓝色块代表相应的FPKM数值, 数值越大, 颜色越红; 从左到右样本依次为皖麦52 CK、皖麦52 6-BA、烟农19 CK、烟农19 6-BA。"

图6

糖类物质积累相关基因表达模式分析 色块所知内容同图5。"

图7

差异表达基因qRT-PCR验证"

[1] Ji H T, Xiao L J, Xia Y M, Song H, Liu B, Tang L, Cao W X, Zhu Y, Liu L L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agric For Meteorol, 2017, 243: 33-42.
doi: 10.1016/j.agrformet.2017.04.016
[2] Shahandashti S S K, Amiri R M, Zeinali H, Ramezanpour S S. Change in membrane fatty acid compositions and cold-induced responses in chickpea. Mol Biol Rep, 2013, 40: 893-903.
doi: 10.1007/s11033-012-2130-x pmid: 23065233
[3] Zhang W J, Huang Z L, Xu K F, Liu L, Zeng Y L, Ma S Y, Fan Y H. The effect of plant growth regulators on recovery of wheat physiological and yield-related characteristics at booting stage following chilling stress. Acta Physiol Plant, 2019, 41: 133.
doi: 10.1007/s11738-019-2924-8
[4] Zhang B, Jia D, Gao Z Q, Dong Q, He L H. Physiological responses to low temperature in spring and winter wheat varieties. J Sci Food Agric, 2016, 96: 1967-1973.
doi: 10.1002/jsfa.2016.96.issue-6
[5] Wang X Y, Liu D M, Wei M M, Man J G. Spraying 6-BA could alleviate the harmful impacts of waterlogging on dry matter accumulation and grain yield of wheat. PeerJ, 2020, 8: e8193.
doi: 10.7717/peerj.8193
[6] Li H, Wang J Q, Liu Q. Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. J Plant Physiol, 2020, 253: 153265.
doi: 10.1016/j.jplph.2020.153265
[7] Yang D Q, Li Y, Shi Y H, Cui Z Y, Luo Y L, Zheng M J, Chen J, Li Y X, Yin Y P, Wang Z L. Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat stress. PLoS One, 2016, 11: e0155437.
doi: 10.1371/journal.pone.0155437
[8] Chen J L, Wu X X, Yao X F, Zhu Z W, Xu S, Zha D S. Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Braz J Bot, 2016, 39: 409-416.
doi: 10.1007/s40415-015-0241-z
[9] 杨东清, 李玉玲, 倪英丽, 尹燕枰, 杨卫兵, 崔正勇, 张永太, 马仁元, 王振林. 外源ABA和6-BA对不同持绿型小麦籽粒灌浆进程及蛋白质含量影响. 作物学报, 2014, 40: 301-312.
doi: 10.3724/SP.J.1006.2014.00301
Yang D Q, Li Y L, Ni Y L, Yin Y P, Yang W B, Cui Z Y, Zhang Y T, Ma R Y, Wang Z L. Effects of exogenous ABA and 6-BA on protein content and grain filling process in different types of stay-green wheat. Acta Agron Sin, 2014, 40: 301-312 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00301
[10] 杨东清, 王振林, 尹燕枰, 倪英丽, 杨卫兵, 蔡铁, 彭佃亮, 徐彩龙, 崔正勇, 刘铁宁, 徐海成. 外源ABA和6-BA对不同持绿型小麦旗叶衰老的影响及其生理机制. 作物学报, 2013, 39: 1096-1104.
doi: 10.3724/SP.J.1006.2013.01096
Yang D Q, Wang Z L, Yin Y P, Ni Y L, Yang W B, Cai T, Peng D L, Xu C L, Cui Z Y, Liu T N, Xu H C. Effects of exogenous ABA and 6-BA on flag leaf senescence in different types of stay-green wheat and relevant physiological mechanisms. Acta Agron Sin, 2013, 39: 1096-1104 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01096
[11] Li H, Li M, Wei X L, Zhang X, Xue R L, Zhao Y D, Zhao H J. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol Genet Genom, 2017, 292: 1091-1110.
doi: 10.1007/s00438-017-1330-4
[12] Li G G, Liang Z M, Li Y J, Liao Y C, Liu Y. Exogenous spermidine regulates starch synthesis and the antioxidant system to promote wheat grain filling under drought stress. Acta Physiol Plant, 2020, 42: 1-14.
doi: 10.1007/s11738-019-2990-y
[13] Wang C M, Yang Y Y, Chen N H, Zeng Z X, Ji S J, Shan W, Kuang J F, Lu W J, Su X G, Chen J Y, Zhao Y T. Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage. Food Res Int, 2022, 157: 111455.
doi: 10.1016/j.foodres.2022.111455
[14] Diao J, Liu H J, Hu F W, Li L, Wang X L, Gai C L, Yu X Q, Fan Y, Xu L, Ye H B. Transcriptome analysis of immune response in fat greenling (Hexagrammos otakii) against Vibrio harveyi infection. Fish Shellfish Immunol, 2019, 84: 937-947.
doi: 10.1016/j.fsi.2018.10.067
[15] Mandal D, Tudu S, Mitra S R, De G C. Effect of common packing materials on keeping quality of sugarcane jaggery during monsoon season. Sugar Tech, 2006, 8: 137-142
doi: 10.1007/BF02943648
[16] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[17] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Meth, 2015, 12: 356-360.
[18] Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 2011, 12: 1-14.
[19] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, Van B M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[20] Sorek N, Szemenyei H, Sorek H, Landers A, Knight H, Bauer S, Wemmer D E, Somerville C R. Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1. Proc Natl Acad Sci USA, 2015, 112: 16048-16053.
doi: 10.1073/pnas.1521675112
[21] Hong P N, Jeong H Y, Kim H, Kim Y C, Lee C. Molecular and biochemical characterization of rice pectin methylesterase inhibitors (OsPMEIs). Plant Physiol Bioch, 2016, 101: 105-112.
doi: 10.1016/j.plaphy.2016.01.021
[22] Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA, 2006, 103: 230-235.
doi: 10.1073/pnas.0509875103 pmid: 16380417
[23] So H A, Chung E S, Cho C W, Kim K Y, Lee J H. Molecular cloning and characterization of soybean cinnamoyl CoA reductase induced by abiotic stresses. J Plant Pathol, 2010, 26: 380-385.
doi: 10.5423/PPJ.2010.26.4.380
[24] Liu Z N, Miao L M, Huo R X, Song X Y, Johnson C, Kong L J, Sundaresan V, Yu X L. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant Cell Physiol, 2018, 59: 179-189.
[25] Kang G Z, Liu G Q, Peng X Q, Wei L T, Wang C Y, Zhu Y J, Ma Y, Jiang Y M, Guo T C. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol Bioch, 2013, 73: 93-98.
doi: 10.1016/j.plaphy.2013.09.003
[26] Wang Z B, Li W H, Qi J C, Shi P C, Yin Y G. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J Food Sci Tech Mys, 2014, 51: 419-429.
doi: 10.1007/s13197-011-0520-z pmid: 24587516
[27] Jiang L L, Yu X M, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C F, Liu B, Pang J S. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res, 2013, 22: 1133-1142.
doi: 10.1007/s11248-013-9717-4 pmid: 23740205
[28] Shaik S S, Carciofi M, Martens H J, Hebelstrup K H, Blennow A. Starch bioengineering affects cereal grain germination and seedling establishment. J Exp Bot, 2014, 65: 2257-2270.
doi: 10.1093/jxb/eru107 pmid: 24642850
[29] Van D E W, El-Esawe S K. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses. Environ Exp Bot, 2014, 108: 4-13.
doi: 10.1016/j.envexpbot.2013.09.017
[30] Kawakami A, Yoshida M. Molecular characterization of sucrose: sucrose 1-fructosyltransferase and sucrose: fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotech Bioch, 2002, 66: 2297-2305.
pmid: 12506964
[31] Seo P J, Park J M, Kang S K, Kim S G, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8
[32] Chen L Q, Lin I W, Qu X Q, Sosso D, McFarlane H E, Londono A, Samuels A L, Frommer W B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell, 2015, 27: 607-619.
doi: 10.1105/tpc.114.134585
[33] Zhao Y, Zhou M, Xu K, Li J H, Li S S, Zhang S H, Yang X J. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop J, 2019, 7: 857-866.
doi: 10.1016/j.cj.2019.09.002
[34] Fang S, Gao K, Hu W, Snider J L, Wang S S, Chen B L, Zhou Z G. Chemical priming of seed alters cotton floral bud differentiation by inducing changes in hormones, metabolites and gene expression. Plant Physiol Bioch, 2018, 130: 633-640.
doi: 10.1016/j.plaphy.2018.08.010
[35] Jian L C. Accumulation and mobilization of starch during the differentiation of the shoot apex and their correlation to the development of the spikelets in wheat. J Integr Plant Biol, 1964, 12: 309-316.
[36] Carrier D J, Bakar N T A, Swarup R, Callaghan R, Napier R M, Bennett M J, Kerr I D. The binding of auxin to the Arabidopsis auxin influx transporter AUX1. Plant Physiol, 2008, 148: 529-535.
doi: 10.1104/pp.108.122044 pmid: 18614710
[37] Wu J, Liu S Y, He Y J, Guan X Y, Zhu X F, Cheng L, Wang J, Lu G. Genome-wide analysis of SAUR gene family in Solanaceae species. Gene, 2012, 509: 38-50.
doi: 10.1016/j.gene.2012.08.002
[38] Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol, 2014, 164: 1759-1771.
doi: 10.1104/pp.113.231720 pmid: 24515831
[39] Wu Z G, Jiang W, Chen S L, Mantri N, Tao Z M, Jiang C X. Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front Plant Sci, 2016, 7: 1653.
[1] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体徐1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[2] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[3] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[4] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[5] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[6] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[7] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[8] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[9] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[10] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[11] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[12] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[13] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
[14] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[15] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .