欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1708-1714.doi: 10.3724/SP.J.1006.2023.21047

• 研究简报 • 上一篇    下一篇

基于55K SNP芯片揭示小麦育种亲本遗传多样性

卢茂昂2(), 彭小爱2, 张玲2, 汪建来1, 何贤芳1,2,*(), 朱玉磊2,*()   

  1. 1安徽省农业科学院作物研究所, 安徽合肥 230001
    2安徽农业大学农学院, 安徽合肥 230036
  • 收稿日期:2022-07-03 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-11-10
  • 通讯作者: *何贤芳, E-mail: xianfanghe@126.com;朱玉磊, E-mail: zhuyulei2011@126.com
  • 作者简介:E-mail: lumaoang@126.com
  • 基金资助:
    安徽小麦良种联合攻关(2021-);国家自然科学基金青年科学基金项目(31901540)

Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray

LU Mao-Ang2(), PENG Xiao-Ai2, ZHANG Ling2, WANG Jian-Lai1, HE Xian-Fang1,2,*(), ZHU Yu-Lei2,*()   

  1. 1Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, Anhui, China
    2College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2022-07-03 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-11-10
  • Contact: *E-mail: xianfanghe@126.com;E-mail: zhuyulei2011@126.com
  • Supported by:
    Anhui Wheat Seed Joint Research Project(2021-);National Natural Science Youth Science Foundation of China(31901540)

摘要:

为了解不同省份小麦亲本材料间的遗传多样性, 以150份分布于安徽、江苏、河南、四川及山东等省份小麦种质资源为试验材料, 利用小麦55K SNP芯片对其进行遗传多样性分析、聚类分析、主成分分析及群体结构分析。结果表明, 在150份小麦材料中共检测到52,537个SNP位点, 质控后共获得39,422个有效标记, 其中多态性标记为38,135个, 占有效标记数96.74%。多态性标记在亚基因组间分布呈现D (10,450)<A (12,365)<B (15,290); 平均多态信息含量(PIC)为0.315, 变幅为0.068~0.375。各省供试材料平均遗传距离呈现: 河南省>四川省>山东省>江苏省>安徽省; 聚类分析、主成分分析和群体结构分析结果高度一致, 分群结果与血缘关系、区域来源及育成单位均较为吻合。本研究表明各省份平均多态性信息含量处于中度多态水平, 但材料平均遗传距离较为接近, 仍需引入优质种质资源, 缓解材料同质化情况, 增加小麦应对逆境胁迫能力, 减轻小麦实际生产中的脆弱性及风险性。

关键词: 小麦, 55K SNP芯片, 育种亲本, 遗传多样性, 群体结构分析

Abstract:

The objective of this study is to identify the genetic diversity among wheat parental materials from different provinces. To reveal the genetic diversity and population structure by using wheat 55K SNP chip, 150 wheat accessions from Anhui, Jiangsu, Henan, Sichuan, and Shandong provinces were analyzed. A total of 52,537 SNP loci were detected in the 150 wheat accessions. 39,422 high quality markers were obtained, of which 38,135 were polymorphic, accounting for 96.74%. The distribution of 38,135 polymorphic markers among the genomes showed the least in D subgenome (10,450), the most in B subgenome (15,290). The average polymorphic information content (PIC) was 0.315, with a variation of 0.068-0.375. The averaged genetic distance of accessions differed based on the origin: Henan > Sichuan > Shandong > Jiangsu > Anhui. The results of cluster analysis, principal component analysis, and population structure analysis were highly consistent, and the clustering results were consistent with the pedigree, regional origin, and breeding group. The study revealed that the average polymorphism information content in each province was at a moderate PIC level, but the average genetic distance of the materials was close. This indicated that the high-quality germplasm resources should still be introduced to alleviate the material homogeneity, so as to increase the ability of wheat to cope with stress and reduce the vulnerability and risk in actual wheat production.

Key words: wheat, 55K SNP chip, breeding parents, genetic diversity, cluster analysis

附表1

供试材料系谱及来源"

编号No. 名称Name 系谱Parentage 来源Source
y1 济麦22 Jimai 22 935024/935106 中国山东 Shandong, China
y2 安科1302 Anke 1302 中国安徽 Anhui, China
y3 安科157 Anke 157 泰山241/西农1718 Taishan241/Xinong1718 中国安徽 Anhui, China
y4 安农0711 Annong 0711 烟农19/安农0016 Yannong 19/Annong 0016 中国安徽 Anhui, China
y5 百农207 Bainong 207 周16/百农64 Zhou 16/ Bainong 64 中国河南 Henan, China
y6 泛麦5号 Fanmai 5 冀5418/京泛30//周麦13 Jin 5418/Jingfan 30//Zhoumai 13 中国河南 Henan, China
y7 恒进麦8号 Hengjinmai 8 周16/淮麦28 Zhou 16/Huaimai 28 中国安徽 Anhui, China
y8 华成1688 Huacheng 1688 淮麦0566/洛麦13 Huaimai 0566/Luomai 13 中国安徽 Anhui, China
y9 华成2019 Huacheng 2019 (烟农19/宿266)F5/宿02003 (Yannong 19/Su 266)F5/Su 02003 中国安徽 Anhui, China
y10 华成3366 Huacheng 3366 烟农361/宿266 Yannong 361/Su 266 中国安徽 Anhui, China
y11 华成859 Huacheng 859 丰华8829/T59 Fenghua 8829/T59 中国安徽 Anhui, China
y12 华成863 Huacheng 863 新9408/丰华8829/烟农19 Xin 9408/Fenghua 8829/Yan 19 中国安徽 Anhui, China
y13 淮麦22 Huaimai 22 淮麦18/扬麦158 Huaimai 18/Yangmai 158 中国江苏 Jiangsu, China
y14 淮麦29 Huaimai 29 淮麦20/绵阳04254 Huaimai 20/Mianyang 04254 中国江苏 Jiangsu, China
y15 淮麦30 Huaimai 30 郑麦9023/淮86175 Zhengmai 9023/Huai 86175 中国江苏 Jiangsu, China
y16 淮麦33 Huaimai 33 烟农19/郑麦991 Yannong 19/Zhengmai 991 中国江苏 Jiangsu, China
y17 淮麦35 Huaimai 35 周麦13/新麦9号 Zhoumai 13/Xinmai 9 中国江苏 Jiangsu, China
y18 淮麦40 Huaimai 40 中国江苏 Jiangsu, China
y19 淮麦44 Huaimai 44 (百农9711/淮麦95079)/淮麦9701 (Bainong 9711/Huaimai 95079)/Huaimai 9701 中国江苏 Jiangsu, China
y20 徽研66 Huiyan 66 鲁原502/9024 Luyuan 502/9024 中国安徽 Anhui, China
y21 徽研912 Huiyan 912 周麦16/烟农19 Zhoumai 16/Yannong 19 中国安徽 Anhui, China
y22 济麦44 Jimai 44 954072/济南17 954072/Jinan 17 中国山东 Shandong, China
y23 乐麦207 Lemai 2 C420/豫同M023 C420/Yutong M023 中国安徽 Anhui, China
y24 连麦2号 Lianmai 2 鉴94(73)/鲁麦21 Jian 94(73)/ Lumai 21 中国江苏 Jiangsu, China
y25 龙科0901 Longke 0901 煤生0308/淮核0308 Meisheng 0308/Huaihe 0308 中国安徽 Anhui, China
y26 龙科1109 Longke 1109 皖麦50/矮抗58 Wanmai 50/Aikang 58 中国安徽 Anhui, China
y27 龙科1221 Longke 1221 良星99/淮0208 Liangxing 99/Huai 0208 中国安徽 Anhui, China
y28 鲁原502 Luyuan 502 9940168/济麦19 9940168/Jimai 19 中国山东 Shandong, China
y29 明麦1号 Mingmai 1 淮麦18号/扬麦158//淮麦20 Huaimai 18/Yangmai 158// Huaimai 20 中国江苏 Jiangsu, China
y30 农麦152 Nongmai 152 新麦18/莱州817 Xinmai 18/Laizhou 817 中国江苏 Jiangsu, China
y31 青农3号 Qingnong 3 永920/蒙花1号 Yong 920/Menghua 1 中国山东 Shandong, China
y32 荃麦725 Quanmai 725 皖麦19/徐麦25//皖麦44///宿043 Wanmai 19/Xumai 25//Wanmai 44///Su 043 中国安徽 Anhui, China
y33 瑞华麦516 Ruihuamai 516 洛麦21/淮麦17 Luomai 21/Huaimai 17 中国江苏 Jiangsu, China
y34 瑞华麦520 Ruihuamai 520 郑州891/黔丰1号 Zhengzhou 891/Qianfeng 1 中国江苏 Jiangsu, China
y35 瑞华麦618 Ruihuamai 618 烟农19/连麦2号 Yannong 19/Lianmai 2 中国江苏 Jiangsu, China
y36 山农17 Shannong 17 L156/莱州137 L156/Laizhou 137 中国山东 Shandong, China
y37 山农20 Shannong 20 PH82-2-2/954072 中国山东 Shandong, China
y38 濉1216 Sui 1216 泛麦5号//泛麦5号/烟1604 Fanmai 5//Fanmai 5/Yan1604 中国山东 Shandong, China
y39 泰农19 Tainong 19 莱州137/济南17 Laizhou 137/Jinan 17 中国山东 Shandong, China
y40 天益科麦5号 Tianyikemai 5 淮0566/洛麦23 Huai 0566/Luomai 23 中国安徽 Anhui, China
y41 皖垦麦0622 Wankenmai 0622 连麦2号/汴123 Lianmai 2/Bian 123 中国安徽 Anhui, China
y42 皖垦麦1号Wankenmai 1 皖麦19/豫麦47 Wanmai 19/Yumai 47 中国安徽 Anhui, China
y43 皖垦麦869 Wankenmai 869 烟优361/T39 Yanyou 361/T39 中国安徽 Anhui, China
y44 皖麦52 Wanmai 52 郑州8329/皖麦19 Zhengzhou 8329/Wanmai 19 中国安徽 Anhui, China
y45 未来0818 Weilai 0818 淮麦18/宿9908 Huaimai 18/Su 9908 中国安徽 Anhui, China
y46 涡麦99 Guomai 99 百农3217/淮9628//鲁麦21 Bainong 3217/Huai 9628//Lumai 21 中国安徽 Anhui, China
y47 涡麦9号Guomai 9 莱州953/百农AK58 Laizhou 953/Bainong AK58 中国安徽 Anhui, China
y48 新麦26 Xinmai 26 新9408E1/济南17 Xin 9408E1/Jinan 17 中国河南 Henan, China
y49 宿553 Su 553 烟农19/宿1264 Yannong 19/Su 1264 中国安徽 Anhui, China
y50 徐农029 Xunong 029 淮麦20/矮抗58 Huaimai 20/Aikang 58 中国江苏 Jiangsu, China
y51 烟农19 Yannong 19 烟1933/陕82-29 Yan 1933/Shaan 82-29 中国山东 Shandong, China
y52 烟农5158 Yannong 5158 烟航2号/烟农15 Yanhang 2/Yannong 15 中国山东 Shandong, China
y53 烟农999 Yannong 999 烟航选2号/临9511//烟BLU14-15 Yanhagnxuan 2/Lin 9511//Yan BLU14-15 中国山东 Shandong, China
y54 郑7698 Zheng 7698 郑麦9405/4B269//周麦16 Zhengmai 9405/4B269//Zhoumai 16 中国河南 Henan, China
y55 中麦578 Zhongmai 578 中麦255/济麦22 Zhongmai 255/Jimai 22 中国河南 Henan, China
y56 中麦895 Zhongmai 895 周麦16/荔垦4号 Zhoumai 16/Liken 4 中国河南 Henan, China
y57 淮麦45 Huaimai 45 淮麦28/淮麦25 Huaimai 28/Huaimai 25 中国江苏 Jiangsu, China
y58 周麦27 Zhoumai 27 周麦16/矮抗58 Zhouamai 16/Aikang 58 中国河南 Henan, China
y59 周麦36 Zhoumai 36 矮抗58/周麦19//周麦22 Aikang 58/Zhou 19//Zhoumai 22 中国河南 Henan, China
y60 紫麦19 Zimai 19 烟农19/潍麦8号 Yanong 19/Weimai 8 中国安徽 Anhui, China
y61 国红6号 Guohong 6 扬麦11/扬麦18 Yangmai 11/Yangmai 18 中国安徽 Anhui, China
y62 浩麦1号 Haomai 1 W4062/郑农11号 W4062/Zhengnong 1 中国福建 Fujian, China
y63 华麦1028 Huamai 1028 扬麦11/华麦0722 Yangmai 11/Huaimai 0722 中国江苏 Jiangsu, China
y64 华麦7号 Huamai 7 扬麦158/小偃8788 Yangmai 158/Xiaoyan 8788 中国江苏 Jiangsu, China
y65 隆垦麦1号 Longkenmai 1 矮败小麦/扬麦158//宁麦13 Aibaixiaomai/Yangmai 158//Ningmai 13 中国安徽 Anhui, China
y66 轮选22 Lunxuan 22 中国安徽 Anhui, China
y67 轮选27 Lunxuan 27 矮败小麦/(扬87—158//郑麦9023) Aibaixiaomai/(Yang 87—158//Zhengmai 9023) 中国安徽 Anhui, China
y68 罗麦10号 Luomai 10 557/罗麦8号 577/Luomai 8 中国安徽 Anhui, China
y69 明麦133 Mingmai 133 郑麦9023/扬麦11 Zhengmai 9023/Yangmai 11 中国江苏 Jiangsu, China
y70 宁麦13 Ningmai 13 宁麦9号 Ningmai 9 中国江苏 Jiangsu, China
y71 宁麦21 Ningmai 21 宁9312/扬麦158//宁9312 Ning 9312/Yangmai 158//Ning 9312 中国江苏 Jiangsu, China
y72 宁麦26 Ningmai 26 宁9531/宁麦9号 Ning 9531/Ningmai 9 中国江苏 Jiangsu, China
y73 农麦126 Nongmai 126 扬麦16/宁麦9号 Yangmai 16/Ningmai 9 中国江苏 Jiangsu, China
y74 安农1012 Nuo 1012 扬麦12/安农糯01032 Yangmai 12/Annongnuo 01032 中国安徽 Anhui, China
y75 安农1019 Nuo 1019 安农0419/安农糯01032 Annong 0419/Annongnuo 01032 中国安徽 Anhui, China
y76 苏隆128 Sulong 128 5E007/宁麦9号 5E007/Ningmai 9 中国浙江 Zhejiang, China
y77 苏麦11 Sumai 11 宁麦9/扬麦11 Ningmai 9/Yangmai 11 中国江苏 Jiangsu, China
y78 苏麦10号 Sumai 10 宁麦9/扬麦11 Ningmai 9/Yangmai 11 中国江苏 Jiangsu, China
y79 苏麦188 Sumai 188 扬辐麦2号 Yangfumai 2 中国江苏 Jiangsu, China
y80 皖麦606 Wanmai 606 中国安徽 Anhui, China
y81 皖西麦0638 Wanximai 0638 扬麦9号/Y18 Yangmai 9/Y 18 中国安徽 Anhui, China
y82 扬辐麦6号 Yangfumai 6 扬辐麦4号/扬麦14M1 Yangfumai 4/Yangmai 14M1 中国江苏 Jiangsu, China
y83 扬辐麦7号 Yangfumai 7 扬麦11//(扬麦11/扬辐麦9311) Yangmai 11//(Yangmai 11/Yangfumai 9311) 中国江苏 Jiangsu, China
y84 扬辐麦8号 Yangfumai 8 扬辐麦4号1-1274/扬麦11 Yangfumai 4 1-1274/Yangmai 11 中国江苏 Jiangsu, China
y85 扬麦13 Yangmai 13 扬84-84//Maristorve/扬麦3号 Yang 84-84//Maristorve/Yangmai 3 中国江苏 Jiangsu, China
y86 扬麦15 Yangmai 15 扬89-40/川育21526 Yang 89-40/Chuanyu 21526 中国江苏 Jiangsu, China
y87 扬麦16 Yangmai 16 扬91F138/扬90-30 Yang 91F138/Yang 90-30 中国江苏 Jiangsu, China
y88 扬麦20 Yangmai 20 扬麦9/扬10 Yangmai 9/Yang 10 中国江苏 Jiangsu, China
y89 扬麦22 Yangmai 22 扬麦9号*3/97033-2 Yangmai 9 *3/97033-2 中国江苏 Jiangsu, China
y90 扬麦24 Yangmai 24 扬麦17//扬11/豫麦18 Yangmai 17//Yang 11/Yumai 18 中国江苏 Jiangsu, China
y91 扬麦25 Yangmai 25 扬17*2//扬11/豫麦18 Yang 17*2//Yang 11/Yumai 18 中国江苏 Jiangsu, China
y92 扬麦27 Yangmai 27 扬麦19/扬07纹5418 Yangmai 19/Yang 07 Wen 5418 中国江苏 Jiangsu, China
y93 扬麦28 Yangmai 28 (山红麦/扬麦162)/扬麦18//扬麦162 (Shanhongmai/Yangmai 162)/Yangmai 18//Yangmai 162 中国江苏 Jiangsu, China
y94 亿麦9号 Yimai 9 郑麦9023/亿6325 Zhengmai 9023/Yi 6325 中国河南 Henan, China
y95 镇麦11 Zhenmai 11 扬麦15号/镇麦5号 Yangmai 15/Zhenmai 5 中国江苏 Jiangsu, China
y96 镇麦12 Zhenmai 11 镇麦168 Zhengmai 168 中国江苏 Jiangsu, China
y97 镇麦168 Zhenmai 168 苏麦6号/97G59 Sumai 6/97G59 中国江苏 Jiangsu, China
y98 镇麦9号 Zhenmai 9 苏麦6号/97G59 Sumai 6/97G59 中国江苏 Jiangsu, China
y99 18A101 C420/豫同M023 C420/Yutong M023 中国安徽 Anhui, China
y100 18A104 (宿9908/皖北848)//新麦19 (Su 9908/Wanbei 848)//Xinmai 19 中国安徽 Anhui, China
y101 18A105 百农矮抗58/周麦18 Bainongaikang 58/Zhoumai 18 中国安徽 Anhui, China
y102 18A107 皖麦38/淮麦18 Wanmai 38/Huaimai 18 中国安徽 Anhui, China
y103 18A108 700/F240 中国安徽 Anhui, China
y104 18A111 中国安徽 Anhui, China
y105 18A126 淮麦25/泛麦5号 Huaimai 25/Fanmai 5 中国安徽 Anhui, China
y106 18A130 安农0628/泛麦5号 Annong 0628/Fanmai 5 中国安徽 Anhui, China
y107 18B130 辐照06725 Fuzhao 06725 中国安徽 Anhui, China
y108 18B128 宿544/淮麦18 Su 544/Huaimai 18 中国安徽 Anhui, China
y109 18B132 中国安徽 Anhui, China
y110 18B141 明天0408/C511 Mingtian 0408/C511 中国安徽 Anhui, China
y111 18B151 济麦22 Jimai 22 中国安徽 Anhui, China
y112 18B177 13B286/鲁麦14 13B286/Lumai 14 中国安徽 Anhui, China
y113 18B186 F300/良星66 F300/Liangxing 66 中国安徽 Anhui, China
y114 18B187 豫农88/郑麦112 Yunong 88/Zhengmai 112 中国安徽 Anhui, China
y115 18B189 皖科2058 Wanke 2058 中国安徽 Anhui, China
y116 18B190 乐麦185 Lemai 185 中国安徽 Anhui, China
y117 18B191 皖科421 Wanke 421 中国安徽 Anhui, China
y118 18B194 中洛3号/百农64 Zhongluo 3/Bainong 64 中国安徽 Anhui, China
y119 18B210 11A148/扬麦158 11A148/Yangmai 158 中国安徽 Anhui, China
y120 18B223 连麦2号/山农20 Lianmai 2/Shannong 20 中国安徽 Anhui, China
y121 18B233 连麦2号/泛麦5号 Lianmai 2/Fanmai 5 中国安徽 Anhui, China
y122 18B248 14B52/连麦2号 14B52/Lianmai 2 中国安徽 Anhui, China
y123 18B257 衡09636/皖科09636 Heng 09636/Wanke 09636 中国安徽 Anhui, China
y124 18B259 周麦23/济麦22 Zhoumai 23/Jimai 22 中国安徽 Anhui, China
y125 18B369 烟5158/皖麦44 Yan 5158/Wanmai 44 中国安徽 Anhui, China
y126 18B375 淮麦25/泛麦5号 Huaimai 25/Fanmai 5 中国安徽 Anhui, China
y127 CP03-28-1 中国北京 Beijing, China
y128 川42 Chuan 42 中国四川 Sichuan, China
y129 扬麦158 Yangmai 158 扬麦4号//St1472/506 Yangmai 4//St1472/506 中国江苏 Jiangsu, China
y130 安科1604 Anke 1604 中国安徽 Anhui, China
y131 CP01-27-3 中国北京 Beijing, China
y132 扬糯麦1号 Yangnuomai 1 中国江苏 Jiangsu, China
y133 950218-54 中国安徽 Anhui, China
y134 百农64 Bainong 64 (百农8717/ (偃大72-629-52/石82-5594) F2)/百农84-4046-1 (Bainong 8717/(Yanda 72-629-52/Shi 82-5594)F2)/Bainong 84-5594 中国河南 Henan, China
y135 外引材料 External citation material 以色列 Israel
y136 华安麦825 Huaanmai 825 中国安徽 Anhui, China
y137 川麦42 Chuanmai 42 SynCD768/SW3243//川6415 SynCD768/SW3243//Chuan 6415 中国四川 Sichuan, China
y138 新原958 Xinyuan 958 豫麦34/新麦9号 Yumai 34/Xinmai 9 中国河南 Henan, China
y139 中科麦138 Zhongkemai 138 川麦42/川育16 Chuanmai 42/Chuanyu 16 中国四川 Sichuan, China
y140 川农16 Chuannong 16 川育12/87-429 Chuanyu 12/87-429 中国四川 Sichuan, China
y141 西科麦8号 Xikemai 8 97-392/云22574-5 97-392/Yun 225747-5 中国四川 Sichuan, China
y142 绵麦367 Mianmai 267 1275-1/99-1522 中国四川 Sichuan, China
y143 21946 中国四川 Sichuan, China
y144 西农916 Xinong 916 中国陕西 Shaanxi, China
y145 B12-6-1 中国四川 Sichuan, China
y146 绵麦37 Mianmai 37 96EW37/90-100 中国四川 Sichuan, China
y147 川麦82 Chuanmai 82 Singh6/3*1231 中国四川 Sichuan, China
y148 F06-4198 中国四川 Sichuan, China
y149 2011 中国四川 Sichuan, China
y150 206A 中国安徽 Anhui, China

图1

多态性SNP标记在染色体(A)、同源群(B)和亚基因组(C)上的分布"

图2

多态性SNP最小等位基因(A)、基因多样性(B)、多态性信息含量(C)及遗传距离(D)箱线图"

图3

供试材料聚类分析图"

图4

供试材料PCA分析(A)和群体遗传结构分析(B和C)"

[1] Boakyewaa A G, Badu-Apraku B, Akromah R, Garcia-Oliveira A L, Awuku F J, Gedil M. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS One, 2019, 14: e0214810.
[2] 刘易科, 朱展望, 陈泠, 邹娟, 佟汉文, 朱光, 何伟杰, 张宇庆, 高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性. 作物学报, 2020, 46: 307-314.
doi: 10.3724/SP.J.1006.2020.91039
Liu Y K, Zhu Z W, Chen L, Zou J, Tong H W, Zhu G, He W J, Zhang Y Q, Gao C B. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers. Acta Agron Sin, 2020, 46: 307-314. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91039
[3] Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet, 2014, 127: 621-631.
doi: 10.1007/s00122-013-2246-y pmid: 24343198
[4] Scherlosky A, Marchioro V S, Franco F D A, Braccini A L, Schuster L. Genetic variability of Brazilian wheat germplasm obtained by high-density SNP genotyping. Crop Breed Appl Biotechnol, 2018, 18: 399-408.
doi: 10.1590/1984-70332018v18n4a59
[5] Uddin M S, Boerner A. Genetic diversity in hexaploid and tetraploid wheat genotypes using microsatellite markers. Plant Tiss Cult Biotechnol, 2009, 18: 65-73.
[6] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020, 46: 1539-1556.
doi: 10.3724/SP.J.1006.2020.91077
Ma Y M, Lou H Y, Chen Z Y, Xiao J, Xu L, Ni Z F, Liu J. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits. Acta Agron Sin, 2020, 46: 1539-1556. (in Chinese with English abstract)
[7] Reif J C, Zhang P, Dreisigacker S, Warburton M L, Ginkel M V, Hoisington D, Bohn M, Melchinger A E. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 2005, 110: 859-864.
doi: 10.1007/s00122-004-1881-8 pmid: 15690175
[8] 曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克慧, 徐如强, 王际睿, 罗明成, 刘志勇. 河南省近年审定小麦材料基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015, 41: 197-206.
doi: 10.3724/SP.J.1006.2015.00197
Cao T J, Xie Q Z, Wu Q H, Chen Y X, Wang Z Z, Zhao H, Wang X C, Zhan K H, Xu R Q, Wang J R, Luo M C, Liu Z Y. Genetic diversity of registered wheat varieties in Henan Province based on pedigree and single-nucleotide polymorphism. Acta Agron Sin, 2015, 41: 197-206. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00197
[9] 李珊珊, 易腾飞, 徐渴, 张树华, 赵勇, 杨学举. 河北省小麦品种基于SNP标记的遗传多样性分析. 分子植物育种, 2019, 17: 6850-6859.
Li S S, Yi T F, Xu K, Zhang S H, Zhao Y, Yang X J. Genetic diversity of wheat varieties in Hebei Province based on single nucleotidepolymorphism. Mol Plant Breed, 2019, 17: 6850-6859. (in Chinese with English abstract)
[10] 白彦明, 李龙, 王绘艳, 柳玉平, 王景一, 毛新国, 昌小平, 孙黛珍, 景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析. 作物学报, 2019, 45: 1468-1477.
doi: 10.3724/SP.J.1006.2019.91012
Bai Y M, Li L, Wang H Y, Liu Y P, Wang J Y, Mao X G, Chang X P, Sun D Z, Jing R L. Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat. Acta Agron Sin, 2019, 45: 1468-1477. (in Chinese with English abstract)
[11] Arabi M, Shoaib A, Al-Shehadah E, Jawhar M. Genetic diversity within local and introduced cultivars of wheat (Triticum aestivum L.) grown under Mediterranean environment as revealed by AFLP markers. Acta Biol Szeged, 2019, 63: 25-30.
doi: 10.14232/abs.2019.1.25-30
[12] 王升星, 朱玉磊, 张海萍, 常成, 马传喜. 小麦育种亲本材料SSR标记遗传多样性及其亲缘关系分析. 麦类作物学报, 2014, 34: 621-627.
Wang S X, Zhu Y L, Zhang H P, Chang C, Ma C X. Analysis of genetic diversity and relationship among wheat breeding parents by SSR markers. J Triticeae Crops, 2014, 34: 621-627. (in Chinese with English abstract)
[13] Ganal M W, Altmann T, Rder M S. SNP identification in crop plants. Curr Opin Plant Biol, 2009, 12: 211-217.
doi: 10.1016/j.pbi.2008.12.009 pmid: 19186095
[14] Eltaher S, Baenziger P S, Belamkar V, Emara H A, Sallam A. GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. BMC Genom, 2021, 22: 2.
doi: 10.1186/s12864-020-07308-0
[15] Bonman J M, Babiker E M, Cuesta-Marcos A, Esvelt-Klos K, Brown-Guedira Gina, Chao S, See D, Chen J, Akhunov E, Zhang J. Genetic diversity among wheat accessions from the USDA national small grains collection. Crop Sci, 2015, 55: 1243-1253.
doi: 10.2135/cropsci2014.09.0621
[16] 樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证. 中国农业科学, 2021, 54: 1751-1772.
doi: 10.3864/j.issn.0578-1752.2021.08.014
Fan X J, Yu W T, Cai C P, Lin Y, Wang Z H, Fang W P, Zhang J M, Ye N X. Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism (SNP) markers. Sci Agric Sin, 2021, 54: 1751-1772. (in Chinese with English abstract)
[17] Yang X, Tan B, Liu H, Zhu W, Xu L, Wang Y, Fan X, Sha L, Zhang H, Zeng J, Wu D, Jiang Y, Hu X, Chen G, Zhou Y, Kang H. Genetic diversity and population structure of Asian and European common wheat accessions based on genotyping-by-sequencing. Front Genet, 2020, 11: 1157.
[18] Mourad A, Ahmed S, Vikas B, Stephen W, Robert B, Jin Y, Ezzat M, Bahy B, El-Wafaa A A, Jesse P. Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front Plant Sci, 2018, 9: 380.
doi: 10.3389/fpls.2018.00380 pmid: 29636761
[19] Alemu A, Feyissa T, Maccaferri M, Sciara G, Tuberosa R, Ammar K, Badebo A, Acevedo M, Letta T, Abeyo B. Genome-wide association analysis unveils novel QTLs for seminal root system architecture traits in Ethiopian durum wheat. BMC Genomics, 2021, 22: 20.
doi: 10.1186/s12864-020-07320-4 pmid: 33407083
[20] 刘彬, 赵雨露, 杨鑫雷, 张建恒, 孙鑫博, 刘晓清, 温晓敏, 耿艳楼, 李悦有, 吕玮, 穆国俊. 251份藜麦种质资源遗传多样性及分子身份证构建. 植物遗传资源学报, 2022, 23: 706-721.
Liu B, Zhao Y L, Yang X L, Zhang J H, Sun X B, Liu X Q, Wen X M, Geng Y L, Li Y Y, Lyu W, Mu G J. Genetic diversity of 251 germplasm accessions and construction of molecular ID in quinoa (Chenopodium quinoa Willd). J Plant Genet Resour, 2022, 23: 706-721. (in Chinese with English abstract)
[21] 韩志刚, 郝文胜, 谢锐, 郭景山, 伊六喜, 侯建华. 基于全基因组重测序SNP标记的148份马铃薯种质遗传多样性分析. 西北植物学报, 2021, 41: 1302-1314.
Han Z G, Hao W S, Xie R, Guo J S, Yi L X, Hou J H. Analysis of genetic diversity of 148 potato germplasm based on SNP markers from whole genome resequencing. Acta Bot Boreali-Occident Sin, 2021, 41: 130-1314. (in Chinese with English abstract)
[22] Ye X, Li J, Cheng Y, Yao F, Chen G. Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC Genomics, 2019, 20: 640.
doi: 10.1186/s12864-019-6005-6 pmid: 31395029
[23] Tran F, Penniket C, Patel R V, Provart N J, Laroche A, Rowland O, Robert L S. Developmental transcriptional profiling reveals key insightsinto Triticeae reproductive development. Plant J, 2013, 74: 971-988.
doi: 10.1111/tpj.2013.74.issue-6
[24] Qu X, Liu J, Xie X, Xu Q, Ma J. Genetic mapping and validation of loci for kernel-related traits in wheat (Triticum aestivum L.). Front Plant Sci, 2021, 12: 667493.
doi: 10.3389/fpls.2021.667493
[25] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性. 作物学报, 2022, 48: 1301-1311.
doi: 10.3724/SP.J.1006.2022.13031
Xiao Y N, Yu W T, Xie L H, Qi X T, Li C Y, Wen T X, Li G K, Hu J G. Genetic diversity analysis of Chinese fresh corn hybrids using SNP chips. Acta Agron Sin, 2022, 48: 1301-1311. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13031
[26] Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet, 1980, 32: 314.
[27] 严勇亮, 时晓磊, 张金波, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2021, 54: 4033-4047.
doi: 10.3864/j.issn.0578-1752.2021.19.001
Yan Y L, Shi X L, Zhang J B, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain quality related characteristics of spring wheat. Sci Agric Sin, 2021, 54: 4033-4047. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.19.001
[28] 张亚丽, 韩志刚, 吴昊, 夏云. 应用FastTree2.1.8快速构建HIV-1 pol区基因的最大似然系统进化树. 中国艾滋病性病, 2017, 23: 695-699.
Zhang Y L, Han Z G, Wu H, Xia Y. Rapid construction of maximum likelihood tree of HIV-1 pol gene by FastTree2.1.8. Chin J AIDS STD, 2017, 23: 695-699. (in Chinese with English abstract)
[29] Dhillon G S, Singh D, Singh R P, Poland J, Tomar V. Distributed under creative commons CC-BY 4.0 Elucidating SNP-based genetic diversity and population structure of advanced breeding lines of bread wheat (Triticum aestivum L.). PeerJ, 2021, 9: e11593.
doi: 10.7717/peerj.11593
[30] Shamseldeen E, Ahmed S, Vikas B, Emara H A, Nower A A, Salem K F M, Jesse P, Baenziger P S. Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front Genet, 2018, 9: 76.
doi: 10.3389/fgene.2018.00076 pmid: 29593779
[31] Talbert L E, Smith L Y, Blake K. More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome, 1998, 41: 402-407.
doi: 10.1139/g98-037
[32] Caldwell K S, Dvorak J, Lagudah E S, Akhunov E, Luo M C, Wolters P, Petra W, Wayne P. Sequence polymorphism in polyploid wheat and their d-genome diploid ancestor. Genetics, 2004, 167: 941-947.
doi: 10.1534/genetics.103.016303 pmid: 15238542
[33] 喻俊杰, 金艳, 张勇, 徐辰武. 江苏主栽小麦品种遗传多样性的SSR分析. 麦类作物学报, 2015, 35: 1372-1377.
Yu J J, Jin Y, Zhang Y, Xu C W. Analysis on genetic diversity of Jiangsu wheat cultivars using SSR markers. J Triticeae Crops, 2015, 35: 1372-1377. (in Chinese with English abstract)
[34] 彭芹, 戴双, 郭骞欢, 程敦公, 李豪圣, 刘爱峰, 刘建军, 赵世杰, 宋健民. 1950年以来山东省主推小麦品种的遗传多样性演变. 分子植物育种, 2012, 10: 228-237.
Peng Q, Dai S, Guo Q H, Cheng D G, Li H S, Liu A F, Liu J J, Zhao S J, Song J M. The evolution of genetic diversity of wheat varieties released in Shandong province since 1950. Mol Plant Breed, 2012, 10: 228-237. (in Chinese with English abstract)
[35] Frascaroli E, Schrag T A, Melchinger A E. Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet, 2013, 126: 133-141.
doi: 10.1007/s00122-012-1968-6
[36] 郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生. 我国五十年来育成小麦品种的遗传多样性演变. 中国科学: C辑, 2005, 35: 408-415.
Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S. Genetic diversity changes of Chinese cultivars in the past 50 years. Sci China (Ser C), 2005, 35: 408-415. (in Chinese with English abstract)
[1] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[2] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[3] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[4] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[5] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
[6] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[7] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[8] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[9] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[10] 张晓, 陆成彬, 江伟, 张勇, 吕国锋, 吴宏亚, 王朝顺, 李曼, 吴素兰, 高德荣. 弱筋小麦育种品质选择指标及亲本组配原则[J]. 作物学报, 2023, 49(5): 1282-1291.
[11] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[12] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[13] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916.
[14] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[15] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .