欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1184-1196.doi: 10.3724/SP.J.1006.2023.21006

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析

刘佳(), 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林(), 伍碧华()   

  1. 西南作物基因资源发掘与利用国家重点实验室/四川农业大学小麦研究所, 四川成都 611130
  • 收稿日期:2022-01-25 接受日期:2022-09-05 出版日期:2023-05-12 网络出版日期:2022-09-28
  • 通讯作者: *伍碧华, E-mail: wubihua2017@126.com;黄林, E-mail: lhuang@sicau.edu.cn
  • 作者简介:E-mail: jialiu251776931@163.com
  • 基金资助:
    四川省国际科技创新合作项目(2021YFH0110);四川省生物育种重大科技专项(2022ZDZX0014)

Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat

LIU Jia(), GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin(), and WU Bi-Hua()   

  1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2022-01-25 Accepted:2022-09-05 Published:2023-05-12 Published online:2022-09-28
  • Contact: *E-mail: wubihua2017@126.com; E-mail: lhuang@sicau.edu.cn
  • Supported by:
    International Science and Technology Innovation Cooperation Project of Sichuan Province(2021YFH0110);Major Science and Technology Project for Biological Breeding of Sichuan Province(2022ZDZX0014)

摘要:

野生二粒小麦(Triticum turgidum ssp. dicoccoides)是普通小麦的四倍体祖先种, 具有广泛的基因型变异, 是改良普通小麦的重要种质资源。本研究对不同年份和地点四个环境下的161份野生二粒小麦渗入系材料的株高、分蘖数、小穗数、抽穗期、开花期和千粒重进行表型鉴定, 并利用覆盖全基因组的13,116个DArT标记对各农艺性状进行全基因组关联分析, 以期发掘性状显著关联标记及相关候选基因。本研究共检测到147个与6个农艺性状相关的稳定标记。其中, 一些关联标记与抽穗期和开花期同时相关, 并且在2B染色体上聚集成簇。在野生二粒小麦渗入系群体中共推定了21个与农艺性状相关的候选基因, 其中位于7A染色体与千粒重显著相关的候选基因与细胞周期蛋白有关。这些标记和候选基因可为克隆优异农艺性状相关基因提供重要信息, 从而为野生二粒小麦在普通小麦背景中的遗传改良综合利用提供依据与指导。

关键词: 野生二粒小麦, 普通小麦, 农艺性状, 远缘杂交, 全基因组关联分析

Abstract:

Wild emmer (Triticum dicoccoides ssp. dicoccoides) is the tetraploid progenitor of common wheat with wide genotypic variations, which is an important germplasm resource for common wheat improvement. In this study, the plant height, tiller number, spikelet number, heading date, anthesis date, and 1000-kernel weight of 161 introgression lines derived from wild emmer were phenotyped in four environments of different years and locations. We performed genome-wide association study (GWAS) of agronomic traits using 13,116 DArT markers to identify marker-trait associations (MTA) and candidate genes. A total of 147 stable markers associated with the tested 6 agronomic traits were identified. Among them, some MTAs were associated with both heading and anthesis date, and these MTAs were clustered on chromosome 2B. In addition, a total of 21 candidate genes related to the agronomic traits were deduced in introgression lines derived from wild emmer. Among them, the candidate gene associated with 1000-kernel weight on chromosome 7A maybe related to cyclin protein. These MTAs and candidate genes could provide the essential information for cloning genes related to excellent agronomic traits and further provide basis and guidance for comprehensive utilization of wild emmer for genetic improvement in common wheat background.

Key words: wild emmer wheat, common wheat, agronomic traits, wide hybridization, GWAS

附表1

供试材料表"

材料名称Sample name 谱系Pedigree 亚群Subgroup
CN16 Female Parent Gp3
D1 Male Parent Gp3
BAd63-4 CN16×D1 Gp2
BAd64-5 CN16×D1 Gp2
BAd67-2 CN16×D1 Gp2
BAd68-2 CN16×D1 Gp2
BAd69-2 CN16×D1 Gp2
BAd70-2 CN16×D1 Gp2
BAd70-4 CN16×D1 Gp2
BAd71-2 CN16×D1 Gp2
BAd71-3 CN16×D1 Gp2
BAd73-2 CN16×D1 Gp2
BAd73-7 CN16×D1 Gp2
BAd74-2 CN16×D1 Gp2
BAd76-5 CN16×D1 Gp2
BAd79-5 CN16×D1 Gp2
BAd84-5 CN16×D1 Gp2
BAd89-1 CN16×D1 Gp2
BAd91-4 CN16×D1 Gp2
BAd93-5 CN16×D1 Gp2
BAd95-2 CN16×D1 Gp2
BAd95-4 CN16×D1 Gp2
BAd97-2 CN16×D1 Gp2
BAd99-5 CN16×D1 Gp2
BAd100-3 CN16×D1 Gp2
BAd104-2 CN16×D1 Gp2
BAd106-1 CN16×D1 Gp2
BAd106-4 CN16×D1 Gp2
BAd107-1 CN16×D1 Gp2
BAd107-4 CN16×D1 Gp2
BAd108-2 CN16×D1 Gp3
BAd109-2 CN16×D1 Gp2
BAd111-1 CN16×D1 Gp2
BAd112-6 CN16×D1 Gp2
BAd117-3 CN16×D1 Gp2
BAd119-3 CN16×D1 Gp2
BAd119-4 CN16×D1 Gp2
BAd122-3 CN16×D1 Gp2
BAd122-5 CN16×D1 Gp1
BAd123-2 CN16×D1 Gp2
BAd123-3 CN16×D1 Gp2
BAd124-4 CN16×D1 Gp2
BAd124-6 CN16×D1 Gp2
BAd125-2 CN16×D1 Gp2
BAd127-1 CN16×D1 Gp2
BAd128-2 CN16×D1 Gp2
BZn128-5 CN16×D1 Gp2
BAd128-6 CN16×D1 Gp2
BAd129-2 CN16×D1 Gp2
BAd129-4 CN16×D1 Gp2
BAd129-6 CN16×D1 Gp2
BZn130-3 CN16×D1 Gp2
BAd133-5 CN16×D1 Gp2
BAd134-3 CN16×D1 Gp2
BAd137-4 CN16×D1 Gp2
BAd137-5 CN16×D1 Gp2
BAd139-6 CN16×D1 Gp2
BAd141-6 CN16×D1 Gp1
BAd142-1 CN16×D1 Gp2
BAd142-4 CN16×D1 Gp2
BAd142-5 CN16×D1 Gp2
BAd142-6 CN16×D1 Gp2
BAd143-3 CN16×D1 Gp2
BAd144-1 CN16×D1 Gp2
BAd144-6 CN16×D1 Gp2
BAd145-3 CN16×D1 Gp2
BAd146-4 CN16×D1 Gp2
BAd147-2 CN16×D1 Gp1
BAd149-3 CN16×D1 Gp1
BAd152-7 CN16×D1 Gp1
BAd153-3 CN16×D1 Gp1
BAd156-2 CN16×D1 Gp1
BAd157-4 CN16×D1 Gp1
BAd159-3 CN16×D1 Gp1
BAd160-6 CN16×D1 Gp1
BAd161-5 CN16×D1 Gp1
BAd162-5 CN16×D1 Gp3
BAd163-2 CN16×D1 Gp1
BAd164-5 CN16×D1 Gp1
BFe164-6 CN16×D1 Gp1
BAd167-6 CN16×D1 Gp1
BAd168-3 CN16×D1 Gp1
BAd169-4 CN16×D1 Gp1
BAd170-1 CN16×D1 Gp1
BAd170-2 CN16×D1 Gp1
BAd170-4 CN16×D1 Gp1
BAd170-6 CN16×D1 Gp1
BAd173-5 CN16×D1 Gp1
BAd174-1 CN16×D1 Gp1
BAd174-6 CN16×D1 Gp1
BAd175-3 CN16×D1 Gp1
BAd175-6 CN16×D1 Gp1
BAd175-7 CN16×D1 Gp1
BAd176-4 CN16×D1 Gp1
BAd177-2 CN16×D1 Gp1
BAd177-6 CN16×D1 Gp1
BAd178-2 CN16×D1 Gp1
BAd178-6 CN16×D1 Gp1
BAd179-4 CN16×D1 Gp1
BAd180-3 CN16×D1 Gp1
BAd180-5 CN16×D1 Gp1
BAd181-1 CN16×D1 Gp1
BAd182-3 CN16×D1 Gp1
BAd182-5 CN16×D1 Gp1
BAd183-3 CN16×D1 Gp1
BAd183-4 CN16×D1 Gp1
BAd184-1 CN16×D1 Gp2
BAd185-1 CN16×D1 Gp1
AdA116-(1) BAd116-1×MM46 Gp3
AdA116-(3) BAd116-1×MM46 Gp3
AdA116-(4) BAd116-1×MM46 Gp3
AdA116-(5) BAd116-1×MM46 Gp3
AdA116-(6) BAd116-1×MM46 Gp3
AdA116-⑩ BAd116-1×MM46 Gp3
AdA180-1 BAd180-1×CM50 Gp3
AdA180-2 BAd180-1×CM50 Gp3
AdA180-3 BAd180-1×CM50 Gp3
AdA168-1 BAd168-1×KCM2 Gp3
AdA168-2 BAd168-1×KCM2 Gp3
AdA168-4 BAd168-1×KCM2 Gp3
AdA168-5 BAd168-1×KCM2 Gp3
AdA168-6 BAd168-1×KCM2 Gp3
AdA168-9 BAd168-1×KCM2 Gp3
AdA168-(1) BAd168-1×KCM2 Gp3
AdA168-(10) BAd168-1×KCM2 Gp3
AdA168-(11) BAd168-1×KCM2 Gp3
AdA168-(12) BAd168-1×KCM2 Gp3
AdA168-(14) BAd168-1×KCM2 Gp3
AdA168-(15) BAd168-1×KCM2 Gp3
AdA168-(16) BAd168-1×KCM2 Gp3
AdA168-(17) BAd168-1×KCM2 Gp3
AdA168-(18) BAd168-1×KCM2 Gp3
AdA168-(19) BAd168-1×KCM2 Gp3
AdA168-(2) BAd168-1×KCM2 Gp3
AdA168-(20) BAd168-1×KCM2 Gp3
AdA168-(21) BAd168-1×KCM2 Gp3
AdA168-(3) BAd168-1×KCM2 Gp3
AdA168-(4) BAd168-1×KCM2 Gp3
AdA168-(5) BAd168-1×KCM2 Gp3
AdA168-(6) BAd168-1×KCM2 Gp3
AdA168-(7) BAd168-1×KCM2 Gp3
AdA168-(8) BAd168-1×KCM2 Gp3
AdA95-1 BAd95-1×MM46 Gp3
AdA95-2 BAd95-1×MM46 Gp3
AdA95-3 BAd95-1×MM46 Gp3
AdA95-4 BAd95-1×MM46 Gp2
AdA95-5 BAd95-1×MM46 Gp3
AdA79-1 BAd79-1×MM46 Gp3
AdA79-2 BAd79-1×MM46 Gp3
AdA79-3 BAd79-1×MM46 Gp3
AdA79-4 BAd79-1×MM46 Gp3
AdA79-5 BAd79-1×MM46 Gp3
AdA73-1 BAd73-7×(YB58863×CY18) Gp2
AdA73-10 BAd73-7×(YB58863×CY18) Gp2
AdA73-11 BAd73-7×(YB58863×CY18) Gp2
AdA73-2 BAd73-7×(YB58863×CY18) Gp2
AdA73-3 BAd73-7×(YB58863×CY18) Gp2
AdA73-6 BAd73-7×(YB58863×CY18) Gp2
AdA73-8 BAd73-7×(YB58863×CY18) Gp2
AdA73-9 BAd73-7×(YB58863×CY18) Gp2
AdA73-(2) BAd73-7×(YB58863×CY18) Gp2
AdA73-(3) BAd73-7×(YB58863×CY18) Gp2
AdA73-(4) BAd73-7×(YB58863×CY18) Gp2

表1

野生二粒小麦D1渗入系群体及其双亲农艺性状的表型变异"

性状
Trait
环境
Environment
亲本Parents 渗入系群体Introgression lines
CN16 D1 均值±标准差
Mean±SD
范围
Range
变异系数
CV (%)
株高
Plant height (cm)
2015温江WJ 85.10 a±0.80 92.20 a±1.40 99.03 a±10.23 77.20-123.30 10.33
2015崇州CZ 79.73 c±2.95 116.53 a±8.05 97.35 b±9.79 70.40-118.50 10.06
2016温江WJ 87.60 b±2.27 120.37 a±2.60 94.42 b±9.66 74.30-117.80 10.23
2016崇州CZ 81.60 b±8.01 117.97 a±5.20 90.88 b±10.32 68.10-117.50 11.36
分蘖数
Tiller number
2015温江WJ 8.00 b±1.00 21.33 a±0.58 7.74 b±1.23 4.60-11.30 15.89
2015崇州CZ 7.60 b±2.69 19.87 a±1.10 8.54 b±1.40 5.50-12.50 16.39
2016温江WJ 8.33 ab±1.33 9.53 a±3.56 7.51 b±1.40 4.30-12.70 18.64
2016崇州CZ 10.67 b±2.02 24.13 a±3.64 9.54 b±1.74 6.10-15.90 18.24
小穗数
Spikelet number
2015温江WJ 19.03 b±0.95 20.97 a±1.15 19.74 ab±1.35 16.30-24.10 6.84
2015崇州CZ 17.07 b±2.69 20.47 a±0.46 19.33 a±1.22 16.30-23.30 6.31
2016温江WJ 18.40 a±1.22 19.27 a±1.97 19.40 a±1.08 15.90-22.30 5.57
2016崇州CZ 21.13 a±0.61 19.80 a±1.04 19.98 a±1.11 16.70-23.50 5.56
抽穗期
Heading date (d)
2015温江WJ 134.00 b±7.00 160.33 a±0.58 135.75 b±3.47 127.30-145.30 2.56
2015崇州CZ 124.00 b±0.00 152.00 a±0.00 128.60 b±4.42 121.30-142.30 3.44
2016温江WJ 142.67 b±0.58 165.00 a±0.00 145.18 b±3.22 135.70-152.30 2.22
2016崇州CZ 137.33 b±1.15 164.33 a±0.58 137.61 b±3.16 129.70-151.00 2.30
开花期
Anthesis date (d)
2015温江WJ 143.67 c±2.08 166.00 a±0.00 147.96 b±2.68 140.70-153.70 1.81
2015崇州CZ 136.67 b±1.15 158.00 a±0.00 140.31 b±2.98 133.00-150.30 2.12
2016温江WJ 154.67 b±0.58 169.00 a±0.00 156.67 b±2.45 149.00-161.70 1.56
2016崇州CZ 145.67 b±2.08 170.33 a±0.58 147.68 b±3.01 142.00-160.70 2.04
千粒重
1000-kernel weight (g)
2015温江WJ 43.19 a±4.99 19.21 b±4.39 46.08 a±4.64 30.70-57.00 10.07
2015崇州CZ 49.33 a±1.54 15.00 b±0.67 52.90 a±4.35 37.08-64.63 8.22
2016温江WJ 49.22 a±1.84 32.80 b±1.61 49.88 a±4.28 33.93-60.11 8.58
2016崇州CZ 42.70 b±4.97 31.63 c±0.71 49.06 a±4.52 35.00-60.88 9.21

图1

野生二粒小麦D1渗入系群体的农艺性状在各环境下的频率分布 实线箭头代表亲本野生二粒小麦D1, 虚线箭头代表亲本普通小麦CN16。WJ: 温江; CZ: 崇州。"

表2

野生二粒小麦D1渗入系群体的农艺性状基于BLUP数据的皮尔森相关性分析"

性状
Trait
株高
Plant height
分蘖数
Tiller number
小穗数
Spikelet number
抽穗期
Heading date
开花期
Anthesis date
分蘖数 Tiller number 0.162*
小穗数 Spikelet number -0.351** -0.342**
抽穗期 Heading date -0.051 0.130 0.311**
开花期 Anthesis date -0.046 0.124 0.209** 0.938**
千粒重 1000-kernel weight 0.300** -0.059 -0.169* 0.088 0.098

表3

野生二粒小麦D1渗入系群体在GLM和MLM模型下的农艺性状全基因组关联分析"

性状
Trait
模型
Model
显著MTA
No. sig.a
显著P均值
Average
-log10 (P)
显著P值范围
Range -log10 (P)
表型变异
解释率均值
Average PVE (%)
表型变异
解释率均值范围
Range PVE (%)
稳定
标记数
No. of shared b
株高
Plant height
MLM 25 3.31 3.04-3.80 8.21 7.31-10.32 14
GLM 1162 4.34 3.00-12.58 5.42 3.48-15.26
分蘖数
Tiller number
MLM 59 3.29 3.00-3.75 7.73 6.99-9.69 55
GLM 932 4.21 3.00-9.57 9.72 6.38-21.60
小穗数
Spikelet number
MLM 6 3.33 3.01-3.62 8.07 6.95-8.81 5
GLM 1566 4.35 3.00-11.17 8.43 5.38-21.18
抽穗期
Heading date
MLM 188 3.48 3.00-4.72 8.64 6.91-13.62 39
GLM 529 4.27 3.00-7.27 8.16 5.36-14.93
开花期
Anthesis date
MLM 26 3.38 3.00-3.98 8.34 6.88-10.38 19
GLM 630 4.00 3.00-7.16 8.15 5.70-15.63
千粒重
1000-kernel weight
MLM 45 3.29 3.01-3.78 10.66 9.48-12.98 15
GLM 357 3.85 3.00-6.55 8.46 6.15-15.43

附表2

GLM和MLM模型下检测到的与农艺性状显著关联的稳定MTA"

性状
Trait
性状关联标记
MTA
染色体
Chromosome
位置
Position (cM)
混合线性模型MLM 一般线性模型GLM
显著P
-log10(P)
表型变异解释率
PVE (%)
显著P
-log10(P)
表型变异解释率
PVE (%)
株高
PH
1767955 1A 134.66 3.05 7.58 6.24 7.82
1268900 1B 68.58 3.48 8.72 3.51 4.26
1073712 1B 205.80 3.53 8.51 5.09 6.46
12776744 2A 125.28 3.04 7.34 6.04 7.52
1013390 2B 169.52 3.10 7.38 3.55 4.54
1067538 2B 169.52 3.15 7.43 3.95 5.04
1130621 3A 76.65 3.11 7.64 6.46 8.24
982324 3A 95.54 3.54 8.91 11.24 14.57
6041358 3A 95.54 3.42 8.26 12.58 15.26
3021986 6D 123.58 3.58 8.96 9.07 12.24
1666084 6D 125.74 3.73 9.39 11.25 14.23
1296920 6D 140.67 3.29 8.06 6.17 7.87
2292535 7A 19.26 3.30 8.59 3.26 4.22
1687570 7B 82.30 3.25 7.96 4.46 5.40
分蘖数
TN
5411823 1B 104.00 3.32 7.56 3.12 6.66
12743876 1B 396.15 3.14 7.19 3.09 6.69
1405940 2B 76.70 3.45 8.16 4.47 10.65
1090835 2B 94.77 3.70 9.69 3.99 9.49
7884146 2B 94.77 3.75 8.76 4.25 9.46
1252801 2B 95.78 3.30 7.99 3.86 9.37
2366453 2B 113.20 3.41 8.08 3.96 9.45
1684342 2B 114.33 3.57 8.36 3.93 8.85
1165797 2B 115.46 3.15 7.09 3.21 6.87
3022409 2B 117.77 3.01 7.51 3.76 8.83
1114669 2B 118.39 3.32 7.56 3.12 6.66
1160144 2B 119.70 3.21 7.27 3.48 7.55
分蘖数TN 987712 2B 120.12 3.25 7.70 3.43 7.93
1091031 2B 120.12 3.21 7.79 3.51 8.40
4004990 2B 120.12 3.32 7.56 3.12 6.66
1234254 2B 120.63 3.17 7.34 3.23 7.55
1102098 2B 134.76 3.25 7.80 3.73 8.98
1110856 2B 135.57 3.29 8.05 3.90 9.19
1054964 2B 137.11 3.16 7.51 3.44 7.93
1096265 2B 137.11 3.32 7.56 3.12 6.66
12768537 2B 137.20 3.20 7.22 3.55 7.73
1160910 2B 138.41 3.32 7.56 3.12 6.66
978979 2B 139.32 3.31 7.76 3.31 7.59
1100798 2B 139.32 3.41 8.45 4.14 9.99
1203705 2B 139.32 3.14 7.16 3.43 7.87
3064449 2B 139.32 3.07 7.42 3.23 7.54
1093009 2B 139.77 3.32 8.16 3.65 8.57
3023277 2B 144.20 3.49 8.56 5.32 13.27
2288916 2B 147.13 3.11 7.65 3.53 8.33
1130961 2B 147.49 3.30 7.51 3.17 6.84
1068936 2B 147.53 3.00 7.21 3.39 8.04
7906177 2B 148.21 3.30 7.52 3.20 6.90
1093839 2B 149.44 3.07 7.51 3.60 8.65
2356896 2B 149.44 3.18 7.56 3.86 9.19
3021490 2B 150.67 3.25 7.43 3.07 6.68
3034249 2B 151.10 3.01 7.29 3.52 8.38
979343 2B 151.35 3.29 7.74 3.77 8.67
12832697 2B 151.35 3.38 7.75 3.16 6.88
1234491 2B 151.77 3.40 7.81 3.41 7.42
10992880 2B 152.04 3.40 7.80 3.19 6.96
1150153 2B 154.34 3.32 7.56 3.12 6.66
1086699 2D 258.12 3.62 8.48 3.32 7.34
1318969 3B 132.24 3.23 7.54 3.29 7.35
1160384 3B 222.96 3.35 7.77 4.41 10.08
4992374 4A 58.58 3.16 7.17 3.27 7.06
1145045 4B 149.69 3.49 8.04 9.57 21.60
1217208 4B 149.69 3.49 8.04 9.57 21.60
2275152 4D 143.79 3.30 7.80 3.77 8.87
1860396 6A 46.40 3.14 7.06 5.07 11.59
5567513 6A 70.00 3.32 7.56 3.12 6.66
1225584 6B 64.10 3.17 7.71 3.90 9.33
12774898 7A 1.18 3.31 7.54 3.22 6.97
12854634 7A 285.84 3.36 7.75 3.39 7.36
分蘖数
TN
1200976 7D 125.99 3.67 9.20 6.09 14.36
999801 7D 126.44 3.06 7.61 4.60 11.20
小穗数
SN
1289016 3A 105.69 3.01 7.07 9.10 17.03
1082521 4A 215.47 3.34 8.22 4.68 9.36
1145238 7B 21.79 3.62 8.72 3.55 6.61
1111098 7D 216.22 3.59 8.81 11.17 21.18
1264045 7D 216.25 3.38 8.63 9.51 19.20
抽穗期
HD
1233288 1A 363.51 4.06 10.43 4.79 9.29
12768537 2B 137.20 3.01 6.92 7.00 13.17
2290258 2B 138.25 4.72 13.62 5.46 10.40
3024538 2B 138.78 4.63 12.67 5.44 11.19
1108320 2B 139.63 3.79 10.21 5.57 11.28
1037539 2B 146.47 4.44 11.96 4.81 9.57
1130961 2B 147.49 3.02 6.96 7.22 13.58
1158396 2B 148.12 4.72 12.12 3.14 5.92
2280469 2B 148.12 3.63 8.79 3.24 5.90
1128165 2B 148.62 3.52 8.50 6.10 11.47
3025235 2B 148.62 3.70 8.96 3.99 7.62
1107369 2B 149.05 3.98 10.19 5.72 11.31
1254240 2B 149.78 3.01 6.95 4.21 7.82
2303763 2B 149.78 3.02 6.97 4.21 7.85
3021490 2B 150.67 3.01 6.99 7.00 13.34
3023438 2B 150.97 3.01 6.94 3.93 7.34
1116554 2B 152.10 3.63 8.81 5.30 10.16
1233376 2B 152.10 3.80 9.38 5.92 11.37
1234002 2B 152.10 3.05 7.06 5.41 10.20
1111821 2B 152.97 3.65 8.87 5.20 10.16
1096366 2B 155.58 4.60 11.75 4.41 8.26
2259939 2B 155.58 3.03 7.04 5.33 10.19
1233381 2B 155.87 4.64 11.81 4.06 7.65
3023927 2B 171.58 4.16 10.36 3.91 7.48
1020733 2B 201.12 3.06 7.52 4.44 8.62
2246033 2D 137.48 4.14 12.27 3.87 7.16
2338436 2D 137.48 4.15 11.43 4.47 8.63
5324411 2D 258.12 3.29 7.93 4.64 9.22
1111555 4D 127.39 3.74 9.23 5.51 11.22
1254583 5D 232.48 3.77 9.44 5.65 11.38
1256190 5D 232.48 4.44 11.67 6.58 12.71
1255241 5D 233.53 3.90 9.73 6.44 12.63
1106873 5D 238.83 3.53 8.54 7.02 14.19
1255155 6A 18.29 3.50 9.03 3.67 7.10
抽穗期
HD
2293190 6A 19.44 3.54 9.61 4.29 8.23
1121033 6B 86.89 3.35 8.25 3.40 6.22
1036713 7A 38.12 3.06 8.61 3.18 5.85
12854634 7A 285.84 3.00 6.91 7.13 13.43
1263147 7B 205.56 3.56 9.14 3.70 7.12
开花期
AD
2290258 2B 138.25 3.28 8.73 5.53 11.47
3024538 2B 138.78 3.74 9.78 5.62 12.37
1108320 2B 139.63 3.59 9.24 5.77 12.57
1037539 2B 146.47 3.02 8.06 4.96 10.64
1130961 2B 147.49 3.00 6.89 5.95 11.94
1120608 2B 148.62 3.27 7.84 3.44 6.83
1128165 2B 148.62 3.98 9.87 5.53 11.10
1254240 2B 149.78 3.32 7.83 3.73 7.34
2303763 2B 149.78 3.32 7.86 3.73 7.38
3021490 2B 150.67 3.00 6.88 5.76 11.71
3023438 2B 150.97 3.32 7.83 3.52 6.95
3958642 2B 152.80 3.30 7.70 3.35 6.42
1096366 2B 155.58 3.64 8.87 5.27 10.65
2259939 2B 155.58 3.17 7.44 4.85 9.87
1233381 2B 155.87 3.62 8.75 4.10 8.26
5325220 2D 248.14 3.09 7.70 3.78 7.67
1113976 3B 156.41 3.57 8.88 4.30 9.19
1101163 4B 148.56 3.08 7.29 3.08 5.96
1092921 7D 112.92 3.76 9.60 3.06 6.21
千粒重
TKW
1070490 3B 94.94 3.42 11.68 4.60 10.62
1241817 3B 94.94 3.26 10.91 3.77 8.35
1251709 3B 94.94 3.21 10.00 3.97 8.40
1265489 3B 94.94 3.53 11.20 4.10 8.64
3033937 3B 94.94 3.68 12.04 4.39 9.76
3954514 3B 94.94 3.75 12.09 4.29 9.24
3026622 3B 95.15 3.78 12.98 4.54 10.31
1101250 3B 95.66 3.59 11.95 4.91 10.93
1102583 3B 99.31 3.78 12.20 4.87 10.47
2352813 3B 102.94 3.28 10.22 4.04 8.42
1119949 3B 103.13 3.29 10.25 4.02 8.44
1298772 5A 68.92 3.68 12.11 3.18 6.67
1219440 6A 54.76 3.37 10.84 5.65 12.39
1141591 7A 293.14 3.25 10.29 4.00 8.91
1164130 7D 218.19 3.34 10.76 4.49 9.70

图2

基于混合线性模型下野生二粒小麦D1渗入系群体农艺性状的全基因组关联曼哈顿扫描图 A: 混合线性模型检测到的显著MTA, 红线表示-log10 (P)阈值为3.00; B: Quantile-Quantile图中黑线表示预期值。"

图3

基于一般线性模型下野生二粒小麦D1渗入系群体农艺性状的全基因组关联曼哈顿扫描图 A: 一般线性模型检测到的显著MTA, 红线表示-log10 (P)阈值为3.00; B: Quantile-Quantile图中黑线表示预期值。"

表4

源于野生二粒小麦A、B基因组的性状显著关联标记"

关联标记
MTA
染色体
Chromosome
位置
Position (cM)
关联性状
Trait
1767955 1A 134.66 株高 Plant height
1268900 1B 68.58 株高 Plant height
12776744 2A 125.28 株高 Plant height
1130621 3A 76.65 株高 Plant height
6041358 3A 95.54 株高 Plant height
1687570 7B 82.30 株高Plant height
5411823 1B 104.00 分蘖数 Tiller number
12743876 1B 396.15 分蘖数 Tiller number
7884146 2B 94.77 分蘖数 Tiller number
1684342 2B 114.33 分蘖数 Tiller number
1165797 2B 115.46 分蘖数 Tiller number
1114669 2B 118.39 分蘖数 Tiller number
1160144 2B 119.70 分蘖数 Tiller number
4004990 2B 120.12 分蘖数 Tiller number
1096265 2B 137.11 分蘖数 Tiller number
12768537 2B 137.20 分蘖数/抽穗期Tiller number/Heading date
1160910 2B 138.41 分蘖数 Tiller number
1130961 2B 147.49 分蘖数/抽穗期/开花期Tiller number/Heading date/Anthesis date
7906177 2B 148.21 分蘖数 Tiller number
3021490 2B 150.67 分蘖数/抽穗期/开花期Tiller number/Heading date/Anthesis date
12832697 2B 151.35 分蘖数 Tiller number
1234491 2B 151.77 分蘖数 Tiller number
10992880 2B 152.04 分蘖数 Tiller number
1150153 2B 154.34 分蘖数 Tiller number
4992374 4A 58.58 分蘖数 Tiller number
1145045 4B 149.69 分蘖数 Tiller number
1217208 4B 149.69 分蘖数 Tiller number
1860396 6A 46.40 分蘖数 Tiller number
5567513 6A 70.00 分蘖数 Tiller number
12774898 7A 1.18 分蘖数 Tiller number
12854634 7A 285.84 分蘖数/抽穗期Tiller number/Heading date
1082521 4A 215.47 小穗数 Spikelet number
1128165 2B 148.62 抽穗期/开花期Heading date/Anthesis date
1254240 2B 149.78 抽穗期/开花期Heading date/Anthesis date
2303763 2B 149.78 抽穗期/开花期Heading date/Anthesis date
3023438 2B 150.97 抽穗期/开花期Heading date/Anthesis date
1233376 2B 152.10 抽穗期 Heading date
1234002 2B 152.10 抽穗期 Heading date
1111821 2B 152.97 抽穗期 Heading date
1096366 2B 155.58 抽穗期 Heading date
2259939 2B 155.58 抽穗期/开花期Heading date/Anthesis date
1120608 2B 148.62 开花期 Anthesis date
3958642 2B 152.80 开花期 Anthesis date
1298772 5A 68.92 千粒重 1000-kernel weight
1141591 7A 293.14 千粒重 1000-kernel weight

附表3

野生二粒小麦渗入系群体农艺性状相关候选基因列表"

性状
Trait
性状关联标记
MTA
染色体
Chr.
中国春小麦基因组 野生二粒小麦基因组
基因Gene 基因描述Gene Description 基因Gene 基因描述Gene Description
株高
PH
1767955 1A \ \ TRIDC1AG013630.1 Auxin-responsive protein IAA15
982324 3A \ \ TRIDC3AG049250.1 Auxin efflux carrier family protein
1666084 6D TraesCS6D01G271900.1 Calcium sensing receptor \ \
2292535 7A TraesCS7A01G019400.1 Pectin lyase-like superfamily protein TRIDC7AG001740.1 Pectin lyase-like superfamily protein
分蘖数
TN
1090835 2B TraesCS2B01G110300.1 DnaJ TRIDC2BG013350.1 Heat shock protein DnaJ with tetratricopeptide repeat
1100798 2B \ \ TRIDC2BG033050.1 Glucose-6-phosphate/phosphate translocator 2
999801 7D TraesCS7D01G168700LC.1 Glycine-rich cell wall structural protein 2 \ \
小穗数
SN
1289016 3A TraesCS3A01G370300.1 Amino acid transporter TRIDC3AG053230.1 Transmembrane amino acid transporter family protein
1264045 7D TraesCS7D01G522800LC Polynucleotidyl transferase \ \
抽穗期
HD
2290258 2B TraesCS2B01G266000.1 Sugar/inositol transporter TRIDC2BG038220.1 calcium dependent protein kinase 1
1037539 2B \ \ TRIDC2BG058610.3 kinesin-like protein 1
3021490 2B TraesCS2B01G080900 Leucine-rich repeat receptor-like protein kinase family protein TRIDC2BG071280.1 Disease resistance protein RGA2
2259939 2B TraesCS2B01G517800 FBD-associated F-box protein \ \
1111555 4D TraesCS4D01G313400.1 Ethylene-responsive transcription factor \ \
开花期
AD
2290258 2B TraesCS2B01G266000.1 Sugar/inositol transporter TRIDC2BG038220.1 calcium dependent protein kinase 1
1037539 2B \ \ TRIDC2BG058610.3 kinesin-like protein 1
开花期
AD
3021490 2B TraesCS2B01G080900 Leucine-rich repeat receptor-like protein kinase family protein TRIDC2BG071280.1 Disease resistance protein RGA2
2259939 2B TraesCS2B01G517800 FBD-associated F-box protein
1092921 7D TraesCS7D01G107200.1 MADS-box transcription factor
千粒重
TKW
1141591 7A \ \ TRIDC7AG076170.1 Cyclin B2
[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, 34(4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, 34(4): 1-7. (in Chinese with English abstract)
[2] International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788.
doi: 10.1126/science.1251788
[3] Jones J M, Pena R J, Korczak R, Braun H J. Carbohydrates, grains, and wheat in nutrition and health: an overview Part II. Grain terminology and nutritional contributions.Cereal Foods World, 2015, 60: 260-271.
doi: 10.1094/CFW-60-6-0260
[4] Joppa L R, Cantrell R G. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci, 1990, 30: 1059-1064.
doi: 10.2135/cropsci1990.0011183X003000050021x
[5] Jaradat A A. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (‘Triticum dicoccoides’ korn ex Asch. and Graebn.) Thell. Aust J Crop Sci, 2011, 5: 1072.
[6] Van Silfhout C H, Gerechter-Amitai Z K. Adult-plant resistance to yellow rust in wild emmer wheat. Netherlands J Plant Pathol, 1988, 94: 267-272.
doi: 10.1007/BF01977317
[7] Nevo E. Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third millennium. Isr J Plant Sci, 2001, 49: 77-92.
doi: 10.1092/XJQN-9T4H-VTL3-CDXU
[8] Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol, 2007, 24: 1506-1517.
doi: 10.1093/molbev/msm077 pmid: 17443011
[9] Kushnir U, Halloran G M. Transfer of high kernel weight and high protein from wild tetraploid wheat (Triticum turgidum dicoccoides) to bread wheat (T. aestivum) using homologous and homoeologous recombination. Euphytica, 1984, 33: 249-255.
doi: 10.1007/BF00022773
[10] 储诚艮, 冯祎高, 陈佩度. 将野生二粒小麦的大粒和籽粒高蛋白含量性状向普通小麦的转移. 南京农业大学学报, 2001, 24(2): 16-19.
Chu C G, Feng Y G, Chen P D. The transference of the traits large kernel and high seed protein content from T. dicoccoides into common wheat. J Nanjing Agric Univ, 2001, 24: 16-19. (in Chinese with English abstract)
[11] 胡喜贵. 关切小麦加工和营养品质的1AyNAM位点的种质资源鉴定及利用研究. 四川农业大学博士学位论文, 四川成都, 2013.
Hu X G. Characterization and Utilization of 1Ay and NAM Loci Associated with Wheat Processing and Nutritional Quality in Triticum and Its Related Species. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2013. (in Chinese with English abstract)
[12] Jiang Z L, Wu B H, Wang Z Z, Hu J L, Yuan J, Chen H L, Liu J, Zheng Y L, Liu D C. Enriching novel Glu-Ax alleles and significantly strengthening gluten properties of common wheat through wide hybridization with wild emmer. J Cereal Sci, 2017, 76: 271-279.
doi: 10.1016/j.jcs.2017.04.018
[13] Wang Z Z, Huang L, Wu B H, Hu J L, Jiang Z L, Qi P F, Zheng Y L, Liu D C. Characterization of an integrated active Glu-1Ay allele in common wheat from wild emmer and its potential role in flour improvement. Int J Mol Sci, 2018, 19: 923.
doi: 10.3390/ijms19040923
[14] Liu J, Huang L, Wang C Q, Liu Y X, Yan Z H, Wang Z Z, Xiang L, Zhong X Y, Gong F Y, Zheng Y L, Liu D C, Wu B H. Genome-wide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Front Plant Sci, 2019, 10: 464-464.
doi: 10.3389/fpls.2019.00464 pmid: 31057576
[15] Gong F Y, Qi T G, Zhang T, Lu Y S, Liu J, Zhong X Y, He J S, Li Y F, Zheng Y L, Liu D C, Huang L, Wu B H. Comparison of the agronomic, cytological, grain protein characteristics, as well as transcriptomic profile of two wheat lines derived from wild emmer. Front Genet, 2022, 12: 804481.
doi: 10.3389/fgene.2021.804481
[16] Gong F Y, Huang L, Qi T G, Tang G, Liu J, Xiang L, He J S, Zheng Y L, Liu D C, Wu B H. Comparative analysis of developing grain transcriptome reveals candidate genes and pathways improving GPC in wheat lines derived from wild emmer. J Appl Genet, 2021, 62: 17-25.
doi: 10.1007/s13353-020-00588-y pmid: 33063291
[17] 伍碧华, 路洁霏, 李平, 胡喜贵, 郑有良. 野生二粒小麦籽粒蛋白质含量和库容性状的遗传多样性与可利用性研究. 四川农业大学学报, 2008, 26: 221-225.
Wu B H, Lu J F, Li P, Hu X G, Zheng Y L. Genetic diversity and potential utilization of grain protein content and sink traits in Triticum dicoccoides. J Sichuan Agric Univ, 2008, 26: 221-225. (in Chinese with English abstract)
[18] 国家粮食局. 谷物与豆类千粒重的测定, GB T 5519-2008, 2008.
State Administration of Grain. Cereals and Pulses-Determination of the Mass of 1000-grain, GB T 5519-2008, 2008 (in Chinese)
[19] Liu Y X, Lin Y, Gao S, Li Z Y, Ma J, Deng M, Chen G Y, Wei Y M, Zheng Y L. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861-873.
doi: 10.1111/tpj.2017.91.issue-5
[20] Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181.
doi: 10.1086/302959 pmid: 10827107
[21] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[22] Alvarado G, López M, Vargas M, Pacheco Á, Rodríguez F, Burgueño J, Crossa J. META-R (Multi Environment Trail Analysis with R for Windows) Version 6.04. Mexico, International Maize and Wheat Improvement Center, 2015 [2022-02-17]. https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10201.
[23] Alomari D Z, Eggert K, Von Wirén N, Alqudah A M, Polley A, Plieske J, Ganal M W, Pillen K, Röder M S. Identifying candidate genes for enhancing grain Zn concentration in wheat. Front Plant Sci, 2018, 9: 1313.
doi: 10.3389/fpls.2018.01313 pmid: 30271416
[24] Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2004, 21: 263-265.
doi: 10.1093/bioinformatics/bth457
[25] 段国辉, 高海涛, 张学品, 吴少辉, 杨洪强, 王艳芳. 冬小麦水旱条件下株高构成与产量性状及抗旱指数相关分析. 陕西农业科学, 2006, (4): 1-3.
Duan G H, Gao H T, Zhang X P, Wu S H, Yang H Q, Wang Y F. Correlation analysis of plant height composition, yield characters and drought resistance index of winter wheat under flood and drought conditions. Shaanxi J Agric Sci, 2006, (4): 1-3. (in Chinese)
[26] 贾继增. 小麦粒重与植株性状相关因素的统计分析. 作物学报, 1984, 10: 201-205.
Jia J Z. The statistical analysis for correlation factors in kernel weight and plant characters in wheat (T. aestivum L.). Acta Agron Sin, 1984, 10: 201-205. (in Chinese with English abstract)
[27] Austin R B, Bingham J, Blackwell R D, Evans L T, Ford M A, Morgan C L, Taylor M. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J Agric Sci, 1980, 94: 675-689.
doi: 10.1017/S0021859600028665
[28] 高士杰. 作物株型改良的增产效用. 吉林农业科学, 1999, 24(2): 23-24.
Gao S J. Yield-increasing effect of crop plant type improvement. J Jilin Agric Sci, 1999, 24(2): 23-24. (in Chinese)
[29] 盛承师. 小麦冠层形态结构与籽粒产量的关系(三): 理想株型的设计. 国外农学: 麦类作物, 1987, (1): 35-38.
Sheng C S. Relationship between wheat canopy morphology and grain yield: 3. Design for ideal plant type. Agron Abroad: Wheat Barley Triticale etc., 1987, (1): 35-38. (in Chinese)
[30] 张智猛. 华北地区小麦生育进程、灌浆特性与库容对粒重相对重要性的研究. 河北农业大学学报, 1998, (2): 22-27.
Zhang Z M. Studies on the contribution of growing process, filling properties, storage capacity to grain weight for wheat in North China. J Agric Univ Hebei, 1998, (2): 22-27. (in Chinese with English abstract)
[31] 李俊周, 刘艳阳, 何宁, 崔党群. 小麦DH群体数量性状的遗传分析. 麦类作物学报, 2005, 25(3): 16-19.
Li J Z, Liu Y Y, He N, Cui D Q. Genetics analysis of several quantitative traits of doubled haploid population in wheat. J Triticeae Crops, 2005, 25(3): 16-19. (in Chinese with English abstract)
[32] 李战怡. 西南小麦地方品种农艺性状评价及关联分析. 四川农业大学硕士学位论文, 四川成都, 2015.
Li Z Y. Agronomic Traits Evaluation and Association Analysis of Wheat Landraces in Southwest China. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract)
[33] Sourdille P, Snape J W, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome, 2000, 43: 487-494.
pmid: 10902713
[34] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
doi: 10.1007/s00122-006-0346-7 pmid: 16838135
[35] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
doi: 10.1007/s00122-002-0994-1 pmid: 12582918
[36] Campbell K G, Bergman C J, Gualberto D G, Anderson J A, Giroux M J, Hareland G, Fulcher R G, Sorrells M E, Finney P L. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci, 1999, 39: 1184-1195.
doi: 10.2135/cropsci1999.0011183X003900040039x
[37] Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu M D, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S, Ranjekar P K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet, 2001, 102: 726-732.
doi: 10.1007/s001220051703
[38] 郑有良, 颜济杨俊良. 小麦粒重基因定位研究. 作物学报, 1993, 19: 304-308.
Zheng Y L, Yan J, Yang J L. Localization of genes for grain weight in common wheat. Acta Agron Sin, 1993, 19: 304-308. (in Chinese)
[39] 刘振华, 于延冲, 向凤宁. 生长素响应因子与植物的生长发育. 遗传, 2011, 33: 1335-1346.
Liu Z H, Yu Y C, Xiang F N. Auxin response factors and plant growth and development. Hereditas (Beijing), 2011, 33: 1335-1346. (in Chinese with English abstract)
[40] 李春喜, 赵广才. 小麦分蘖变化动态与内源激素关系的研究. 作物学报, 2000, 26: 963-968.
Li C X, Zhao G C. Research on the relationship between wheat tillering dynamics and endogenous hormone. Acta Agron Sin, 2000, 26: 963-968. (in Chinese with English abstract)
[41] 黄祥富, 黄上志, 傅家瑞. 植物热激蛋白的功能及其基因表达的调控. 植物学报, 1999, 16: 530-536.
Huang X F, Huang S Z, Fu J R. Regulation of expression and functions of the heat shock proteins of plant. Chin Bull Bot, 1999, 16: 530-536. (in Chinese with English abstract)
[42] 许克恒, 张云彤, 张莹, 王彬, 王法微, 李海燕. 植物F-box基因家族的研究进展. 生物技术通报, 2018, 34(1): 26-32.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0636
Xu K H, Zhang Y T, Zhang Y, Wang B, Wang F W, Li H Y. Research advances on the f-box gene family in plants. Biotechnol Bull, 2018, 34(1): 26-32. (in Chinese with English abstract)
[43] 李元元, 王鲁, 苏振刚, 王元英. MADS-box基因控制植物成花的分子机理. 基因组学与应用生物学, 2010, 29: 1122-1132.
Li Y Y, Wang L, Su Z G, Wang Y Y. The molecular mechanism of MADS-box genes regulates floral formation and flowering in plant. Genom Appl Biol, 2010, 29: 1122-1132. (in Chinese with English abstract)
[44] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012, 22: 1666.
doi: 10.1038/cr.2012.151
[1] 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732.
[2] 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572.
[3] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[4] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[5] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
[6] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[7] 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560.
[8] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[9] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[10] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[11] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[12] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[13] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 李晓瑜, 方小梅, 伍浩天, 王莹倩, 刘洋, 唐恬, 王于栋, 吴银环, 岳林清, 张瑞丰, 崔静斌, 张建, 易泽林. 苦荞种质资源主要农艺性状SSR标记关联分析[J]. 作物学报, 2022, 48(12): 3091-3107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .