欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1170-1183.doi: 10.3724/SP.J.1006.2023.22024

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻种质资源稻瘟病抗性全基因组关联分析

周海平1(), 张帆2, 陈凯3, 申聪聪3, 朱双兵3, 邱先进4,*(), 徐建龙2,3,5,*()   

  1. 1温州市农业科学研究院/浙南作物育种重点实验室, 浙江温州 325000
    2中国农业科学院作物科学研究所, 北京 100081
    3岭南现代农业科学与技术广东省实验室深圳分中心/中国农业科学院农业基因组研究所, 广东深圳 518210
    4长江大学农学院, 湖北荆州 434025
    5海南省崖州湾种子实验室, 海南三亚 572024
  • 收稿日期:2022-04-24 接受日期:2022-09-05 出版日期:2023-05-12 网络出版日期:2022-09-15
  • 通讯作者: *徐建龙, E-mail: xujianlong@caas.cn; 邱先进, E-mail: xjqiu216@yangtzeu.edu.cn
  • 作者简介:E-mail: zhouhaiping7583@126.com
  • 基金资助:
    海南崖州湾种子实验室揭榜挂帅项目(B21HJ0216);温州市农业新品种选育协作组专项(2019ZX006)

Identification of rice blast resistance in xian and geng germplasms by genome- wide association study

ZHOU Hai-Ping1(), ZHANG Fan2, CHEN Kai3, SHEN Cong-Cong3, ZHU Shuang-Bing3, QIU Xian-Jin4,*(), XU Jian-Long2,3,5,*()   

  1. 1Wenzhou Academy of Agricultural Sciences/South-Zhejiang Crop Breeding Key Laboratory, Wenzhou 325000, Zhejiang
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
    4College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    5Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China
  • Received:2022-04-24 Accepted:2022-09-05 Published:2023-05-12 Published online:2022-09-15
  • Contact: *E-mail: xujianlong@caas.cn;E-mail: xjqiu216@yangtzeu.edu.cn
  • Supported by:
    Hainan Yazhou Bay Seed Laboratory(B21HJ0216);Wenzhou Agricultural New Variety Breeding Collaborative Project(2019ZX006)

摘要:

稻瘟病是一种对全球水稻生产威胁极大的真菌性病害, 鉴定抗稻瘟病基因并将其导入到现有感病品种改良品种的抗性是控制这种病害的有效途径。本研究利用5个稻瘟病菌株鉴定了212份籼稻和235份粳稻种质资源的苗瘟抗性, 分别筛选到8个和12个抗全部5个菌株的籼稻和粳稻种质材料。采用全基因组关联分析在籼粳混合群体、籼稻和粳稻种质资源中共定位到43个影响水稻苗瘟抗性的QTL, 抗GD00-193、GD08-T19、GD17-CQ16、HB1708和HLJ13-856菌株的QTL分别为9、4、14、14和2个。其中, 12个抗病QTL仅在籼稻亚群中检测到, 7个仅粳稻亚群中检测到, 1个为籼粳2个亚群共同检测到, 说明籼稻抗稻瘟病总体好于粳稻, 而且稻瘟病抗性存在明显的籼粳分化。同时影响水稻对2个及2个以上菌株的抗性或在2个及2个以上群体中同时被定位到的QTL共计11个, 利用候选区间关联分析和单倍型分析鉴定到23个抗病候选基因, 不同抗病候选基因在籼、粳群体中的分布频率不同。研究结果为水稻品种稻瘟病抗性分子改良提供种质资源和有利基因信息及不同抗病基因的育种利用策略。

关键词: 稻瘟病抗性, 种质资源, 全基因组关联分析, 数量性状位点, 有利等位基因

Abstract:

Rice blast is one of the major fungal diseases that threaten rice production worldwide. To improve rice blast resistance, identifying blast resistant genes and introgressing them into elite rice varieties is an effective way. In this study, a panel of 212 xian accessions and 235 geng accessions collected worldwide were evaluated for resistance against five blast isolates at seedling stage. All of them showed large variations in resistance against five isolates, and 8 xian and 12 geng accessions were detected to present resistance to all five blast isolates. Using genome-wide association strategy, a total of 43 QTLs were identified for resistance to five isolates in mix population (xian subpopulation and geng subpopulation), including 9, 4, 14, 14, and 2 QTLs for GD00-193, GD08-T19, GD17-CQ16, HB1708, and HLJ13-856, respectively. Among them, 12 resistant QTLs were detected only in xian rice sub-population, 7 only detected in geng rice sub-population, and 1 simultaneously detected in both sub-populations, indicating that blast resistance was generally better in xian than in geng rice, and there was obvious differentiation in blast resistance between xian and geng rice. A total of 11 QTLs affected resistance to two or more trains or were simultaneously identified in two or more populations, and 23 candidate genes were identified by candidate interval association analysis and haplotype analysis. Different resistance candidate genes had different frequencies in xian and geng populations. The results provide germplasm resources and favorable genes information for molecular improvement of blast resistance in rice varieties and the breeding and utilization strategies of different resistance genes.

Key words: blast resistance, germplasm, genome-wide association study, quantitative trait locus (QTLs), favorable allele

表1

种质资源对5个稻瘟病菌株的苗期抗性表现"

稻瘟病菌株
Blast isolate
混合群体 Mix population 籼稻 Xian rice 粳稻 Geng rice P a
平均值±
标准差
Mean ± SD
变幅
Range
变异系数
CV (%)
平均值±
标准差
Mean ± SD
变幅
Range
变异系数
CV (%)
平均值±
标准差
Mean ± SD
变幅
Range
变异系数
CV (%)
GD00-193 4.13±1.98 1-8 47.96 4.61±1.97 1-8 42.75 3.69±1.98 1-8 53.64 1.51×10-6
GD08-T19 2.87±1.33 1-7 46.29 2.87±1.39 1-7 48.39 2.83±1.23 1-6 43.43 0.76
GD17-CQ16 4.58±2.02 1-8 44.18 4.72±1.98 1-8 42.07 4.35±2.05 1-8 47.10 0.058
HB1708 4.21±2.00 1-7 47.48 4.41±1.93 1-7 43.90 4.08±1.96 1-7 48.17 0.076
HLJ13-856 3.27±1.42 1-7 43.39 3.02±1.35 1-6 44.66 3.52±1.45 1-7 41.26 2.02×10-4

表2

种质资源对不同稻瘟病菌株之间的相关性"

GD00-193 GD08-T19 GD17-CQ16 HB1708
GD08-T19 0.09
0.08
0.11
GD17-CQ16 0.49** 0.08
0.46** 0.09
0.51** 0.15*
HB1708 0.62** 0.12* 0.46**
0.65** 0.09 0.45**
0.60** 0.11 0.49**
HLJ13-856 -0.03 0.07 0.01 0.07
-0.04 0.08 0.05 -0.06
0.16* 0.08 0.09 0.21**

表3

三套群体定位到的抗GD00-193和GD17-CQ16的QTL"

稻瘟病菌株
Blast isolate
QTL 混合群体/Mix population 籼稻 Xian rice 粳稻 Geng rice 前人克隆的基因
Previously cloned genes
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
GD00-193 qGD001-1 1 1,552,373 4.69E-07 4.48
qGD001-2 1 29,020,467 1.48E-08 17.94
qGD001-3 1 33,145,916 9.94E-08 11.23 Pish/ Pi37 [27,28]
qGD003 3 16,012,660 1.68E-06 2.78
qGD004 4 34,840,786 2.41E-06 1.72
qGD006 6 10,380,192 3.32E-06 13.49 Piz-t/Pi2/Pi9/Pi50/Pi-gm [23]
qGD008 8 17,498,650 2.32E-07 15.86 8 17,465,932 3.67E-06 15.90
qGD009 9 10,969,346 3.77E-07 2.89
qGD011 11 15,664,938 2.18E-06 13.78
GD17-CQ16 qGD171-1 1 1,302,057 3.67E-07 19.43
qGD171-2 1 1,568,573 8.78E-10 6.25
qGD171-3 1 28,986,912 1.35E-07 9.70 pitp(t) [26]
qGD173-1 3 14,041,426 2.36E-07 5.97
qGD173-2 3 25,260,390 6.15E-07 7.27
qGD176-1 6 11,067,689 5.83E-08 9.18
qGD176-2 6 22,491,478 1.68E-06 3.58
qGD177 7 4,852,217 1.34E-06 4.93 7 4,852,217 3.96E-06 4.23 qDI14-7 [31]
qGD178 8 20,759,700 7.36E-09 3.56 GF14c [39]
qGD179 9 10,755,714 2.91E-07 9.00
qGD1710 10 19,198,827 8.20E-08 3.03
qGD1711-1 11 7,018,865 7.34E-07 1.95 11 7,086,996 1.93E-06 10.64 Pia/RGA4/Os11gRGA4 /RGA5/Os11gRGA5 [32,33]
qGD1711-2 11 27,821,721 1.63E-08 6.76 11 27,724,695 6.15E-06 7.79 11 27,821,721 2.36E-08 3.69 Pik [34]
qGD1712 12 17,657,476 1.75E-07 7.32

附图1

水稻对5个稻瘟病生理小种抗性的曼哈顿图和QQ图"

表4

三套群体定位到的抗GD08-T19、HB1708和HLJ13-856的QTL"

稻瘟病菌株
Blast isolate
QTL 混合群体/Mix population 籼稻/Xian 粳稻/Geng 前人克隆的基因
Previously cloned genes
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
GD08-T19 qGD086 6 6,535,818 2.41E-06 12.44 Pi27(t) [30]
qGD0811 11 22,027,592 1.14E-06 9.24
qGD0812-1 12 10,118,034 4.36E-06 8.19
qGD0812-2 12 12,070,327 7.84E-07 5.89
HB1708 qHB171-1 1 1,523,579 1.12E-06 3.39
qHB171-2 1 2,388,489 2.94E-06 3.70 Pit [25]
qHB171-3 1 33,005,596 1.32E-10 1.08 1 33,092,697 1.52E-07 1.09 Pish/ Pi37 [27,28]
qHB173 3 10,681,409 3.64E-06 10.87
qHB174 4 17,870,237 4.80E-07 17.50
qHB175-1 5 3,738,799 2.47E-06 7.80 Pi25(t) [30]
qHB175-2 5 28,480,050 4.05E-07 4.30
qHB176-1 6 10,425,293 8.48E-08 4.22 6 10,451,191 1.60E-06 12.64 Piz-t/Pi2/Pi9/Pi50/Pi-gm [23]
qHB176-2 6 22,699,279 1.41E-07 8.36
qHB177 7 4,833,062 1.18E-08 10.94 qDI14-7 [31]
qHB178-1 8 6,463,393 2.81E-11 10.82 8 6,463,393 4.42E-11 32.11
qHB178-2 8 20,852,827 2.77E-06 1.81 GF14c [39]
qHB1710 10 5,633,234 2.00E-07 8.35
qHB1711 11 20,645,223 1.72E-07 10.16
HLJ13-856 qHL132 2 35,127,933 1.26E-07 18.93 Pib [29]
qHL1311 11 7,037,500 1.42E-06 2.02 Pia/RGA4/Os11gRGA4 /RGA5/Os11gRGA5 [32,33]

图1

7个单候选基因位点的候选区间关联分析及单倍型分析 单倍型分析中不同小写字母代表性状在P < 0.01水平差异显著。"

图2

4个多候选基因位点的候选区间关联分析及单倍型分析 单倍型分析中不同小写字母代表性状在P < 0.01水平差异显著。"

[1] 杨义强, 朱林峰, 李晓芳, 付杰, 黄道强, 邱先进, 周少川, 王重荣. 抗稻瘟病基因Pi2的基因特异性KASP标记开发与应用. 植物遗传资源学报, 2021, 22: 1314-1321.
Yang Y Q, Zhu L F, Li X F, Fu J, Huang D Q, Qiu X J, Zhou S C, Wang C R. Development and application of KASP marker specific for rice blast resistance Pi2 gene. J Plant Genet Resour, 2021, 22: 1314-1321. (in Chinese with English abstract)
[2] 杨小林, 施仕胜, 张舒, 吕亮, 喻大召. 湖北省稻瘟病重发区病菌群体致病性分化的研究. 湖北农业科学, 2016, 55: 4169-4171.
Yang X L, Shi S S, Zhang S, Lyu L, Yu D Z. Population pathotype of Magnaporthe aryzae in rice blast epidemic areas of Hubei province. Hubei Agric Sci, 2016, 55: 4169-4171. (in Chinese with English abstract)
[3] 钟宝玉, 黄德超, 朱小源, 陈玉托, 邹寿发, 杨伟新, 赖新红. 近十年广东稻瘟病菌生理小种变化分析. 仲恺农业工程学院学报, 2018, 31: 24-29.
Zhong B Y, Huang D C, Zhu X Y, Chen Y T, Zou S F, Yang W X, Lai X H. Analysis of physiological races of Magnaporthe oryzae in Fuangdong during recent decade. J Zhongkai Univ Agric Eng, 2018, 31: 24-29. (in Chinese with English abstract)
[4] Khan M A I, Latif M A, Khalequzaman M, Tomita A, Ali M A, Fukuta Y. Genetic variation in resistance to blast (Pyricularia oryzae Cavara) in rice (Oryza sativa L.) germplasms of Bangladesh. Breed Sci, 2017, 67: 493-499.
doi: 10.1270/jsbbs.17039
[5] Ashikani S, Rafii M Y, Rahim H A, Latif M A. Genetic dissection of rice blast resistance by QTL mapping approach using an F3 population. Mol Biol Rep, 2013, 40: 2503-2515.
doi: 10.1007/s11033-012-2331-3
[6] Zenbayashi K, Ashizawa T, Tani T, Koizumi S. Mapping of the QTL (quantitative trait locus) conferring prtial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 2002, 104: 547-552.
pmid: 12582657
[7] 杨德卫, 王莫, 韩立波, 唐定中, 李生平. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展, 植物学报, 2019, 54: 265-276.
doi: 10.11983/CBB18194
Yang D W, Wang M, Han L B, Tang D Z, Li S P. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi. Chin Bull Bot, 2019, 54: 265-276. (in Chinese with English abstract)
[8] Mgonja E M, Blimponya E G, Kang H X, Bellizzi M, Park C H, Li Y, Mabagala R, Sneller C, Correll J, Opiyo S, Talbot N J, Mitchell T, Wang G L. Genome-wide association mapping of rice resistance genes against Magnaporthe oryzae isolates from four African countries. Phytopathology, 2016, 106: 1359-1365
doi: 10.1094/PHYTO-01-16-0028-R
[9] Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356.
doi: 10.1007/s11032-006-9066-6
[10] Huang X H, Wei Z H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, L u Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967.
doi: 10.1038/ng.695 pmid: 20972439
[11] Qiu X J, Yang J, Zhang F, Niu Y N, Zhao X Q, Shen C C, Chen K, Teng S, Xu J L. Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study. Crop J, 2021, 9: 1470-1480.
doi: 10.1016/j.cj.2020.12.010
[12] Wang C H, Yang Y L, Yuan X P, Xu Q, Feng Y, Yu H Y, Wang Y P, Wei X H. Genome-wide association study of blast resistance in indica rice. BMC Plant Biol, 2014, 14: 311.
doi: 10.1186/s12870-014-0311-6
[13] Kang H X, Wang Y, Peng S S, Zhang Y L, Xiao Y H, Wang D, Qu S H, Li Z Q, Yan S Y, Wang Z L, Liu W D, Ning Y S, Korniliev P, Leung H, Mezey J, McCouch S R, Wang G L. Dissection of genetic architecture of rice resistance to blast fungus Magnaorthe oryzae. Mol Plant Pathol, 2016, 17: 959-972.
doi: 10.1111/mpp.12340
[14] Raboin L M, Ballini E, Tharreau D, Ramanantsoanirina A, Frouin J, Courtois B, Ahmadi N. Association mapping of resistance to rice blast in upland field conditions. Rice, 2016, 9: 59.
doi: 10.1186/s12284-016-0131-4
[15] Mgonja E M, Park C H, Kang H X, Blimponya E G, Opiyo S, Bellizzi M, Mutiga S K, Ganeshan V D, Mabagala R, Sneller C, Correll J, Zhou B, Talbot N J, Mitchell T K, Wang G L. Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaporthe oryzae populations in Africa. Phytopathology, 2017, 107: 1039-1046.
doi: 10.1094/PHYTO-12-16-0421-R
[16] Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal S J, Ning Y S, Wang R Y, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AirPiz-t targets the RING E3 Ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24: 4748-4762
doi: 10.1105/tpc.112.105429
[17] 李旭升, 向小娇, 申聪聪, 杨隆维, 陈凯, 王小文, 邱先进, 朱小源, 邢丹英, 徐建龙. 水稻重测序核心种质资源的稻瘟病抗性鉴定与评价. 作物学报, 2017, 43: 795-810.
Li X S, Xiang X J, Shen C C, Yang L W, Chen K, Wang X W, Qiu X J, Zhu X Y, Xing D Y, Xu J L. Identification and evaluation of blast resistance for resequenced rice core collections. Acta Agron Sin, 2017, 43: 795-810. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00795
[18] Qiu X J, Chen K, Lyu W K, Ou X X, Zhu Y J, Xing D Y, Yang L W, Fan F J, Yang J, Xu J L, Zheng T Q, Li Z K. Examining two sets of introgression line reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017, 130: 951-967.
doi: 10.1007/s00122-017-2862-z
[19] Qiu X J, Pang Y L, Yuan Z Y, Xing D Y, Xu J L, Dingkuhn M, Li Z K, Ye G Y. Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm. PLoS One, 2015, 10: e0145577.
[20] McCouch S R, Wright M H, Tung C W, Maron L G, McNally K L, Fitzgerald M, Singh N, DeClerck G, Agosto-Perez F, Korniliev P, Greenberg A J, Naredo M B N, Mercado A M Q, Harrington S E, Shi Y, Branchini D A, Kuser-Falcao P R, Leung H, Ebana K, Yano M, Eizenga G, McClung A, Mezey J. Open access resources for genome-wide association mapping in rice. Nat Commun, 2016, 7: 10532.
doi: 10.1038/ncomms10532 pmid: 26842267
[21] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901
[22] 杨楠, 陈恺茜, 杨勤忠, 唐文强, 张文龙, 何平, 杨暮英, 李勇成, 韩光煜. 云南地方籼粳稻稻瘟病抗性和农艺性状差异分析及优异稻种筛选. 南方农业学报, 2021, 52: 2680-2689.
Yang N, Chen K X, Yang Q Z, Tang W Q, Zhang W L, He P, Yang M Y, Li Y C, Han G Y. Blast resistance and agronomic traits of local Indica rice and Japonica rice in Yunnan and screening of elite rice varieties. J South Agric, 2021, 52: 2680-2689. (in Chinese with English abstract)
[23] Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Thareau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355: 962-965.
doi: 10.1126/science.aai8898 pmid: 28154240
[24] Jiang J F, Mou T M, Yu H H, Zhou F S. Molecular breeding of thermos-sensitive genic male sterile (TGMS) lines of rice for blast resistance using Pi2 gene. Rice, 2015, 8: 11.
doi: 10.1186/s12284-015-0048-3
[25] Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413-425.
doi: 10.1111/tpj.2009.57.issue-3
[26] Barman S R, Gowda M, Venu R C, Chattoo B B. Identification of a major resistance gene in the rice cultivar “Tetep”. Plant Breed, 2004, 123: 300-302.
doi: 10.1111/pbr.2004.123.issue-3
[27] Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10: 175.
doi: 10.1186/1471-2229-10-175 pmid: 20707904
[28] Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide biding site-leucine-rich repeat protein and is a member of a resistance gene cluster on chromosome 1. Genetics, 2007, 177: 1871-1880.
doi: 10.1534/genetics.107.080648
[29] Wang Z X, Yano M, Yamanoouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64.
doi: 10.1046/j.1365-313x.1999.00498.x pmid: 10417726
[30] Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem J L. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor App Genet, 2003, 106: 794-803.
doi: 10.1007/s00122-002-1088-9
[31] Guo L Y, Zhao H W, Wang J G, Liu H L, Zheng H L, Sun J, Yang L M, Sha H J, Zou D T. Dissection of QTLs alleles for blast resistance based on linkage and linkage disequilibrium mapping in japonica rice seedlings. Australasian Plant Pathol, 2016, 45: 209-218.
doi: 10.1007/s13313-016-0405-8
[32] Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013, 25: 1463-1481.
doi: 10.1105/tpc.112.107201
[33] Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467-479.
doi: 10.1111/j.1365-313X.2011.04502.x
[34] Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 25: 1047-1055.
[35] Zhang D D, Liu M X, Tang M Z, Dong B, Wu D X, Zhang Z G. Repression of microRNA by silencing of OsDCL1activities the basal resistance to Magnaporthe oryzae in rice. Plant Sci, 2015, 237: 24-32.
doi: 10.1016/j.plantsci.2015.05.002
[36] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L T, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 85: 11308-11313.
[37] Lee J R, Park S C, Kim M H, Jung J H, Shin M R, Lee D H, Cheon M G, Park Y, Hahm K S, Lee S Y. Antifungal activity of rice Rex5p, a receptor for peroxisomal matrix proteins. Biochem Biophy Res Commun, 2007, 359: 941-946.
doi: 10.1016/j.bbrc.2007.05.210
[38] You X M, Zhu S S, Zhang W W, Zhang J, Wang C M, Jing R N, Chen W W, Wu H M, Cai Y, Feng Z M, Hu J L, Yan H G, Kong F, Zhang H, Zheng M, Ren Y L, Lin Q B, Cheng Z J, Zhang X, Lei C L, Jiang L, Wang H Y, Wan J M. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytol, 2019, 224: 712-724.
doi: 10.1111/nph.v224.2
[39] Lu T, Diao Z J, Yang D W, Wang X, Zheng X X, Xiang X Q, Xiao Y P, Chen Z W, Wang W, Wu Y K, Tang D Z, Li S P. The 14-3-3 protein GF41c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. Plant Cell Environ, 2022, 45: 1065-1081.
doi: 10.1111/pce.v45.4
[40] Mei C S, Qi M, Sheng G Y, Yang Y N. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interat, 2006, 19: 1127-1137.
[41] Ke Y G, Yuan M, Liu H B, Hui S G, Qin X F, Chen J, Zhang Q L, Li X H, Xiao J H, Zhang Q F, Wang S P. The versatile functions of OsALDH2B1 provide a genic basis for growth-defense trade-offs in rice. Proc Natl Acad Sci USA, 2020, 11: 3867-3873.
[42] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sunano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant-Microbe Interact, 2009, 22: 820-829.
doi: 10.1094/MPMI-22-7-0820
[1] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[2] 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732.
[3] 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572.
[4] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[5] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[6] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[7] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
[8] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[9] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[10] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[11] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[12] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[13] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[14] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[15] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .