作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1170-1183.doi: 10.3724/SP.J.1006.2023.22024
周海平1(), 张帆2, 陈凯3, 申聪聪3, 朱双兵3, 邱先进4,*(), 徐建龙2,3,5,*()
ZHOU Hai-Ping1(), ZHANG Fan2, CHEN Kai3, SHEN Cong-Cong3, ZHU Shuang-Bing3, QIU Xian-Jin4,*(), XU Jian-Long2,3,5,*()
摘要:
稻瘟病是一种对全球水稻生产威胁极大的真菌性病害, 鉴定抗稻瘟病基因并将其导入到现有感病品种改良品种的抗性是控制这种病害的有效途径。本研究利用5个稻瘟病菌株鉴定了212份籼稻和235份粳稻种质资源的苗瘟抗性, 分别筛选到8个和12个抗全部5个菌株的籼稻和粳稻种质材料。采用全基因组关联分析在籼粳混合群体、籼稻和粳稻种质资源中共定位到43个影响水稻苗瘟抗性的QTL, 抗GD00-193、GD08-T19、GD17-CQ16、HB1708和HLJ13-856菌株的QTL分别为9、4、14、14和2个。其中, 12个抗病QTL仅在籼稻亚群中检测到, 7个仅粳稻亚群中检测到, 1个为籼粳2个亚群共同检测到, 说明籼稻抗稻瘟病总体好于粳稻, 而且稻瘟病抗性存在明显的籼粳分化。同时影响水稻对2个及2个以上菌株的抗性或在2个及2个以上群体中同时被定位到的QTL共计11个, 利用候选区间关联分析和单倍型分析鉴定到23个抗病候选基因, 不同抗病候选基因在籼、粳群体中的分布频率不同。研究结果为水稻品种稻瘟病抗性分子改良提供种质资源和有利基因信息及不同抗病基因的育种利用策略。
[1] | 杨义强, 朱林峰, 李晓芳, 付杰, 黄道强, 邱先进, 周少川, 王重荣. 抗稻瘟病基因Pi2的基因特异性KASP标记开发与应用. 植物遗传资源学报, 2021, 22: 1314-1321. |
Yang Y Q, Zhu L F, Li X F, Fu J, Huang D Q, Qiu X J, Zhou S C, Wang C R. Development and application of KASP marker specific for rice blast resistance Pi2 gene. J Plant Genet Resour, 2021, 22: 1314-1321. (in Chinese with English abstract) | |
[2] | 杨小林, 施仕胜, 张舒, 吕亮, 喻大召. 湖北省稻瘟病重发区病菌群体致病性分化的研究. 湖北农业科学, 2016, 55: 4169-4171. |
Yang X L, Shi S S, Zhang S, Lyu L, Yu D Z. Population pathotype of Magnaporthe aryzae in rice blast epidemic areas of Hubei province. Hubei Agric Sci, 2016, 55: 4169-4171. (in Chinese with English abstract) | |
[3] | 钟宝玉, 黄德超, 朱小源, 陈玉托, 邹寿发, 杨伟新, 赖新红. 近十年广东稻瘟病菌生理小种变化分析. 仲恺农业工程学院学报, 2018, 31: 24-29. |
Zhong B Y, Huang D C, Zhu X Y, Chen Y T, Zou S F, Yang W X, Lai X H. Analysis of physiological races of Magnaporthe oryzae in Fuangdong during recent decade. J Zhongkai Univ Agric Eng, 2018, 31: 24-29. (in Chinese with English abstract) | |
[4] |
Khan M A I, Latif M A, Khalequzaman M, Tomita A, Ali M A, Fukuta Y. Genetic variation in resistance to blast (Pyricularia oryzae Cavara) in rice (Oryza sativa L.) germplasms of Bangladesh. Breed Sci, 2017, 67: 493-499.
doi: 10.1270/jsbbs.17039 |
[5] |
Ashikani S, Rafii M Y, Rahim H A, Latif M A. Genetic dissection of rice blast resistance by QTL mapping approach using an F3 population. Mol Biol Rep, 2013, 40: 2503-2515.
doi: 10.1007/s11033-012-2331-3 |
[6] |
Zenbayashi K, Ashizawa T, Tani T, Koizumi S. Mapping of the QTL (quantitative trait locus) conferring prtial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 2002, 104: 547-552.
pmid: 12582657 |
[7] |
杨德卫, 王莫, 韩立波, 唐定中, 李生平. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展, 植物学报, 2019, 54: 265-276.
doi: 10.11983/CBB18194 |
Yang D W, Wang M, Han L B, Tang D Z, Li S P. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi. Chin Bull Bot, 2019, 54: 265-276. (in Chinese with English abstract) | |
[8] |
Mgonja E M, Blimponya E G, Kang H X, Bellizzi M, Park C H, Li Y, Mabagala R, Sneller C, Correll J, Opiyo S, Talbot N J, Mitchell T, Wang G L. Genome-wide association mapping of rice resistance genes against Magnaporthe oryzae isolates from four African countries. Phytopathology, 2016, 106: 1359-1365
doi: 10.1094/PHYTO-01-16-0028-R |
[9] |
Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356.
doi: 10.1007/s11032-006-9066-6 |
[10] |
Huang X H, Wei Z H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, L u Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967.
doi: 10.1038/ng.695 pmid: 20972439 |
[11] |
Qiu X J, Yang J, Zhang F, Niu Y N, Zhao X Q, Shen C C, Chen K, Teng S, Xu J L. Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study. Crop J, 2021, 9: 1470-1480.
doi: 10.1016/j.cj.2020.12.010 |
[12] |
Wang C H, Yang Y L, Yuan X P, Xu Q, Feng Y, Yu H Y, Wang Y P, Wei X H. Genome-wide association study of blast resistance in indica rice. BMC Plant Biol, 2014, 14: 311.
doi: 10.1186/s12870-014-0311-6 |
[13] |
Kang H X, Wang Y, Peng S S, Zhang Y L, Xiao Y H, Wang D, Qu S H, Li Z Q, Yan S Y, Wang Z L, Liu W D, Ning Y S, Korniliev P, Leung H, Mezey J, McCouch S R, Wang G L. Dissection of genetic architecture of rice resistance to blast fungus Magnaorthe oryzae. Mol Plant Pathol, 2016, 17: 959-972.
doi: 10.1111/mpp.12340 |
[14] |
Raboin L M, Ballini E, Tharreau D, Ramanantsoanirina A, Frouin J, Courtois B, Ahmadi N. Association mapping of resistance to rice blast in upland field conditions. Rice, 2016, 9: 59.
doi: 10.1186/s12284-016-0131-4 |
[15] |
Mgonja E M, Park C H, Kang H X, Blimponya E G, Opiyo S, Bellizzi M, Mutiga S K, Ganeshan V D, Mabagala R, Sneller C, Correll J, Zhou B, Talbot N J, Mitchell T K, Wang G L. Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaporthe oryzae populations in Africa. Phytopathology, 2017, 107: 1039-1046.
doi: 10.1094/PHYTO-12-16-0421-R |
[16] |
Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal S J, Ning Y S, Wang R Y, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AirPiz-t targets the RING E3 Ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24: 4748-4762
doi: 10.1105/tpc.112.105429 |
[17] | 李旭升, 向小娇, 申聪聪, 杨隆维, 陈凯, 王小文, 邱先进, 朱小源, 邢丹英, 徐建龙. 水稻重测序核心种质资源的稻瘟病抗性鉴定与评价. 作物学报, 2017, 43: 795-810. |
Li X S, Xiang X J, Shen C C, Yang L W, Chen K, Wang X W, Qiu X J, Zhu X Y, Xing D Y, Xu J L. Identification and evaluation of blast resistance for resequenced rice core collections. Acta Agron Sin, 2017, 43: 795-810. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00795 |
|
[18] |
Qiu X J, Chen K, Lyu W K, Ou X X, Zhu Y J, Xing D Y, Yang L W, Fan F J, Yang J, Xu J L, Zheng T Q, Li Z K. Examining two sets of introgression line reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017, 130: 951-967.
doi: 10.1007/s00122-017-2862-z |
[19] | Qiu X J, Pang Y L, Yuan Z Y, Xing D Y, Xu J L, Dingkuhn M, Li Z K, Ye G Y. Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm. PLoS One, 2015, 10: e0145577. |
[20] |
McCouch S R, Wright M H, Tung C W, Maron L G, McNally K L, Fitzgerald M, Singh N, DeClerck G, Agosto-Perez F, Korniliev P, Greenberg A J, Naredo M B N, Mercado A M Q, Harrington S E, Shi Y, Branchini D A, Kuser-Falcao P R, Leung H, Ebana K, Yano M, Eizenga G, McClung A, Mezey J. Open access resources for genome-wide association mapping in rice. Nat Commun, 2016, 7: 10532.
doi: 10.1038/ncomms10532 pmid: 26842267 |
[21] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901 |
[22] | 杨楠, 陈恺茜, 杨勤忠, 唐文强, 张文龙, 何平, 杨暮英, 李勇成, 韩光煜. 云南地方籼粳稻稻瘟病抗性和农艺性状差异分析及优异稻种筛选. 南方农业学报, 2021, 52: 2680-2689. |
Yang N, Chen K X, Yang Q Z, Tang W Q, Zhang W L, He P, Yang M Y, Li Y C, Han G Y. Blast resistance and agronomic traits of local Indica rice and Japonica rice in Yunnan and screening of elite rice varieties. J South Agric, 2021, 52: 2680-2689. (in Chinese with English abstract) | |
[23] |
Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Thareau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355: 962-965.
doi: 10.1126/science.aai8898 pmid: 28154240 |
[24] |
Jiang J F, Mou T M, Yu H H, Zhou F S. Molecular breeding of thermos-sensitive genic male sterile (TGMS) lines of rice for blast resistance using Pi2 gene. Rice, 2015, 8: 11.
doi: 10.1186/s12284-015-0048-3 |
[25] |
Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413-425.
doi: 10.1111/tpj.2009.57.issue-3 |
[26] |
Barman S R, Gowda M, Venu R C, Chattoo B B. Identification of a major resistance gene in the rice cultivar “Tetep”. Plant Breed, 2004, 123: 300-302.
doi: 10.1111/pbr.2004.123.issue-3 |
[27] |
Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10: 175.
doi: 10.1186/1471-2229-10-175 pmid: 20707904 |
[28] |
Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide biding site-leucine-rich repeat protein and is a member of a resistance gene cluster on chromosome 1. Genetics, 2007, 177: 1871-1880.
doi: 10.1534/genetics.107.080648 |
[29] |
Wang Z X, Yano M, Yamanoouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64.
doi: 10.1046/j.1365-313x.1999.00498.x pmid: 10417726 |
[30] |
Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem J L. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor App Genet, 2003, 106: 794-803.
doi: 10.1007/s00122-002-1088-9 |
[31] |
Guo L Y, Zhao H W, Wang J G, Liu H L, Zheng H L, Sun J, Yang L M, Sha H J, Zou D T. Dissection of QTLs alleles for blast resistance based on linkage and linkage disequilibrium mapping in japonica rice seedlings. Australasian Plant Pathol, 2016, 45: 209-218.
doi: 10.1007/s13313-016-0405-8 |
[32] |
Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013, 25: 1463-1481.
doi: 10.1105/tpc.112.107201 |
[33] |
Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467-479.
doi: 10.1111/j.1365-313X.2011.04502.x |
[34] | Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 25: 1047-1055. |
[35] |
Zhang D D, Liu M X, Tang M Z, Dong B, Wu D X, Zhang Z G. Repression of microRNA by silencing of OsDCL1activities the basal resistance to Magnaporthe oryzae in rice. Plant Sci, 2015, 237: 24-32.
doi: 10.1016/j.plantsci.2015.05.002 |
[36] | Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L T, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 85: 11308-11313. |
[37] |
Lee J R, Park S C, Kim M H, Jung J H, Shin M R, Lee D H, Cheon M G, Park Y, Hahm K S, Lee S Y. Antifungal activity of rice Rex5p, a receptor for peroxisomal matrix proteins. Biochem Biophy Res Commun, 2007, 359: 941-946.
doi: 10.1016/j.bbrc.2007.05.210 |
[38] |
You X M, Zhu S S, Zhang W W, Zhang J, Wang C M, Jing R N, Chen W W, Wu H M, Cai Y, Feng Z M, Hu J L, Yan H G, Kong F, Zhang H, Zheng M, Ren Y L, Lin Q B, Cheng Z J, Zhang X, Lei C L, Jiang L, Wang H Y, Wan J M. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytol, 2019, 224: 712-724.
doi: 10.1111/nph.v224.2 |
[39] |
Lu T, Diao Z J, Yang D W, Wang X, Zheng X X, Xiang X Q, Xiao Y P, Chen Z W, Wang W, Wu Y K, Tang D Z, Li S P. The 14-3-3 protein GF41c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. Plant Cell Environ, 2022, 45: 1065-1081.
doi: 10.1111/pce.v45.4 |
[40] | Mei C S, Qi M, Sheng G Y, Yang Y N. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interat, 2006, 19: 1127-1137. |
[41] | Ke Y G, Yuan M, Liu H B, Hui S G, Qin X F, Chen J, Zhang Q L, Li X H, Xiao J H, Zhang Q F, Wang S P. The versatile functions of OsALDH2B1 provide a genic basis for growth-defense trade-offs in rice. Proc Natl Acad Sci USA, 2020, 11: 3867-3873. |
[42] |
Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sunano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant-Microbe Interact, 2009, 22: 820-829.
doi: 10.1094/MPMI-22-7-0820 |
[1] | 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561. |
[2] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[3] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
[4] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[5] | 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261. |
[6] | 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139. |
[7] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
[8] | 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391. |
[9] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[10] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
[11] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[12] | 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241. |
[13] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[14] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[15] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
|