欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1551-1561.doi: 10.3724/SP.J.1006.2023.21032

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选

张静1(), 高文博1, 晏林1, 张宗文1,2, 周海涛3, 吴斌1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2国际生物多样性中心, 北京 100081
    3张家口市农业科学院, 河北张家口 075000
  • 收稿日期:2022-04-28 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-11-02
  • 通讯作者: *吴斌, E-mail: wubin03@caas.cn
  • 作者简介:E-mail: zhangjing12290218@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07-A-1);河北省重点研发计划项目(21326305D);中国农业科学院科技创新工程项目和农作物种质资源保护与利用专项(2020NWB036-06)

Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.)

ZHANG Jing1(), GAO Wen-Bo1, YAN Lin1, ZHANG Zong-Wen1,2, ZHOU Hai-Tao3, WU Bin1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Biodiversity International, Beijing 100081, China
    3Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
  • Received:2022-04-28 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-11-02
  • Contact: *E-mail: wubin03@caas.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-07-A-1);Key Research and Development Program of Hebei Province(21326305D);Agricultural Science and Technology Innovation Program (ASTIP) in CAAS, and the Crop Germplasm Resources Protection(2020NWB036-06)

摘要:

受气候变化及人类生产活动影响, 世界盐碱地范围不断扩大, 土壤盐碱化现已成为限制农业生产发展的重要因素。燕麦是一种耐盐碱性较强的作物, 为了评价燕麦种质资源耐盐碱性及筛选耐盐碱的燕麦种质, 本研究利用125 mmol L-1 NaCl、Na2SO4和NaHCO3 (物质的量比为1∶1∶1)的混合盐碱溶液对485份燕麦核心种质材料进行发芽胁迫处理, 测定了发芽期发芽势、发芽率、根长、芽长、根鲜重、芽鲜重、根干重和芽干重8项指标, 利用相关性分析、主成分分析、隶属函数分析及聚类分析等方法对参试燕麦种质进行了耐盐碱综合评价及筛选。结果表明: 盐碱胁迫对测定的8项指标均表现出抑制作用; 盐碱胁迫下各指标的隶属函数值之间, 及各指标隶属函数值与综合评价值之间均呈现出极显著的正相关性; 通过主成分分析将8项测定指标转换成了2个主成分, 累计方差贡献率为76.926%; 结合隶属函数分析与聚类分析共筛选出2份高耐盐碱型的燕麦材料: 燕1606和海阔夫斯基596号, 将485份燕麦种质的耐盐碱性划分成了5个等级, 其中高耐盐碱材料2份、耐盐碱材料49份、中等耐盐碱材料147份、盐碱敏感材料129份、盐碱极敏感材料158份; 综合相关性分析、主成分分析和逐步回归方程结果, 确定芽长作为发芽期燕麦耐盐碱筛选的首选指标, 其次根鲜重、芽鲜重、发芽势和发芽率也是进行发芽期燕麦耐盐碱综合评价及筛选的重要指标。

关键词: 燕麦, 种质资源, 发芽期, 耐盐碱, 综合评价

Abstract:

Affected by climate change and human production activities, the world’s salt-alkali land is expanding, and soil salinization has become an important factor limiting the development of agricultural production. Oat is a crop with the strong saline-alkali tolerance. To evaluate the salinity tolerance of oat germplasm resources in China, 485 accessions were stress treated with 125 mmol L-1 NaCl, Na2SO4, and NaHCO3 (1:1:1 molar concentration) solution at germination stage. Eight growth indexes, including germination potential, germination rate, root length, bud length, root fresh weight, bud fresh weight, root dry weight, and bud dry weight, were identified at the germination stage of oats. A comprehensive evaluation and screening of oat germplasm resources for salt-alkali tolerance was performed by the correlation analysis, principal component analysis, membership function analysis, and cluster analysis. The results showed that salt-alkali inhibited all eight indexes identified, and a significant positive correlation was observed between the affiliation function values of the indexes under salt-alkali tolerance and with the comprehensive evaluation value. Eight evaluation indexes were converted into two comprehensive indexes by principal component analysis, with a cumulative variance contribution of 76.926%. The membership function analysis combined with cluster analysis screened a total of two oat accessions with high salt-alkaline tolerance (Oat 1606 and Heikowski 596) and classified 485 accessions into five classes, including two highly saline-alkaline tolerance, 49 salt-alkaline-tolerant accessions, 147 medium saline-alkaline tolerance accessions, 129 sensitive saline-alkaline accessions, and 158 high saline-alkaline sensitive accessions. The results of correlation analysis, principal component analysis, and stepwise multiple regression analysis, and the bud length was screened as the preferred indicator for the screening of salt-alkali tolerance in germinating oats, followed by root fresh weight, bud fresh weight, germination potential, and germination rate, which were also important indexes for the comprehensive evaluation and screening of salt-alkali tolerance in germinating oats.

Key words: Avena sativa L., germplasm resources, germination stage, salt-alkali tolerance, comprehensive evaluation

图1

不同盐碱浓度下8份燕麦资源发芽指标变化 A: 裸燕麦发芽势变化趋势; B: 皮燕麦发芽势变化趋势; C: 裸燕麦发芽率变化趋势; D: 皮燕麦发芽率变化趋势; 同一品种不同字母表示处理间差异显著(P < 0.05)。"

图2

盐碱胁迫对燕麦发芽期性状的影响 CK: 对照处理; T: 125 mmol L-1盐碱胁迫处理; GP: 发芽势; GR: 发芽率; RL: 根长; BL: 芽长; RFW: 根鲜重; BFW: 芽鲜重; RDW: 根干重; BDW: 芽干重; ***: 表示在0.001概率水平显著相关。"

表1

485份燕麦种质在对照和盐碱胁迫条件下各性状描述统计"

指标
Indicator
对照处理Control treatment 盐碱胁迫处理Saline-alkali stress treatment
最大值
Max.
最小值
Min.
均值
Average
标准差
SD
变异系数
CV
最大值
Max.
最小值
Min.
均值
Average
标准差
SD
变异系数
CV
GP (%) 96.000 2.667 47.073 28.367 60.260 82.000 0.667 23.615 16.928 71.683
GR (%) 98.000 3.333 49.376 29.648 60.046 87.333 0.667 26.245 18.234 69.475
RFW (g) 0.075 0.014 0.045 0.011 25.561 0.039 0.002 0.011 0.005 46.416
BFW (g) 0.151 0.024 0.069 0.014 20.184 0.055 0.002 0.021 0.009 40.769
RDW (g) 0.014 0.002 0.004 0.001 25.507 0.006 0 0.002 0.001 35.188
BDW (g) 0.029 0.003 0.007 0.002 24.505 0.007 0 0.003 0.001 36.322
RL (cm) 15.167 4.733 10.912 1.870 17.133 3.713 0.233 1.217 0.631 51.827
BL (cm) 19.733 6.130 12.655 1.630 12.882 7.587 0.467 3.043 1.397 45.922

表2

燕麦发芽期各指标的主成分方差贡献率"

主成分
Principal
component
初始特征值Initial eigenvalue 提取载荷平方和Extract square sum load
特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累积方差贡献率Cumulative variance contribution rate (%) 特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累积方差贡献率
Cumulative variance contribution rate (%)
1 4.629 57.867 57.867 4.629 57.867 57.867
2 1.525 19.060 76.926 1.525 19.060 76.926
3 0.735 9.186 86.112
4 0.614 7.669 93.781
5 0.249 3.115 96.897
6 0.123 1.538 98.435
7 0.108 1.352 99.787
8 0.017 0.213 100.000

图3

燕麦各性状隶属函数值及D值的相关性分析 缩写同图2; D-value: 综合评价值; **表示在0.01水平上显著相关。"

表3

主成分载荷矩阵"

主成分
Principal component
GP GR RFW BFW RDW BDW RL BL
1 0.634 0.632 0.847 0.851 0.669 0.777 0.730 0.897
2 0.745 0.747 -0.111 -0.370 -0.187 -0.423 0.116 -0.187

图4

485份燕麦种质资源耐盐碱性聚类分析 I: 高耐盐碱型; II: 耐盐碱型; III: 中等耐盐碱型; IV: 盐碱敏感型; V: 盐碱极敏感型。"

表4

不同盐碱浓度对燕麦发芽指标的影响"

盐碱浓度
Saline-alkali concentrations
411 (海阔夫斯596号Heikowski 596) 413 (燕1606 Oat 1606)
GP GR GP GR
CK 51.33 a 52.00 a 52.67 a 54.67 a
125 mmol L-1 34.00 b 39.33 ab 22.00 b 30.67 ab
150 mmol L-1 24.67 bc 30.67 b 20.67 c 27.33 b
175 mmol L-1 18.67 cd 24.67 b 8.00 cd 12.67 b
200 mmol L-1 6.67 d 8.00 c 3.33 d 6.00 c

表5

不同地区燕麦D值描述统计"

地理来源
Geographical origin
最小值
Min.
最大值
Max.
均值
Average
标准差
SD
变异系数
CV
中国华北地区 North China 0.041 0.484 0.139 c 0.059 0.424
中国东北地区 Northeast China 0.092 0.415 0.199 ab 0.076 0.382
中国西南地区 Southwest China 0.042 0.162 0.080 d 0.026 0.325
中国西北地区 Northwest China 0.051 0.578 0.173 bc 0.097 0.561
东欧地区 Eastern Europe 0.069 0.712 0.187 bc 0.129 0.690
西欧地区 Western Europe 0.061 0.565 0.229 ab 0.108 0.472
大洋洲地区 Oceanica 0.124 0.355 0.228 ab 0.071 0.311
东北亚地区 Northeast Asia 0.160 0.319 0.244 a 0.057 0.234
美洲地区 The Americas 0.069 0.858 0.183 bc 0.142 0.776
[1] Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Adv Remot Sens, 2013, 2: 373-385.
[2] Wang S, Sun L, Ling N, Zhu C, Chi F Q, Li W Q, Hao X Y, Bian J Y, Chen L, Wei D. Exploring soil factors determining composition and structure of the bacterial communities in saline-alkali soils of Songnen Plain. Front Microbiol, 2020, 10, 2902-2902.
[3] Kovda Victor A. Loss of productive land due to salinization. J Human Environ, 1983: 91-93.
[4] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, (2): 154-158.
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas, 2005, (2): 154-158 (in Chinese with Englis abstract).
[5] Amundson R, Berhe A A, Hopmans J W, Olson C, Sztein A E, Sparks D L. Soil and human security in the 21st century. Science, 2015, 348: 1261071.
[6] 王遵亲. 中国盐碱土. 北京: 科学出版社, 1993.
Wang Z Q. Saline-alkaline Soils of China. Beijing: Science Press, 1993. (in Chinese)
[7] Zhang W, Chong W, Rui X U E, Wang L J. Effects of salinity on the soil microbial community and soil fertility. J Integr Agric, 2019, 18: 1360 -1368.
doi: 10.1016/S2095-3119(18)62077-5
[8] Doran J C. Australian trees and shrubs: species for land rehabilitation and farm planting in the tropics. ACIAR Monograph, 1997, 24: 314-319.
[9] 马晨, 马履一, 刘太祥, 左海军, 张博, 刘寅. 盐碱地改良利用技术研究进展. 世界林业研究, 2010, 23(2): 28-32.
Ma C, Ma L Y, Liu T X, Zuo H J, Zhang B, Liu Y. Research progress on saline land improvement technology. World For Res, 2010, 23(2): 28-32. (in Chinese with English abstract)
[10] 丁海荣, 洪立洲, 杨智青, 王茂文, 朱小梅, 刘冲. 盐碱地及其生物措施改良研究现状. 现代农业科技, 2010, (6): 299-300.
Ding H R, Hong L Z, Yang Z Q, Wang M W, Zhu X M, Liu C. Research status of saline-alkali land and its biological measures improvement. Mod Agric Sci Technol, 2010, (6): 299-300. (in Chinese)
[11] 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
Ren C Z, Hu Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013. (in Chinese)
[12] Quamruzzaman M, Manik S M N, Livermore M, Johnson P, Zhou M, Shabala S. Multidimensional screening and evaluation of morpho-physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci, 2022, 208: 454-471.
doi: 10.1111/jac.v208.4
[13] Kingsbury R W, Epstein E. Selection for salt-resistant spring wheat. Crop Sci, 1984, 24: 310-315.
doi: 10.2135/cropsci1984.0011183X002400020024x
[14] Giaveno C D, Ribeiro R V, Souza G M, de Oliveira R F. Screening of tropical maize for salt stress tolerance. Crop Breed Appl Biotechnol, 2007, 7: 304-313.
doi: 10.12702/1984-7033
[15] Rasel M, Tahjib-Ul-Arif M, Hossain M A, Hassan L, Farzana S, Brestic M. Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J Plant Growth Regul, 2021, 40: 1853-1868.
doi: 10.1007/s00344-020-10235-9
[16] 韩毅强, 高亚梅, 杜艳丽, 张玉先, 杜吉到, 张文慧, 潘绍玉. 大豆耐盐碱种质资源鉴定. 中国油料作物学报, 2021, 43: 1016-1024.
Han Y Q, Gao Y M, Du Y L, Zhang Y X, Du J D, Zhang W H, Pan S Y. Identification of saline-alkali tolerant germplasm resources of soybean during the whole growth stage. Chin J Oil Crop Sci, 2021, 43: 1016-1024. (in Chinese with English abstract)
[17] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47: 2927-2939.
doi: 10.3864/j.issn.0578-1752.2014.15.003
Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F D, Song S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Sci Agric Sin, 2014, 47: 2927-2939. (in Chinese with English abstract)
[18] Bai J, Yan W, Wang Y, Yin Q, Liu J, Wight C, Ma B. Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci, 2018, 9: 1302.
doi: 10.3389/fpls.2018.01302 pmid: 30333838
[19] 陈新, 张宗文, 吴斌. 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014, 47: 2038-2046.
doi: 10.3864/j.issn.0578-1752.2014.10.018
Chen X, Zhang Z W, Wu B. Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat (Avena nuda L.) at germination stage. Sci Agric Sin, 2014, 47: 2038-2046. (in Chinese with English abstract)
[20] 杨科, 张保军, 胡银岗, 王淑华, 薛晓峰. 混合盐碱胁迫对燕麦种子萌发及幼苗生理生化特性的影响. 干旱地区农业研究, 2009, 27(3): 188-192.
Yang K, Zhang B J, Hu Y G, Wang S H, Xue X F. Effects of complex saline-alkali stress on seeds germination and physiological and biochemical characteristics of oat seedlings. Agric Res Arid Areas, 2009, 27(3): 188-192. (in Chinese with English abstract)
[21] 付鸾鸿, 于崧, 于立河, 薛盈文, 郭伟. 不同基因型燕麦萌发期耐盐碱性分析及其鉴定指标的筛选. 作物杂志, 2018, (6): 27-35.
Fu L H, Yu S, Yu L H, Xue Y W, Guo W. Analysis of salt-alkali tolerance and screening of identification indexes of different Oat at germination stage. Crops, 2018, (6): 27-35. (in Chinese with English abstract)
[22] 郑殿生, 王晓鸣, 张京. 燕麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Zheng D S, Wang X M, Zhang J. Description Specification and Data Standard for Oat Germplasm Resources. Beijing: China Agriculture Press, 2006. (in Chinese)
[23] 梁潇, 侯向阳, 王艳荣, 任卫波, 赵青山, 王照兰, 李怡, 武自念. 羊草种质资源耐盐碱性综合评价. 中国草地学报, 2019, 41(3): 1-9.
Liang X, Hou X Y, Wang Y R, Ren W B, Zhao Q S, Wang Z L, Li Y, Wu Z N. Comprehensive evaluation on saline-alkali tolerance of Leymus chinensis germplasm resources. Grass China, 2019, 41(3): 1-9. (in Chinese with English abstract)
[24] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591-1604.
doi: 10.3724/SP.J.1006.2020.04064
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of saline-alkali tolerance of Foxtail millet at bud stage. Acta Agron Sin, 2020, 46: 1591-1604. (in Chinese with English abstract)
[25] 赵可夫. 植物抗盐生理. 北京: 中国科学技术出版社, 1993. pp 3-4.
Zhao K F. Plant Salt Resistance Physiology. Beijing: Science and Technology of China Press, 1993. pp 3-4. (in Chinese)
[26] 王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37: 5565-5577.
Wang Q Z, Liu Q, Gao Y N, Liu X. Review on the mechanism of the responses to saline-alkali stress in plants. Acta Ecol Sin, 2017, 37: 5565-5577. (in Chinese with English abstract)
[27] Hosseini M K, Powell A A, Bingham I J. Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res, 2002, 12: 165-172.
doi: 10.1079/SSR2002108
[28] 徐玲秀. 大豆种质资源不同生育时期耐碱性评价. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Xu L X. Evaluation of Alkali Tolerance of Soybean Germplasm Resources at Different Growth Stages. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[29] Zhu G Y, Kinet J M, Lutts S. Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance: I. Physiological behavior during vegetative growth. Euphytica, 2001, 121: 251-263.
doi: 10.1023/A:1012016431577
[30] Khan A A, Rao S A, McNeilly T. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica, 2003, 131: 81-89.
doi: 10.1023/A:1023054706489
[31] Verma O P S, Yadava R B R. Salt tolerance of some oats (Avena sativa L.) varieties at germination and seedling stage. J Agron Crop Sci, 1986, 156: 123-127.
doi: 10.1111/j.1439-037X.1986.tb00016.x
[32] Huang R. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J Integr Agric, 2018, 17: 739-746.
doi: 10.1016/S2095-3119(17)61728-3
[33] 马晓军, 金峰学, 杨姗, 杨德光, 李晓辉. 作物耐盐碱数量性状基因座(QTL)定位. 分子植物育种, 2015, 13: 221-227.
Ma X J, Jin F X, Yang S, Yang D G, Li X H. Mapping QTLs for salt and alkaline tolerance in crops. Mol Plant Breed, 2015, 13: 221-227. (in Chinese with English abstract)
[34] Trachsel S, Messmer R, Stamp P, Ruta N, Hund A. QTLs for early vigor of tropical maize. Mol Breed, 2010, 25: 91-103.
doi: 10.1007/s11032-009-9310-y
[35] Tuyen D D, Zhang H M, Xu D H. Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Mol Breed, 2013, 31: 79-86.
doi: 10.1007/s11032-012-9771-2
[36] 斯日古楞, 张玉霞, 马群, 邓丽媛, 董航源. 8个饲用燕麦品种萌发期耐盐性综合评价. 草原与草坪, 2020, 40(6): 118-123.
Siriguleng, Zhang Y X, Ma Q, Deng L Y, Dong H Y. Comprehensive evaluation of salt tolerance of 8 forage oat varieties. Grassland Turf, 2020, 40(6): 118-123. (in Chinese with English abstract)
[37] Khosravi S, Azizinezhad R, Baghizadeh A, Maleki M. Evaluation and comparison of drought tolerance in some wild diploid populations, tetraploid and hexaploid cultivars of wheat using stress tolerance indices. Acta Agric Sloven, 2020, 115: 105-112.
[38] Zhang W, Zhao Z, Bai G, Fu F. Study and evaluation of drought resistance of different genotype maize inbred lines. Front Agric China, 2008, 2: 428-434.
doi: 10.1007/s11703-008-0071-x
[39] Li G, Zhang H Y, Ji L, Zhao E, Liu J, Li L, Zhang J. Comprehensive evaluation on drought-resistance of different soybean varieties. J Appl Ecol, 2006, 17: 2408-2412.
[40] 张婷婷, 于崧, 于立河, 李琳, 金珊珊, 郭建华, 张静. 松嫩平原春小麦耐盐碱性鉴定及品种(系)筛选. 麦类作物学报, 2016, 36: 1008-1019.
Zhang T T, Yu S, Yu L H, Li L, Jin S S, Guo J H, Zhang J. Saline-alkali tolerance identification and varieties (lines) screening of spring wheat in Songnen Plain. J Triticeae Crops, 2016, 36: 1008-1019. (in Chinese with English abstract)
[41] 段雅娟, 曹士亮, 于滔, 李文跃, 杨耿斌, 王成波, 刘宝民, 刘长华. 玉米自交系萌发期耐盐性鉴定. 作物杂志, 2022, (1): 213-219.
Duan Y J, Cao S L, Yu T, Li W Y, Yang G B, Liu B M, Liu C H. Identification of salt tolerance during germination of maize in-bred lines. Crops, 2022, (1): 213-219. (in Chinese with English abstract)
[42] 虞晓芬, 傅玳. 多指标综合评价方法综述. 统计与决策, 2004, (11): 119-121.
Yu X F, Fu D. Summary of multi-index comprehensive evaluation methods. Stat Dec, 2004, (11): 119-121. (in Chinese)
[1] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[2] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[3] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[4] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[5] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[6] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[7] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[8] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[9] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[10] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[11] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[12] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报, 2022, 48(12): 3130-3143.
[13] 柳妍娣, 赵宝平, 张宇, 米俊珍, 武俊英, 刘景辉. 不同基因型燕麦产量差异与叶片生理特性的关系[J]. 作物学报, 2022, 48(11): 2953-2964.
[14] 李英浩, 王琦, 赵宝平, 柳妍娣, 米俊珍, 武俊英, 刘景辉. 水分和腐植酸对燕麦籽粒产量和β-葡聚糖含量的协同提升效应[J]. 作物学报, 2022, 48(10): 2663-2670.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .