欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3130-3143.doi: 10.3724/SP.J.1006.2022.13079

• 耕作栽培·生理生化 • 上一篇    下一篇

不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选

朱亚迪1(), 王慧琴1, 王洪章1, 任昊1, 吕建华2, 赵斌1, 张吉旺1, 任佰朝1, 殷复伟3, 刘鹏1()   

  1. 1山东农业大学作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安 271018
    2山东省种子管理总站, 山东济南 250100
    3泰安市农业技术推广站, 山东泰安 271018
  • 收稿日期:2021-12-24 接受日期:2022-05-05 出版日期:2022-12-12 网络出版日期:2022-05-24
  • 通讯作者: 刘鹏
  • 作者简介:E-mail: zyd1678@163.com
  • 基金资助:
    国家自然科学基金项目(32071959);山东省重点研发计划项目(LJNY202103);山东省玉米产业技术体系项目(SDAIT-02-08)

Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage

ZHU Ya-Di1(), WANG Hui-Qin1, WANG Hong-Zhang1, REN Hao1, LYU Jian-Hua2, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, YIN Fu-Wei3, LIU Peng1()   

  1. 1State Key Laboratory of Crop Biology, Shandong Agricultural University / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Shandong Seed Management Station, Jinan 250100, Shandong, China
    3Agricultural Technology Promotion Station, Tai’an 271018, Shandong, China
  • Received:2021-12-24 Accepted:2022-05-05 Published:2022-12-12 Published online:2022-05-24
  • Contact: LIU Peng
  • Supported by:
    National Natural Science Foundation of China(32071959);Shandong Province Key Research and Development Project(LJNY202103);Shandong Provincial Maize Industry Technology System Project(SDAIT-02-08)

摘要:

目前, 我国平均气温逐年递增、高温发生时间前移、持续时间延长, 导致夏玉米大喇叭口期极易遭受高温胁迫。大喇叭口期正值夏玉米雌、雄穗分化的关键时期, 对温度敏感, 此期遭遇高温胁迫将导致产量显著下降。建立耐热性能鉴定指标体系,对品种进行耐热性评价筛选是缓解高温热害胁迫经济有效的措施。本试验以近年来黄淮海地区35个主推夏玉米品种为试验材料, 采用大田种植人工增温的方式, 在大喇叭口期设置持续7 d的高温处理,依据产量和雌、雄穗形态等多组性状, 采用相关性分析以及主成分分析、模糊隶属函数法、聚类分析、逐步回归分析和灰色关联度分析等多元分析方法, 对其大喇叭口期的耐热性进行评价和分类, 确定夏玉米大喇叭口期耐热性能鉴定指标。结果显示, 大喇叭口期高温胁迫降低雄穗小穂数量、密度、总散粉量; 改变果穗形态, 减少花丝数量和穗粒数, 降低结实率, 且粒重的增加无法弥补穗粒数下降带来的负面效应, 从而导致籽粒产量降低。通过聚类分析, 筛选出耐热型品种登海111、强盛339、鲁单9088、登海605、德瑞88和登海533。综合逐步回归分析、相关性分析和灰色关联度分析, 确定籽粒产量、穗粒数、结实率、穗长、穗粗、雄穗主轴着生小穂长度和雄穗分枝长度可作为夏玉米大喇叭口期耐热能力的鉴定指标。多元统计分析是评价玉米耐热性的有效方式, 本文筛选出的耐热品种和鉴定指标可为今后耐热玉米品种的选育提供依据。

关键词: 夏玉米, 高温胁迫, 耐热性, 综合评价, 鉴定指标

Abstract:

At present, the occurrence times of high temperature stress is moving forward, and the mean temperature of air and duration of high temperature stress are increasing, which makes summer maize vulnerable to high temperature stress at V12 stage. V12 stage is the critical period of young ear differentiation in summer maize, which is sensitive to temperature. High temperature stress during this stage lead to significant decrease in grain yield. Screening heat tolerant varieties and identification index of heat tolerance are the economical and efficient measures to alleviate heat damage. 35 maize hybrids varieties were used as material in this experiment. Artificial warming method of field planting was adopted, and high-temperature treatment in V12 stage was set, which lasted 7 days. According to multiple traits such as yield, ear and tassel morphology, 35 varieties were evaluated and classified for heat tolerance in V12 stage by using correlation analysis and multivariate analysis such as principal component analysis, fuzzy membership function method, cluster analysis, stepwise regression method and grey relation analysis, so as to determine the identification indexes of heat tolerance in V12 stage. The results showed that high temperature stress in V12 stage leads to tassel spikelet number, density, total pollen emission decreased, ear morphology changed, the number of silk and kernels per ear reduced, setting rate reduced, and the increase of grain weight couldn’t compensate for the negative effect caused by the decreased of kernels per ear, which lead to the decreased of grain yield. Heat tolerant varieties Denghai 111, Qiangsheng 339, Ludan 9088, Denghai 605, Derui 88, and Denghai 533 were screened out by cluster analysis. Based on stepwise regression analysis, correlation analysis and grey relation analysis, the grain yield, kernels per ear, setting rate, ear length, ear diameter, the spindle length of tassel with spikelet, and tassel branch length were determined as the identification indexes for heat tolerance of summer maize at V12 stage. Multivariable statistical analysis is an effective way to evaluate the heat tolerance of summer maize, the heat tolerant varieties and identification index which selected in this paper can provide the basis for breeding heat tolerant varieties in future.

Key words: summer maize, high temperature stress, heat tolerance, comprehensive evaluation, identification index

表1

供试品种名称"

序号
Number
品种
Cultivar
序号
Number
品种
Cultivar
序号
Number
品种
Cultivar
1 C1210 13 登海682 Denghai 682 25 农华5号 Nonghua 5
2 C9256 14 登海710 Denghai 710 26 强盛339 Qiangsheng 339
3 MC121 15 迪卡517 Dika 517 27 天泰316 Tiantai 316
4 MC278 16 丰乐365 Fengle 365 28 天泰366 Tiantai 366
5 邦玉519 Bangyu 519 17 丰乐37 Fengle 37 29 天泰619 Tiantai 619
6 德瑞88 Derui 88 18 胶玉1号 Jiaoyu 1 30 万盛69 Wansheng 69
7 登海111 Denghai 111 19 金海2010 Jinhai 2010 31 鑫瑞57 Xinrui 57
8 登海1717 Denghai 1717 20 京农科736 Jingnongke 736 32 裕丰620 Yufeng 620
9 登海518 Denghai 518 21 来玉721 Laiyu 721 33 源丰008 Yuanfeng 008
10 登海533 Denghai 533 22 鲁单9088 Ludan 9088 34 郑原玉432 Zhengyuanyu 432
11 登海605 Denghai 605 23 明天695 Mingtian 695 35 中天303 Zhongtian 303
12 登海653 Denghai 653 24 农华221 Nonghua 221

图1

不同处理的日平均气温、气温日变化平均值和最高、最低气温 HT: 高温处理; CK: 常温处理; HT-Tmax: 高温处理的最高气温; HT-Tmin: 高温处理的最低气温; CK-Tmax: 常温处理的最高气温; CK-Tmin: 常温处理的最低气温。"

图2

V12期高温胁迫对夏玉米主要性状的影响 *和**分别表示在0.05和0.01水平上差异显著。GYD: 籽粒产量(g plant-1); KN: 穗粒数; TGW: 千粒重(g); SN: 花丝数量; SR: 结实率(%); EL: 穗长(cm); ED: 穗粗(mm); BTL: 秃尖长度(cm); SLTS: 雄穗主轴着生小穂长度(cm); TBN: 雄穗分枝数量; TBL: 雄穗分枝长度(cm); TSSN: 雄穗主轴小穂数; TBSN: 雄穗分枝小穂数; TSSD: 雄穗主轴小穂密度(count cm-1); TBSD: 雄穗分枝小穂密度(count cm-1); TPE: 雄穗总散粉量(g plant-1)。"

表2

不同品种各单项指标的相对值"

品种名称
Cultivar name
GYD KN TGW SN SR EL ED BTL SLTS TBN TBL TSSD TBSD TPE
C1210 0.72 0.42 1.28 0.73 0.58 0.98 0.94 3.35 0.94 0.69 1.07 0.95 1.21 0.0371
C9256 0.95 0.53 1.29 0.81 0.65 1.03 0.95 1.49 0.87 0.77 0.89 0.80 0.95 0.0357
MC121 0.65 0.43 1.16 0.90 0.48 0.92 0.88 0 0.95 0.79 0.98 0.95 0.90 0.0355
MC278 0.80 0.54 1.35 0.90 0.59 0.98 0.98 1.20 0.97 0.90 1.11 0.86 0.99 0.0565
邦玉519 Bangyu 519 0.84 0.65 1.25 0.91 0.72 1.04 0.95 0.44 1.06 0.67 0.92 0.79 1.24 0.0382
德瑞88 Derui 88 1.01 0.59 1.39 1.03 0.56 1.13 1.01 4.21 1.02 1.13 0.94 1.07 0.97 0.0667
登海111 Denghai 111 0.76 0.62 1.19 0.91 0.68 1.12 0.93 1.40 1.09 0.78 1.26 0.71 0.69 0.0250
登海1717 Denghai 1717 0.66 0.39 1.40 0.79 0.49 0.86 0.94 0.84 0.98 0.89 1.06 1.03 0.91 0.0052
登海518 Denghai 518 0.56 0.38 1.35 0.82 0.47 0.72 0.89 1.38 1.02 0.86 0.97 0.88 1.01 0.0846
登海533 Denghai 533 0.99 0.60 1.33 0.88 0.68 1.26 1.01 0.27 0.94 0.92 0.94 0.94 0.90 0.0308
登海605 Denghai 605 0.72 0.49 1.28 0.73 0.64 1.10 0.97 0.77 1.04 0.93 1.13 0.84 0.86 0.0590
登海653 Denghai 653 0.84 0.46 1.49 0.83 0.56 0.98 0.98 0.40 1.01 1.00 0.99 0.87 0.81 0.0189
登海682 Denghai 682 0.88 0.48 1.38 0.90 0.53 1.07 0.98 0.14 0.95 0.71 0.93 1.02 0.91 0.0326
登海710 Denghai 710 0.66 0.47 1.48 0.74 0.62 1.15 0.98 0.44 1.04 1.05 0.97 0.99 0.92 0.0498
迪卡517 Dika 517 0.88 0.46 1.29 0.84 0.53 0.88 0.87 0.79 1.08 0.75 0.89 0.77 0.96 0.0894
丰乐365 Fengle 365 0.82 0.48 1.30 0.87 0.55 0.98 0.94 0.00 1.01 0.94 0.87 0.93 0.98 0.0460
丰乐37 Fengle 37 0.79 0.49 1.79 0.78 0.63 1.04 0.94 0.00 1.01 0.86 0.99 0.89 0.80 0.0393
胶玉1号 Jiaoyu 1 0.80 0.44 1.59 0.91 0.49 0.88 0.97 0.00 0.97 1.20 1.00 0.97 0.82 0.0061
金海2010 Jinhai 2010 0.62 0.41 1.24 0.91 0.44 1.09 0.98 1.02 0.93 0.84 0.98 0.84 0.94 0.1194
京农科736 Jingnongke 736 0.69 0.50 1.25 0.93 0.53 1.11 0.92 0.63 0.95 1.18 0.89 0.91 0.91 0.0108
来玉721 Laiyu 721 0.74 0.42 1.45 0.88 0.47 1.01 0.95 0.46 0.99 1.08 0.99 0.92 0.87 0.0321
鲁单9088 Ludan 9088 0.67 0.55 1.22 0.73 0.74 1.11 0.96 2.11 1.08 0.86 1.11 1.02 0.92 0.0571
明天695 Mingtian 695 0.55 0.32 1.27 0.88 0.37 0.96 0.92 5.50 1.03 0.91 1.04 0.71 0.79 0.1421
农华22 1 Nonghua 221 0.59 0.29 1.47 0.70 0.41 0.75 0.94 0.00 1.06 0.95 0.90 0.95 0.81 0.0214
农华5号 Nonghua 5 0.81 0.52 1.38 0.89 0.57 1.04 1.05 0.52 1.02 0.65 0.91 0.64 0.92 0.0126
强盛339 Qiangsheng 339 1.07 0.64 1.39 0.82 0.77 1.14 1.03 1.38 1.08 1.04 1.00 0.90 0.85 0.0448
天泰316 Tiantai 316 0.67 0.40 1.41 0.85 0.46 0.89 0.93 2.97 1.17 0.89 0.92 0.89 0.76 0.0077
天泰366 Tiantai 366 0.72 0.44 1.40 1.01 0.42 1.09 0.96 7.67 1.12 0.76 1.03 0.67 0.93 0.0505
天泰619 Tiantai 619 0.56 0.40 1.33 0.78 0.51 1.04 0.88 0.27 1.00 1.09 1.07 0.94 1.07 0.0308
万盛69 Wansheng 69 0.66 0.47 1.30 1.02 0.46 1.05 0.93 2.00 1.06 0.76 0.94 0.88 0.87 0.0229
鑫瑞57 Xinrui 57 0.66 0.35 1.49 0.91 0.38 1.10 0.96 0.80 1.07 0.98 1.00 0.90 0.84 0.0222
裕丰620 Yufeng 620 0.46 0.29 1.49 0.94 0.30 0.98 0.76 1.09 1.11 1.08 0.98 0.88 0.79 0.0288
源丰008 Yuanfeng 008 0.45 0.26 1.19 0.98 0.27 0.89 0.87 3.64 0.97 0.77 0.99 0.96 0.82 0.0348
郑原玉432 Zhengyuanyu 432 0.46 0.30 1.30 0.93 0.31 0.94 0.87 2.68 0.99 0.83 1.09 0.88 0.99 0.0074
中天303 Zhongtian 303 0.84 0.54 1.17 0.98 0.55 1.02 0.95 2.37 1.00 0.68 1.05 1.00 0.79 0.0118
平均值 Mean 0.73 0.46 1.35 0.87 0.53 1.01 0.94 1.49 1.02 0.89 0.99 0.89 0.91 0.04
标准差 SD 0.15 0.10 0.13 0.09 0.12 0.11 0.05 1.68 0.06 0.15 0.08 0.10 0.11 0.03
变异系数 CV (%) 20.83 21.69 9.41 9.81 23.01 11.17 5.66 112.81 6.15 16.54 8.31 11.30 12.33 74.90

表3

各单项指标相对值的相关性分析"

指标Index GYD KN TGW SN SR EL ED BTL SLTS TBN TBL TSSD TBSD TPE
GYD 1
KN 0.830** 1
TGW 0.086 -0.150 1
SN 0.030 0.038 -0.209 1
SR 0.741** 0.907** -0.054 -0.377* 1
EL 0.457** 0.609** -0.081 0.183 0.508** 1
ED 0.688** 0.617** 0.147 -0.086 0.594** 0.485** 1
BTL -0.164 -0.173 -0.233 0.387* -0.301 0.032 -0.062 1
SLTS -0.150 -0.042 0.176 0.033 -0.055 -0.051 -0.152 0.284 1
TBN -0.029 -0.107 0.428* -0.082 -0.075 0.094 -0.001 -0.205 0.058 1
TBL -0.230 0.046 -0.196 -0.101 0.103 0.135 -0.057 0.232 0.107 -0.061 1
TSSD 0.008 -0.070 0.100 -0.147 0.007 -0.046 -0.009 -0.251 -0.247 0.364* -0.067 1
TBSD 0.095 0.175 -0.238 -0.133 0.217 -0.002 0.054 -0.003 -0.299 -0.232 -0.147 0.037 1
TPE -0.051 -0.038 -0.212 -0.061 -0.011 0.014 0.009 0.308 0.006 -0.060 0.027 -0.259 0.146 1

表4

各性状主成分的特征向量及贡献率"

主成分Principle factor PI1 PI2 PI3 PI4 PI5 PI6
特征值Eigen value 3.71 2.21 1.65 1.29 1.15 1.02
贡献率Contribution rate (%) 26.53 15.76 11.75 9.24 8.23 7.28
累计贡献率CCR (%) 26.53 42.29 54.04 63.28 71.50 78.78
特征向量Eigenvector 籽粒产量GYD 0.458* -0.019 0.069 -0.183 -0.166 -0.032
穗粒数KN 0.485* 0.111 0.062 -0.002 0.054 -0.106
千粒重TGW -0.009 -0.439* 0.320 0.046 -0.358 0.052
花丝数量SN -0.069 0.282 0.244 -0.676* 0.141 -0.041
结实率SR 0.475* -0.007 -0.042 0.283 0.014 -0.077
穗长EL 0.341* 0.130 0.249 -0.114 0.270 0.210
穗粗ED 0.405* -0.013 0.119 -0.048 -0.116 0.140
秃尖长度BTL -0.140 0.459* 0.228 -0.078 0.007 0.271
雄穗主轴着生小穂长度SLTS -0.102 0.097 0.505* 0.282 -0.235 -0.185
雄穗分枝数量TBN -0.023 -0.415 0.283 -0.032 0.124 0.520*
雄穗分枝长度TBL -0.023 0.201 0.157 0.511 0.588* 0.003
雄穗主轴小穂密度TSSD 0.010 -0.395 -0.164 -0.139 0.447* 0.243
雄穗分枝小穂密度TBSD 0.111 0.123 -0.551* -0.020 -0.124 0.150
雄穗总散粉量TPE -0.023 0.304 -0.095 0.211 -0.321 0.674*

表5

不同玉米品种的综合指标值(CI)、权重、U(Xj )、D值、预测值(VP)"

品种名称Cultivar name CI1 CI2 CI3 CI4 CI5 CI6 U(X1) U(X2) U(X3) U(X4) U(X5) U(X6) D-value VP
C1210 0.295 0.876 -2.837 1.153 0.548 0.286 0.562 0.578 0.000 0.733 0.663 0.503 0.504 0.506
C9256 1.990 0.329 -1.822 -0.692 -0.767 -0.410 0.773 0.494 0.193 0.332 0.366 0.345 0.496 0.494
MC121 -1.024 0.099 -1.775 -0.609 0.935 -0.700 0.398 0.459 0.202 0.350 0.750 0.279 0.400 0.399
MC278 1.205 0.625 -0.434 0.507 0.480 0.422 0.676 0.539 0.456 0.592 0.648 0.534 0.588 0.591
邦玉519
Bangyu 519
2.516 1.641 -1.778 -0.173 -1.269 -1.255 0.839 0.695 0.201 0.445 0.253 0.153 0.543 0.550
德瑞88
Derui 88
2.177 0.227 1.253 -2.221 0.351 2.477 0.797 0.478 0.776 0.000 0.618 1.000 0.637 0.640
登海111 Denghai 111 1.245 2.327 2.169 1.953 2.043 -1.824 0.681 0.800 0.950 0.906 1.000 0.024 0.741 0.738
登海1717 Denghai 1717 -0.979 -1.599 -0.906 0.657 1.012 -0.557 0.403 0.198 0.366 0.625 0.768 0.311 0.410 0.413
登海518 Denghai 518 -2.198 0.058 -1.716 1.012 -1.350 0.465 0.251 0.452 0.213 0.702 0.235 0.543 0.361 0.368
登海533 Denghai 533 3.583 -0.432 -0.001 -1.130 0.589 0.362 0.972 0.377 0.538 0.237 0.672 0.520 0.628 0.626
登海605 Denghai 605 1.119 0.279 0.293 2.370 0.666 0.364 0.665 0.486 0.594 0.997 0.690 0.520 0.643 0.637
登海653 Denghai 653 0.702 -1.502 0.829 0.125 -0.44 -0.351 0.613 0.213 0.696 0.509 0.440 0.358 0.490 0.483
登海682 Denghai 682 1.295 -0.638 -0.990 -1.321 0.166 -0.375 0.687 0.346 0.350 0.195 0.577 0.353 0.468 0.478
登海710 Denghai 710 1.077 -1.698 0.314 1.018 -0.046 1.179 0.660 0.183 0.598 0.703 0.529 0.705 0.548 0.558
迪卡517
Dika 517
-0.391 1.039 -0.871 0.387 -2.392 -0.408 0.477 0.603 0.373 0.566 0.000 0.345 0.433 0.424
丰乐365
Fengle 365
0.592 -0.699 -1.028 -0.792 -0.795 0.123 0.599 0.336 0.343 0.310 0.360 0.466 0.436 0.427
丰乐37
Fengle 37
0.890 -2.202 1.117 1.021 -1.212 -0.328 0.636 0.106 0.750 0.704 0.266 0.363 0.489 0.524
胶玉1号 Jiaoyu 1 -0.172 -2.893 0.981 -0.776 0.184 0.195 0.504 0.000 0.724 0.314 0.581 0.482 0.419 0.416
金海2010
Jinhai 2010
-0.241 1.432 -1.161 -0.360 -0.308 1.965 0.495 0.663 0.318 0.404 0.470 0.884 0.523 0.526
京农科736 Jingnongke 736 0.422 -1.059 -0.171 -1.713 0.857 0.489 0.578 0.281 0.506 0.110 0.733 0.549 0.466 0.456
来玉721
Laiyu 721
-0.285 -1.433 0.450 -0.418 0.186 0.539 0.490 0.224 0.624 0.392 0.581 0.560 0.460 0.456
鲁单9088 Ludan 9088 1.449 0.493 -0.050 2.384 1.416 0.524 0.706 0.519 0.529 1.000 0.859 0.557 0.675 0.677
明天695
Mingtian 695
-2.732 2.870 0.857 0.970 -1.123 2.416 0.185 0.883 0.701 0.693 0.286 0.986 0.543 0.542
农华221 Nonghua 221 -2.359 -2.661 -0.352 1.020 -1.378 -0.667 0.231 0.036 0.472 0.704 0.229 0.286 0.286 0.286
农华5号 Nonghua 5 1.714 0.965 0.201 -0.564 -1.844 -1.929 0.739 0.591 0.576 0.360 0.124 0 0.507 0.507
强盛339 Qiangsheng 339 3.808 -0.408 1.655 0.614 -0.343 0.471 1.000 0.381 0.852 0.616 0.462 0.545 0.709 0.696
天泰316
Tiantai 316
-1.646 -0.458 1.907 0.220 -0.970 -1.245 0.320 0.373 0.900 0.530 0.321 0.155 0.425 0.425
天泰366
Tiantai 366
-0.974 3.631 2.433 -0.593 -1.057 0.185 0.404 1.000 1.000 0.354 0.301 0.480 0.601 0.608
天泰619
Tiantai 619
-0.850 -1.029 -1.076 1.095 1.139 0.679 0.419 0.286 0.334 0.720 0.796 0.592 0.468 0.461
万盛69
Wansheng 69
-0.575 0.993 0.644 -1.560 0.118 -0.948 0.454 0.596 0.661 0.144 0.566 0.223 0.466 0.475
鑫瑞57
Xinrui 57
-1.046 -0.972 1.502 -0.493 0.115 0.073 0.395 0.294 0.823 0.375 0.565 0.454 0.458 0.455
裕丰620 Yufeng 620 -4.216 -1.098 1.585 -0.257 0.106 -0.222 0.000 0.275 0.839 0.426 0.563 0.387 0.323 0.327
源丰008
Yuanfeng 008
-3.930 1.064 -0.663 -1.426 1.225 -0.121 0.036 0.607 0.413 0.173 0.816 0.410 0.338 0.337
郑原玉432 Zhengyuanyu 432 -3.180 0.630 -0.744 -0.355 1.328 -0.577 0.129 0.540 0.397 0.405 0.839 0.307 0.373 0.374
中天303 Zhongtian 303 0.719 1.203 0.186 -1.056 1.829 -1.297 0.615 0.628 0.574 0.253 0.952 0.143 0.560 0.563
权重
Weight (%)
33.67 20.01 14.91 11.73 10.44 9.23

图3

35个夏玉米品种V12期耐热性聚类分析树状图"

表6

单项指标相对值与综合评价D值的相关性"

指标Index 相关系数Correlation coefficient PP-value
籽粒产量Grain yield (g plant-1) 0.573 0
穗粒数Kernels per ear 0.784 0
千粒重1000-kernel weight (g) -0.215 0.215
花丝数量Silk number 0.011 0.952
结实率Setting rate (%) 0.731 0
穗长Ear length (cm) 0.751 0
穗粗Ear diameter (mm) 0.607 0
秃尖长度Barren tip length (cm) 0.215 0.215
主轴着生小穂长度The length of spindle with spikelet (cm) 0.118 0.498
雄穗分枝数量Tassel branch number -0.048 0.786
雄穗分枝长度Tassel branch length (cm) 0.457 0.006
雄穗主轴小穂密度Tassel spindle spikelet density (count cm-1) -0.184 0.290
雄穗分枝小穂密度Tassel branch spikelet density (count cm-1) -0.008 0.965
雄穗总散粉量Tassel total pollen emission (g plant-1) 0.231 0.183

表7

单项指标相对值与综合评价D值的灰色关联度"

指标Index 关联度Correlational degree 位次Rank
结实率Setting rate (%) 0.917 1
穗长Ear length (cm) 0.915 2
穗粗Ear diameter (mm) 0.905 3
穗粒数Kernels per ear 0.904 4
籽粒产量Grain yield (g plant-1) 0.899 5
雄穗分枝长度Tassel branch length (cm) 0.897 6
雄穗主轴着生小穂长度The length of spindle with spikelet (cm) 0.884 7
雄穗主轴小穂密度Tassel spindle spikelet density (count cm-1) 0.876 8
千粒重1000-kernel weight (g) 0.867 9
雄穗分枝小穂密度Tassel branch spikelet density (count cm-1) 0.852 10
花丝数量Silk number 0.837 11
雄穗分枝数量Tassel branch number 0.811 12
雄穗总散粉量Tassel total pollen emission (g plant-1) 0.770 13
秃尖长度Barren tip length (cm) 0.684 14
[1] 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020. pp 383-389.
Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2020. pp 383-389. (in Chinese)
[2] 李喜贵. 我国玉米供需中长期趋势预测. 中国粮食经济, 2021, (8): 33-36.
Li X G. Long-term trend forecast of corn supply and demand in China. Chin Grain Econ, 2021, (8): 33-36. (in Chinese)
[3] 陈印军, 王琦琪, 向雁. 我国玉米生产地位、优势与自给率分析. 中国农业资源与区划, 2019, 40(1): 7-16.
Chen Y J, Wang Q Q, Xiang Y. Analysis of maize production status, superiority and self-sufficiency in China. Chin J Agric Res Reg Plan, 2019, 40(1): 7-16. (in Chinese with English abstract)
[4] 中国气象局国家气候委员会. 2020年中国气候公报. 2021 [2021-12-23].
National Climate Committee of China Meteorological Administration. China Climate Bulletin 2020. 2021 [2021-12-23]. http://zwgk.cma.gov.cn/zfxxgk/gknr/qxbg/202104/t20210406_3051288.html. (in Chinese)
[5] 中国气象局气候变化中心. 中国气候变化蓝皮书(2021). 北京: 科学出版社, 2021. pp 11-12.
Climate Change Center of China Meteorological Administration. China Blue Book on Climate Change (2021). Beijing: Science Press, 2021. pp 11-12. (in Chinese)
[6] 第三次气候变化国家评估报告编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2015. pp 10-18.
Preparation Committee for the Third National Assessment Report on Climate Change. The Third National Assessment of Climate Change. Beijing: Science Press, 2015. pp 10-18. (in Chinese)
[7] 贾佳, 胡泽勇. 中国不同等级高温热浪的时空分布特征及趋势. 地球科学进展, 2017, 32: 546-559.
doi: 10.11867/j.issn.1001-8166.2017.05.0546
Jia J, Hu Z Y. Spatial and temporal features and trend of different level heat waves over China. Adv Earth Sci, 2017, 32: 546-559. (in Chinese with English abstract)
doi: 10.11867/j.issn.1001-8166.2017.05.0546
[8] Lau N C, Nath M J. Model simulation and projection of European heat waves in present-day and future climates. J Clim, 2014, 27: 3713-3730.
doi: 10.1175/JCLI-D-13-00284.1
[9] Fischer E M, Knutti R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change, 2015, 5: 560-564.
[10] You Q L, Jiang Z H, Kong L, Wu Z W, Bao Y T, Kang S C, Pepin N. A comparison of heat wave climatologies and trends in China based on multiple definitions. Clim Dynam, 2017, 48: 3975-3989.
doi: 10.1007/s00382-016-3315-0
[11] 陆伟婷, 于欢, 曹胜男, 陈长青. 近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响. 中国农业科学, 2015, 48: 3132-3145.
Lu W T, Yu H, Cao S N, Chen C Q. Effects of climate warming on growth process and yield of summer maize in Huang-Huai- Hai Plain in last 20 years. Sci Agric Sin, 2015, 48: 3132-3145. (in Chinese with English abstract)
[12] 李鸣钰. 未来气候变化对中国玉米产量影响及应对措施研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Li M Y. Effects and Countermeasures of Future Climate Change on Maize Yield in China: Taking Huang-Huai-Hai Plain as an Example. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[13] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954-3963.
Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954-3963. (in Chinese with English abstract)
[14] 张韶昀. 高温胁迫对夏玉米生殖器官发育及产量的影响. 河北农业大学硕士学位论文, 河北保定, 2019.
Zhan S Y. Effects of High Temperature Stress on Reproductive Organ Development and Yield of Summer Maize. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2019. (in Chinese with English abstract)
[15] 穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应. 中国生态农业学报, 2022, 30: 57-71.
Mu X Y, Ma Z Y, Zhang L X, Fu J, Liu T X, Ding Y, Xia L K, Zhang F Q, Zhang J, Qi J S, Zhao X, Tang B J. Responses of the photosynthetic fluorescence characteristics, pollination and yield compositions of different tolerant/susceptible maize varieties to high temperature during flowering. Chin J Eco-Agric, 2022, 30: 57-71. (in Chinese with English abstract)
[16] 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45: 4947-4958.
Zhao L F, Li C H, Liu T X, Wang X P, Ceng S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.). Sci Agric Sin, 2012, 45: 4947-4958. (in Chinese with English abstract)
[17] 于康珂. 玉米穗发育对高温胁迫的响应. 河南农业大学硕士学位论文, 河南郑州, 2016.
Yu K K. Responses of Reproductive Organs Development in Maize (Zea mays L.) to High Temperature Stress. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract)
[18] Wang H Q, Liu P, Zhang J W, Zhao B, Ren B Z. Endogenous hormones inhibit differentiation of young ears in maize (Zea mays L.) under heat stress. Front Plant Sci, 2020, 11: 1665-1679.
[19] Wang Y Y, Tao H B, Tian B J, Sheng D C, Xu C C, Zhou H, Huang S B, Wang P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ Exp Bot, 2019, 158: 80-88.
doi: 10.1016/j.envexpbot.2018.11.007
[20] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[21] Huang M X, Wang J, Wang B, Liu D L, Yu Q, He D, Wang N, Pan X B. Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5°C and 2°C global warming. Environ Res Lett, 2020, 15: 024015.
[22] 王晶, 黄伟雄, 李敏, 许秀敏, 梁旭霞, 黄泓耀. 多元统计分析在小麦粉产地溯源中的应用. 中国食品卫生杂志, 2018, 30(1): 68-73.
Wang J, Huang W X, Li M, Xu X M, Liang X X, Huang H Y. The application of multivariate data analysis to determine the geographical origin of wheat flour. Chin J Food Hyg, 2018, 30(1): 68-73. (in Chinese with English abstract)
[23] 李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选. 中国农业科学, 2021, 54: 3381-3393.
Li M, Su H, Li Y Y, Li J P, Li J C, Zhu Y L, Song Y H. Analysis of heat tolerance of wheat with different genotypes and screening of identification indexes in Huang-Huai-Hai region. Sci Agric Sin, 2021, 54: 3381-3393. (in Chinese with English abstract)
[24] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47: 2927-2939.
Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F D, Song S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Sci Agric Sin, 2014, 47: 2927-2939. (in Chinese with English abstract)
[25] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报, 2022, 48: 367-379.
doi: 10.3724/SP.J.1006.2022.04283
Hu L L, Wang S H, Wang L X, Cheng X Z, Chen H L. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage. Acta Agron Sin, 2022, 48: 367-379. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.04283
[26] 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
Yu K K, Liu Y, Li Y M, Sun N N, Zhan J, You D L, Niu L, Li C H, Liu T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage. J Maize Sci, 2016, 24(2): 62-71. (in Chinese with English abstract)
[27] 李淑君, 张丕辉, 付忠军, 祁志云, 杨华, 金川, 董昕. 玉米花期不同种质资源耐热性鉴定与分析. 玉米科学, 2019, 27(4): 22-31.
Li S J, Zhang P H, Fu Z J, Qi Z Y, Yang H, Jin C, Dong X. Identification and analysis for the thermotolerance of different germplasm in maize at anthesis. J Maize Sci, 2019, 27(4): 22-31. (in Chinese with English abstract)
[28] 高英波, 张慧, 王竹, 薄丽秀, 武智民, 薛艳芳, 钱欣, 代红翠, 韩小伟, 李宗新. 夏玉米品种花期耐热性鉴定与评价. 山东农业科学, 2019, 51(6): 43-48.
Gao Y B, Zhang H, Wang Z, Bao L X, Wu Z M, Xue Y F, Qian X, Dai H C, Han X W, Li Z X. Identification and evaluation of heat tolerance of summer maize varieties during flowering stage. Shandong Agric Sci, 2019, 51(6): 43-48. (in Chinese with English abstract)
[29] 于振文, 王璞, 柴岩, 谢甫绨. 作物栽培学各论. 北京: 中国农业出版社, 2013. pp 73-83.
Yu Z W, Wang P, Chai Y, Xie F D. Monographs on Crop Cultivation. Beijing: China Agriculture Press, 2013. pp 73-83. (in Chinese)
[30] Obata T, Witt S, Lisec J, Palacios R N, Florez S I, Yousfi S. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol, 2015, 169: 2665-2683.
doi: 10.1104/pp.15.01164 pmid: 26424159
[31] 赵瑞, 张旭辉, 张程炀, 郭泾磊, 汪妤, 李红霞. 小麦种质资源成株期氮效率评价及筛选. 中国农业科学, 2021, 54: 3818-3833.
Zhao R, Zhang X H, Zhang C Y, Guo J L, Wang S, Li H X. Evaluation and screening of nitrogen efficiency of wheat germplasm resources at mature stage. Sci Agric Sin, 2021, 54: 3818-3833. (in Chinese with English abstract)
[32] 关媛, 党冬冬, 王慧, Rani D R, 潘广磊, Paul J D, 阮燕晔, 郑洪建. 甜、糯玉米自交系耐热性鉴定研究. 上海农业学报, 2020, 36(6): 28-32.
Guan Y, Dang D D, Wang H, Rani D R, Pan G L, Paul J D, Ruan Y Y, Zheng H J. Study on the identification of heat tolerance of inbred lines in sweet corn and waxy corn. Acta Agric Shanghai, 2020, 36(6): 28-32. (in Chinese with English abstract)
[33] 杨明花, 廖必勇, 刘强, 登斯拉木, 艾合买提江, 彭云承, 孙娜, 艾拉努尔, 布阿依夏木. 新疆伊犁玉米自交系种质资源主要农艺性状的多样性分析. 种子, 2021, 40(10): 49-55.
Yang M H, Liao B Y, Liu Q, Dengsilamu, Aihemaitijiang, Peng Y C, Sun N, Ailanuer, Buayixiamu. Diversity analysis of main agronomic traits of maize inbred germplasm resources in Yili, Xinjiang. Seed, 2021, 40(10): 49-55 (in Chinese with English abstract).
[34] 张亚菲, 刘松涛, 曹雯梅, 郑贝贝. 黄淮海夏玉米品种主要性状遗传多样性研究. 种子, 2021, 40(4): 96-100.
Zhang Y F, Liu S T, Cao W M, Zheng B B. Study and analysis on genetic diversity of main traits of summer maize in Huang-Huai-Hai Region. Seed, 2021, 40(4): 96-100. (in Chinese with English abstract)
[35] 姚金晓, 杨飞, 彭红坤, 虞梦艳, 严中琪, 王呈阳. 冬瓜幼苗对高温胁迫的响应及其耐热性评价. 江苏农业科学, 2021, 49(13): 121-125.
Yao J X, Yang F, Peng H K, Yu M Y, Yan Z Q, Wang C Y. Response of wax gourd seedlings to high temperature stress and evaluation of heat tolerance. Jiangsu Agric Sci, 2021, 49(13): 121-125. (in Chinese)
[36] 孙宁宁. 玉米叶、粒对高温胁迫的响应. 河南农业大学硕士学位论文, 河南郑州, 2017.
Sun N N. Response of Maize Leaf and Kernel to Heat Stress. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017. (in Chinese with English abstract)
[37] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48: 2497-2507.
Wu X L, Liang H Y, Yang F, Liu W G, She Y H, Yang W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Sci Agric Sin, 2015, 48: 2497-2507. (in Chinese with English abstract)
[38] 杨锦忠, 宋希云. 多元统计分析及其在烟草学中的应用. 中国烟草学报, 2014, 20(5): 134-138.
Yang J Z, Song X Y. Multivariate statistical analysis methods and their application in tobacco science. Acta Tabac Sin, 2014, 20(5): 134-138. (in Chinese with English abstract)
[39] 汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选. 作物学报, 2017, 43: 1381-1394.
doi: 10.3724/SP.J.1006.2017.01381
Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B. Identification and indices screening of drought resistance at adult plant stage in Job’s Tears germplasm resources. Acta Agron Sin, 2017, 43: 1381-1394. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01381
[40] 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳, 肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012, 45: 1703-1713.
Wu H, Hou L L, Zhou Y F, Fan Z C, Shi J Y, Aliyan, Rouzi, Zhang J S. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Sci Agric Sin, 2012, 45: 1703-1713. (in Chinese with English abstract)
[41] 赵鹏, 王晓明, 刘曼双, 许盛宝. 小麦种质资源耐热性评估研究进展. 麦类作物学报, 2021, 41: 569-576.
Zhao P, Wang X M, Liu M S, Xu S B. Research progress on evaluating methods of heat tolerance in wheat germplasm resources. J Triticeae Crops, 2021, 41: 569-576. (in Chinese with English abstract)
[42] 闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54: 3592-3608.
Yan Z H, Liu D Y, Jia X C, Yang Q, Chen Y B, Wang P F, Wang Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Sci Agric Sin, 2021, 54: 3592-3608. (in Chinese with English abstract)
[43] Wang Y Y, Sheng D C, Zhang P, Dong X, Yan Y, Hou X F, Wang P, Huang S B. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environ Exp Bot, 2021, 183: 104343.
[44] 付景, 孙宁宁, 刘天学, 马俊峰, 杨豫龙, 赵霞, 穆心愿, 李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响. 作物杂志, 2019, (3): 118-125.
Fu J, Sun N N, Liu T X, Ma J F, Yang Y L, Zhao X, Mu X Y, Li C H. The effects of high temperature at spike stage on grain-filling physiology and yield of maize. Crops, 2019, (3): 118-125. (in Chinese with English abstract)
[45] 周延辉, 朱新开, 郭文善, 封超年. 稻茬小麦中高产水平下产量及其构成因素分析. 麦类作物学报, 2018, 38: 293-297.
Zhou Y H, Zhu X K, Guo W S, Feng C N. Analysis of yield and yield components of wheat after rice on medium-high-yielding level. J Triticeae Crops, 2018, 38: 293-297. (in Chinese with English abstract)
[1] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[4] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[7] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[8] 宋杰, 任昊, 赵斌, 张吉旺, 任佰朝, 李亮, 王少祥, 黄金苓, 刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响[J]. 作物学报, 2022, 48(11): 2908-2919.
[9] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[10] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[11] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[12] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[13] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[14] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[15] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .