欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 167-176.doi: 10.3724/SP.J.1006.2023.23007

• 耕作栽培·生理生化 • 上一篇    下一篇

气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征

商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全()   

  1. 中国农业大学农学院, 北京 100193
  • 收稿日期:2022-01-15 接受日期:2022-06-07 出版日期:2023-01-12 网络出版日期:2022-07-06
  • 通讯作者: 褚庆全
  • 基金资助:
    国家重点研发计划项目(2016YFD0300201)

Spatiotemporal variation of high temperature stress in different regions of China under climate change

SHANG Meng-Fei, SHI Xiao-Yu, ZHAO Jiong-Chao, LI Shuo, CHU Qing-Quan()   

  1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2022-01-15 Accepted:2022-06-07 Published:2023-01-12 Published online:2022-07-06
  • Contact: CHU Qing-Quan
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300201)

摘要:

研究气候变化背景下作物生长季高温热害的时空分布和变化特征, 对于制定适应气候变化的作物栽培管理技术有重要的参考意义。本研究利用我国558个气象站点的逐日气象数据和物候期数据, 分析了1961—2020年玉米不同生育阶段的高温度日(heat degree days, HDD)及其气候倾向率的时空变化特征。结果表明, 1961—2020年, 我国玉米全生育期及各生育阶段的HDD整体呈升高趋势, 不同农作区玉米全生育期HDD增加1.19~9.27℃ d (10a)-1, 四川盆地农作区、华南农林渔区和西北农牧区增幅较高, 分别显著增加8.79、9.27和5.81℃ d (10a)-1。不同生育阶段HDD变化趋势呈现明显区域差异, 北方农作区玉米HDD在生育前期增幅较大, 而南方农作区玉米HDD在生育后期增幅较大。播种-抽穗期, 北方农作区中西北农牧区和北部中低高原农牧区HDD分别显著增加2.67℃ d (10a)-1和2.00℃ d (10a)-1, 黄淮海平原农作区增加1.41℃ d (10a)-1, 都高于其他农作区。抽穗至乳熟期, 南方农作区的HDD增幅较大, 华南农林渔区和四川盆地农作区HDD分别显著增加3.68℃ d (10a)-1和2.11℃ d (10a)-1。乳熟至成熟期, 南方农作区HDD增幅为0.88~5.31℃ d (10a)-1, 大幅超过北方农作区的-0.01~0.59℃ d (10a)-1。因此, 为应对不断增加的玉米高温胁迫风险, 北方玉米产区应重点关注播种-乳熟期高温对玉米生产的影响, 南方玉米产区应重点关注抽穗后高温对玉米生产的影响。

关键词: 玉米, 生育期, 高温胁迫, 时空变化, 农作区

Abstract:

Analysing the spatial-temporal distribution and the change of high temperature damage during crop growth period is of great significance for developing management techniques of crop cultivation under climate change. Based on the daily data of 558 meteorological stations and maize phenology period in China, we explored the spatiotemporal variation of heat degree days (HDD) and its trend of different maize growth periods from 1961 to 2020. The results showed that the HDD exhibited a general increased trend during the whole growth period and every growth stage of maize in China from 1961 to 2020, with HDD increased 1.19-9.27℃ d (10a)-1 of different farming regions. The HDD increase range was higher in Sichuan Basin farming region, south China farming region and northwest farming region, and it increased significantly by 8.79, 9.27, and 5.81℃ d (10a)-1, respectively. The change trend of HDD at different growth stages had obvious variation in different regions. HDD increased greatly in the early growth period of northern farming regions, while HDD increased greatly in late growth period of southern farming regions. During maize sowing-tassel period, the HDD increased significantly by 2.67 and 2.00℃ d (10a)-1 in northwest farming region and north China farming region, respectively, and it increased by 1.41℃ d (10a)-1 in Huang-Huai-Hai farming region, both of them were higher than that in other farming regions. During tassel-milk period, the HDD of southern farming regions increased greatly, which increased significantly by 3.68 and 2.11℃ d (10a)-1 in south China farming region and Sichuan Basin farming region, respectively. During milk-maturity period, the HDD of southern farming regions increased higher by 0.88-5.31℃ d (10a)-1 than -0.01-0.59℃ d (10a)-1 in northern farming regions. In conclusion, to cope with the increasing risk of high temperature stress of maize, northern farming regions should focus on the impact of high temperature during maize sowing-milk period, and southern farming regions should focus on the impact of high temperature after maize tasseled.

Key words: maize, growth stages, high temperature stress, temporal and spatial variation, farming region

图1

研究区域 农作区划分参照《中国农作制》[26]。DB, 东北平原山区半湿润温凉一熟农林区(简称东北农林区); BB, 北部低中高原半干旱凉温旱作兼放牧区(简称北部中低高原农牧区); XB, 西北干旱中温绿洲灌溉农作区兼荒漠放牧区(简称西北农牧区); HHH, 黄淮海平原半湿润暖温灌溉集约农作区(简称黄淮海平原农作区); SC, 四川盆地湿润中热麦稻二熟集约农区(简称四川盆地农作区); XN, 西南中高原山地湿热水旱二熟粗放农林区(简称西南中高原农林区); CZ, 长江中下游沿海平原丘陵湿润中热水田集约农作区(简称长江中下游平原农作区); JN, 江南丘陵山地湿润中热水田二三熟农林区(简称江南丘陵农林区); HN, 华南湿热双季稻与热作农林区(简称华南农林渔区); QZ, 青藏高原干旱半干旱高寒牧区兼河谷一熟农作区(简称青藏高原农林区)。"

表1

1961-2020年不同农作区玉米生育期内高温度日"

区域
Region
高温度日HDD (℃ d)
播种-抽穗期
Sowing-tassel
抽穗-乳熟期
Tassel-milk
乳熟-成熟期
Milk-maturity
全生育期
Whole growth period
春玉米Spring maize
东北农林区Northeast farming region 5.4±5.9 2.4±3.2 0.2±0.2 8.0±7.4
北部中低高原农牧区North China farming region 17.1±10.4 8.2±4.1 1.7±2.0 27.0±13.8
西北农牧区Northwest farming region 42.5±13.0 36.6±11.1 15.3±5.6 94.4±21.7
四川盆地农作区Sichuan Basin farming region 9.5±6.7 18.1±11.3 34.8±17.7 62.4±29.5
西南中高原农林区Southwest farming region 14.9±5.0 12.9±5.5 16.0±6.1 43.8±13.1
长江中下游平原农作区Yangtze Plain farming region 9.3±4.9 21.9±12.6 38.4±12.5 69.7±23.3
江南丘陵农林区Jiangnan farming region 6.9±4.8 16.4±8.7 32.8±10.5 56.1±19.2
华南农林渔区South China farming region 12.4±4.9 14.7±9.5 16.5±9.7 43.6±20.4
夏玉米Summer maize
黄淮海平原农作区Huang-Huai-Hai farming region 53.8±18.9 12.1±8.0 2.7±2.9 68.6±24.8

图2

玉米不同生育阶段高温度日空间分布"

表2

1961-2020年玉米不同生育阶段高温度日倾向率"

区域
Region
高温度日倾向率Trend of HDD (℃ d (10a) -1)
播种-抽穗期
Sowing-tassel
抽穗-乳熟期
Tassel-milk
乳熟-成熟期
Milk-maturity
全生育期
Whole growth period
春玉米Spring maize
东北农林区Northeast farming region 0.76 0.45 -0.01 1.19
北部中低高原农牧区North China farming region 2.00* 1.05** 0.08 3.13*
西北农牧区Northwest farming region 2.67* 2.55** 0.59 5.81**
四川盆地农作区Sichuan Basin farming region 1.37** 2.11* 5.31** 8.79**
西南中高原农林区Southwest farming region 1.31** 1.03** 1.38* 3.73**
长江中下游平原农作区Yangtze Plain farming region 0.59 0.15 0.88 1.63
江南丘陵农林区Jiangnan farming region -0.15 0.77 2.11** 2.73*
华南农林渔区South China farming region 1.23** 3.68** 4.36** 9.27**
夏玉米Summer maize
黄淮海平原农作区Huang-Huai-Hai farming region 1.41 0.79 0.22 2.42

图3

1961-2020年我国不同区域玉米播种-抽穗阶段高温度日变化倾向率"

图4

1961-2020年我国不同区域玉米抽穗-乳熟阶段高温度日变化倾向率"

图5

1961-2020年我国不同区域玉米乳熟-成熟阶段HDD变化倾向率"

[1] 秦大河, 丁一汇, 苏纪兰, 任贾文, 王绍武, 伍荣生, 杨修群, 王苏民, 刘时银, 董光荣, 卢琦, 黄镇国, 杜碧兰, 罗勇. 中国气候与环境演变评估: I. 中国气候与环境变化及未来趋势. 气候变化研究进展, 2005, 1(1): 4-9.
Qin D H, Ding Y H, Su J L, Ren J W, Wang S W, Wu R S, Yang X Q, Wang S M, Liu S Y, Dong G R, Lu Q, Huang Z G, Du L B, Luo Y. Assessment of climate and environment change in China: I. Climate and environment changes in China and their projection. Adv Clim Change Res, 2005, 1(1): 4-9. (in Chinese with English abstract)
[2] Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 5-6.
[3] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43: 329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Agric Sin, 2010, 43: 329-336. (in Chinese with English abstract)
[4] Feng S, Hu Q. Changes in agro-meteorological indicators in the contiguous United States: 1951-2000. Theor Appl Clim, 2004, 78: 247-264.
[5] Easterling D R. Recent changes in frost days and the frost-free season in the United States. Bull Am Meteorol Soc, 2002, 83: 1327-1332.
doi: 10.1175/1520-0477(2002)083<1327:RCIFDA>2.3.CO;2
[6] 刘园, 王颖, 杨晓光. 华北平原参考作物蒸散量变化特征及气候影响因素. 生态学报, 2010, 30: 923-932.
Liu Y, Wang Y, Yang X G. Trends in reference crop evapotranspiration and possible climatic factors in the North China Plain. Acta Ecol Sin, 2010, 30: 923-932. (in Chinese with English abstract)
[7] 刘志娟, 杨晓光, 王文峰. 气候变化背景下中国农业气候资源变化: IV. 黄淮海平原半湿润暖温麦-玉两熟灌溉农区农业气候资源时空变化特征. 应用生态学报, 2011, 22: 905-912.
Liu Z J, Yang X G, Wang W F. Changes of China agricultural climate resources under the background of climate change: IV. Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain. Chin J Appl Ecol, 2011, 22: 905-912. (in Chinese with English abstract)
[8] 刘彦随, 刘玉, 郭丽英. 气候变化对中国农业生产的影响及应对策略. 中国生态农业学报, 2010, 18: 905-910.
Liu Y S, Liu Y, Guo L Y. Impact of climatic change on agricultural production and response strategies in China. Chin J Eco- Agric, 2010, 18: 905-910. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00905
[9] 王占彪. 气候变化背景下华北麦-玉两熟生产的风险评价及低碳策略. 中国农业大学博士学位论文, 北京, 2015.
Wang Z B. Risk Assessment and Low Carbon Strategies of Winter Wheat and Summer Maize Production in North China Plain under Climate Change. PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[10] 尹小刚. 气候变化背景下东北玉米生产的干旱风险与适应对策. 中国农业大学博士学位论文, 北京, 2015.
Yin X G. Drought Risks and Adaptation Measures of Maize Production in Northeast China under Climate Change. PhD Dissertation of China Agricultural University, Beijing, China, 2015. (in Chinese with English abstract)
[11] Liu B, Liu L L, Tian L Y, Cao W X, Zhu Y, Asseng S. Post-heading heat stress and yield impact in winter wheat of China. Glob Change Biol, 2014, 20: 372-381.
doi: 10.1111/gcb.12442
[12] Hawkins E D, Fricker T E, Challinor A J, Ferro C A T, Ho C K, Osborne, T M. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob Change Biol, 2013, 19: 937-947.
doi: 10.1111/gcb.12069
[13] Lobell D B, Sibley A, Ortiz-Monasterio J I. Extreme heat effects on wheat senescence in India. Nat Clim Change, 2012, 2: 186-189.
doi: 10.1038/nclimate1356
[14] Lobell D B, Hammer G L, McLean G, Messina C, Roberts M J, Wolfram S. The critical role of extreme heat for maize production in the United States. Nat Clim Change, 2013, 3: 497-501.
doi: 10.1038/nclimate1832
[15] Lobell D B, Marianne B, Cosmos M, Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Change, 2011, 1: 42-45.
[16] Butler E E, Huybers P. Adaptation of US maize to temperature variations. Nat Clim Change, 2013, 3: 68-72.
[17] 尹小刚, 王猛, 孔箐锌, 王占彪, 张海林, 褚庆全, 文新亚, 陈阜. 东北地区高温对玉米生产的影响及对策. 应用生态学报, 2015, 26(1): 186-198.
Yin X G, Wang M, Kong Q X, Wang Z B, Zhang H L, Chu Q Q, Wen X Y, Chen F. Impacts of high temperature on maize production and adaptation measures in Northeast China. Chin J Appl Ecol, 2015, 26(1): 186-198. (in Chinese with English abstract)
[18] 王丽君. 黄淮海平原夏玉米季干旱、高温的发生特征及对产量的影响. 中国农业大学博士学位论文, 北京, 2018.
Wang L J. Spatial-temporal Characteristics of Drought, Heat and its Effect on Yield for Summer Maize in Huang-Huai-Hai Plain, China. PhD Dissertation of China Agricultural University, Beijing, China, 2018. (in Chinese with English abstract)
[19] 徐延红, 刘天学, 方文松, 李树岩. 河南省夏玉米花期高温热害风险分析. 中国农业气象, 2021, 42: 879-888.
Xu Y H, Liu T X, Fang W S, Li S Y. Risk analysis of high temperature disaster during summer maize flowering period in Henan province. Chin J Agrometeorol, 2021, 42: 879-888. (in Chinese with English abstract)
[20] 盛得昌, 王媛媛, 黄收兵, 陶洪斌, 王璞. 高温对玉米植株形态与功能、产量构成及子粒养分的影响. 玉米科学, 2020, 28(5): 86-92.
Sheng D C, Wang Y Y, Huang S B, Tao H B, Wang P. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants. J Maize Sci, 2020, 28(5): 86-92.<br (in Chinese with English abstract)
[21] 赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40: 1839-1845.
Zhao L X, Zhang P, Wang R N, Wang P, Tao H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agron Sin, 2014, 40: 1839-1845. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01839
[22] 闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54: 3592-3608.
Yan Z H, Liu D Y, Jia X C, Yang Q, Chen Y B, Dong P F, Wang Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Sci Agric Sin, 2021, 54: 3592-3608. (in Chinese with English abstract)
[23] 和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41: 1-15.
He H Y, Hu Q, Pan X B, Ma X Q, Hu L T, Wang X C, He Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change. Chin J Agrometeorol, 2020, 41: 1-15. (in Chinese with English abstract)
[24] 曹永强, 冯兴兴, 李玲慧, 路洁. 气候变化下辽宁省春玉米水热时空特征及干旱风险. 生态学报, 2021, 41: 1092-1105.
Cao Y Q, Feng X X, Li L H, Lu J. Temporal and spatial variation of spring corn in Liaoning province under climate change. Acta Ecol Sin, 2021, 41: 1092-1105. (in Chinese with English abstract)
[25] 王秀萍, 方文松, 杜子璇, 刘天学. 夏玉米花期高温热害时空分布特征. 玉米科学, 2021, 29(1): 61-68.
Wang X P, Fang W S, Du Z X, Liu T X. Spatiotemporal variation of flowering stage heat damage of summer maize. J Maize Sci, 2021, 29(1): 61-68. (in Chinese with English abstract)
[26] 刘巽浩, 陈阜. 中国农作制. 北京: 中国农业出版社, 2005. pp 30-33.
Liu X H, Chen F. Farming Systems in China. Beijing: China Agriculture Press, 2005. pp 30-33. (in Chinese)
[27] 国家气象信息中心. 中国地面气候资料日值数据集(V3.0). [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_ CLI_CHN_MUL_DAY_V3.0.html.
China Meteorological Data Service Centre. Dataset of Daily Climate Data from Chinese Surface Stations (V 3.0). [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html. (in Chinese)
[28] 崔读昌, 刘洪顺, 闵谨如, 贺菊美. 中国主要农作物气候资源图集. 北京: 气象出版社, 1984. pp 119-156.
Cui D C, Liu H S, Min J R, He J M. Atlas of Climate Resources of Major Crops in China. Beijing: China Meteorological Press, 1984. pp 119-156. (in Chinese)
[29] 梅旭荣, 刘勤, 严昌荣. 中国主要农作物生育期图集. 杭州: 浙江科学技术出版社, 2016. pp 87-113.
Mei X R, Liu Q, Yan C R. Atlas of Main Crop Growth Period in China. Hangzhou: Zhejiang Science and Technology Publishing Press, 2016. pp 87-113. (in Chinese)
[30] 国家气象信息中心. 中国农作物生长发育和农田土壤湿度旬值数据集. [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html.
China Meteorological Data Service Centre. Ten-day Dataset on Crop Growth and Soil Humidity in China. [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html. (in Chinese)
[31] 王占彪, 王猛, 尹小刚, 张海林, 褚庆全, 文新亚, 陈阜. 气候变化背景下华北平原夏玉米各生育期水热时空变化特征. 中国生态农业学报, 2015, 23: 473-481.
Wang Z B, Wang M, Yin X G, Zhang H L, Chu Q Q, Wen X Y, Chen F. Spatiotemporal characteristics of heat and rainfall changes in summer maize season under climate change in the North China Plain. Chin J Eco-Agric, 2015, 23: 473-481. (in Chinese with English abstract)
[32] 沈瑱, 曾燕, 肖卉, 费松. 江苏省日照时数的气候特征分析. 气象科学, 2007, 27: 425-429.
Shen Z, Zeng Y, Xiao H, Fei S. Changes of sunshine hours in the recent 40 years over Jiangsu province. J Meteorol Sci, 2007, 27: 425-429. (in Chinese with English abstract)
[33] 李林超. 极端气温、降水和干旱事件的时空演变规律及其多模式预测. 西北农林科技大学硕士学位论文, 陕西咸阳, 2019.
Li L C. Temporal-spatial Evolution of Extreme Temperature, Precipitation and Drought Event and its Projection by Multi-model Ensemble. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2019. (in Chinese with English abstract)
[34] 赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013, 39: 1644-1651.
doi: 10.3724/SP.J.1006.2013.01644
Zhao F C, Jing L Q, Yan F B, Lu D L, Wang G Y, Lu W P. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agron Sin, 2013, 39: 1644-1651. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01644
[35] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[36] 邵靖宜, 李小凡, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响. 中国农业科学, 2021, 54: 3623-3631.
Shao J Y, Li X F, Yu W Z, Liu P, Zhao B, Zhang J W, Ren B Z. Combined effects of high temperature and drought on yield and stem microstructure of summer maize. Sci Agric Sin, 2021, 54: 3623-3631. (in Chinese with English abstract)
[37] 严旖旎. 吐丝期喷施外源激素对花后高温下糯玉米产量和品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2021.
Yan Y N. Effects of Spraying Exogenous Hormones at Silking Stage on the Grain Yield and Quality under Post-silking Heat Stress for Waxy Maize. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2021. (in Chinese with English abstract)
[38] 中国气象局. QX/T 595-2021气候指数: 高温. 北京: 气象出版社, 2021.
China Meteorological Administration. QX/T 595-2021 Climate Index: High Temperature. Beijing: China Meteorological Press, 2021. (in Chinese)
[39] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21985-2008主要农作物高温危害温度指标. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 21985-2008 Temperature Index of High Temperature Harm for Main Crops. Beijing: Standards Press of China, 2008. (in Chinese)
[40] 陈岩, 岳丽杰, 杨勤, 张会玲, 柯国华, 刘永红. 高温热害对玉米生长发育的影响及研究进展. 耕作与栽培, 2019, 39(1): 26-31.
Chen Y, Yue L J, Yang Q, Zhang H L, Ke G H, Liu Y H. Effects of high temperature on maize development and its research advances. Tillage Cult, 2019, 39(1): 26-31. (in Chinese)
[41] 王海梅. 高温胁迫对河套灌区玉米生理指标及产量构成要素的影响. 干旱气象, 2015, 33(1): 59-62.
Wang H M. Influence of high temperature stress on physiological indexes and yield components of maize in Hetao Irrigation District. J Arid Meteorol, 2015, 33(1): 59-62. (in Chinese with English abstract)
[42] 郭欢乐, 汤彬, 曹钟洋, 李涵, 陈松林, 陈志辉. 湖南省春夏秋三季玉米生长发育及温度胁迫特点研究. 作物研究, 2020, 34(3): 217-222.
Guo H L, Tang B, Cao Z Z, Li H, Chen S L, Chen Z H. Study on growth and temperature stress of spring, summer and autumn maize in Hunan province. Crop Res, 2020, 34(3): 217-222. (in Chinese with English abstract)
[43] 陈怀亮, 李树岩. 气候变暖背景下河南省夏玉米花期高温灾害风险预估. 中国生态农业学报, 2020, 28: 337-348.
Chen H L, Li S Y. Prediction of high temperature disaster risks during summer maize flowering under future climate warming background in Henan province. Chin J Eco-Agric, 2020, 28: 337-348. (in Chinese with English abstract)
[1] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[2] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[3] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[4] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响[J]. 作物学报, 2023, 49(2): 472-484.
[5] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[6] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[7] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[8] 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199.
[9] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[10] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[11] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[12] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[13] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[14] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[15] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[5] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[6] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[7] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[8] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[9] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[10] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .