作物学报 ›› 2023, Vol. 49 ›› Issue (1): 153-166.doi: 10.3724/SP.J.1006.2023.14207
马骊1(), 白静2, 赵玉红3, 孙柏林3, 侯献飞4, 方彦1, 王旺田1, 蒲媛媛1, 刘丽君1, 徐佳1, 陶肖蕾1, 孙万仓1,*(), 武军艳1,*()
MA Li1(), BAI Jing2, ZHAO Yu-Hong3, SUN Bo-Lin3, HOU Xian-Fei4, FANG Yan1, WANG Wang-Tian1, PU Yuan-Yuan1, LIU Li-Jun1, XU Jia1, TAO Xiao-Lei1, SUN Wan-Cang1,*(), WU Jun-Yan1,*()
摘要:
谷胱甘肽S-转移酶(glutathione S-transferases, GST)参与调节植物生长、发育和逆境胁迫反应的许多方面。本研究利用双向电泳和质谱技术分析‘16VHNTS309’在冷胁迫下差异表达的蛋白质, 基于GO和KEGG分析鉴定出BE、APX、SOD、GST等参与冷胁迫反应的蛋白质。利用qRT-PCR和生理指标鉴定到响应冷胁迫的关键蛋白质GST, 采用同源克隆法克隆到‘16VHNTS309’的GST基因。该基因CDS长度为642 bp, 编码213个氨基酸, 是一个不稳定蛋白, 属于GST_N_3谷胱甘肽S-转移酶家族, 与甘蓝型油菜‘ZS11’序列相似性为99.22%, 与‘ZS11’和‘Vision’两者的氨基酸序列相比较发现第127位亮氨酸(L)突变为脯氨酸(P)。基因家族分析表明, 在甘蓝型油菜中共鉴定到153个BnGSTs成员, 按其功能主要分为Zeta、Phi、Theta、CHQ、DHAR、Lambda和Tau这七大类型, 大部分的BnGSTs属于Phi和Tau这2种类型。系统进化将BnGSTs分为12个亚家族, 亚家族I和VIII包含了较多的成员, BnGSTs不均匀的分布在18条染色体上, C06染色体上分布BnGSTs基因数量最多, 含有10个保守的蛋白质基序。BnGSTs基因家族中有99对基因存在共线性关系, 131个基因来自基因复制事件, 片段重复事件在BnGSTs基因的进化中起着重要作用。冷胁迫下BnaA02g35760D、BnaC06g20450D、BnaC06g35490D、BnaA02g03230D和BnaA02g35980D在强抗寒品种中的显著高表达, 是弱抗寒品种的7~12倍, 并且强抗寒品种具有较高的生理酶活性。另外, 在冷冻胁迫下鉴定到一些瞬时和持续表达的关键候选基因。这些结果为进一步研究BnGSTs基因在强抗寒甘蓝型冬油菜抗寒分子调控中的作用奠定基础。
[1] | 孙万仓, 刘海卿, 刘自刚, 武军艳, 李学才, 方彦, 曾秀存, 许耀照, 张亚宏, 董云. 北方寒旱区白菜型冬油菜安全越冬的临界指标分析. 作物学报, 2016, 42: 609-618. |
Sun W C, Liu H Q, Liu Z G, Wu J Y, Li X C, Fang Y, Zeng X C, Xu Y Z, Zhang Y H, Dong Y. Critical index analysis of safe over-wintering rate of winter rapeseed (Brassica rapa) in cold and arid region in north China. Acta Agron Sin, 2016, 42: 609-618. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00609 |
|
[2] | 刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 方彦, 曾秀存. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013, 46: 4679-4687. |
Liu Z G, Sun W C, Yang N N, Wang Y, He L, Zhao C X, Shi P F, Yang G, Li X C, Wu J Y, Fang Y, Zeng X C. Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed (Brassica campestris L.) during cold acclimation. Sci Agric Sin, 2013, 46: 4679-4687. (in Chinese with English abstract) | |
[3] | 蒲媛媛, 赵玉红, 武军艳, 刘丽君, 白静, 马骊, 牛早霞, 金姣姣, 方彦, 李学才, 孙万仓. 北方强冬性甘蓝型冬油菜品种(系)抗寒性评价. 中国农业科学, 2019, 52: 3291-3308. |
Pu Y Y, Zhao Y H, Wu J Y, Liu L J, Bai J, Ma L, Niu Z X, Jin J J, Fang Y, Li X C, Sun W C. Comprehensive assessment on cold tolerance of the strong winter Brassica napus L. cultivated in northern China. Sci Agric Sin, 2019, 52: 3291-3308. (in Chinese with English abstract) | |
[4] | 曹小东, 刘自刚, 米文博, 徐春梅, 邹娅, 徐明霞, 郑国强, 方新玲, 崔小茹, 董小云, 米超, 陈其鲜. 甘蓝型冬油菜北移种植的适应性分析. 中国农业科学, 2020, 53: 4164-4176. |
Cao X D, Liu Z G, Mi W B, Xu C M, Zou Y, Xu M X, Zheng G Q, Fang X L, Cui X R, Dong X Y, Mi C, Chen Q X. Analysis on the adaptability of northward planting of Brassica napus. Sci Agric Sin, 2020, 53: 4164-4176. (in Chinese with English abstract) | |
[5] |
Li L J, Lu X C, Ma H Y, Lyu D G. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. J Plant Res, 2018, 131: 865-878.
doi: 10.1007/s10265-018-1045-6 pmid: 29855747 |
[6] |
Xuan J P, Song Y F, Zhang H X, Liu J X, Guo Z R, Hua Y L. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella. PLoS One, 2013, 8: e75705.
doi: 10.1371/journal.pone.0075705 |
[7] |
Wang J C, Meng Y X, Li B C, Ma X L, Lai Y, Si E J, Yang K, Xu X L, Shang X W, Wang H J, Wang D. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ, 2015, 38: 655-669.
doi: 10.1111/pce.12428 |
[8] | 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色. 中国生物工程杂志, 2017, 37(3): 92-98. |
Zhang X, Tao L, Qiao S, Du B H, Guo C H. Roles of glutathione S-transferase in plant tolerance to abiotic. China Biotechnol, 2017, 37(3): 92-98. (in Chinese with English abstract) | |
[9] |
Lan T, Yang Z L, Yang X, Liu Y J, Wang X R, Zeng Q Y. Extensive functional diversification of the populus glutathione S-transferase supergene family. Plant Cell, 2009, 21: 3749-3766.
doi: 10.1105/tpc.109.070219 |
[10] |
Anderson J V, Davis D G. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Planta, 2004, 120: 421-433.
doi: 10.1111/j.0031-9317.2004.00249.x |
[11] |
Dmitriev A A, Krasnov G S, Rozhmina T A, Kishlyan N V, Zyablitsin A V, Sadritdinova A F, Snezhkina A V, Fedorova M S, Yurkevich O Y, Muravenko O V, Bolsheva N L, Kudryavtseva A V, Melnikova N V. Glutathione S-transferases and UDP-glycosyltransferases are involved in response to aluminum stress in flax. Front Plant Sci, 2016, 7: 1920.
doi: 10.3389/fpls.2016.01920 pmid: 28066475 |
[12] | Yang G Y, Chen S W, Li D P, Gao X Q, Su L Y, Peng S B, Zhai M Z. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress. Physiol Plant, 2019, 166: 748-761. |
[13] |
Wang Z, Huang S Z, Jia C H, Liu J H, Zhang J B, Xu B Y, Jin Z Q. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Rep, 2013, 32: 1373-1380.
doi: 10.1007/s00299-013-1449-7 |
[14] |
Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep, 2011, 38: 4823-4832.
doi: 10.1007/s11033-010-0625-x |
[15] | 杨宁宁, 孙万仓, 刘自刚, 史鹏辉, 方彦, 武军艳, 曾秀存, 孔德晶, 鲁美宏, 王月. 北方冬油菜抗寒性的形态与生理机制. 中国农业科学, 2014, 47: 452-461. |
Yang N N, Sun W C, Liu Z G, Shi P H, Fang Y, Wu J Y, Zeng X C, Kong D J, Lu M H, Wang Y. Morphological characters and physiological mechanisms of cold resistance of winter rapeseed in northern China. Sci Agric Sin, 2014, 47: 452-461. (in Chinese with English abstract) | |
[16] |
Sheffield J, Taylor N, Fauquet C, Chen S X. The cassava (Manihot esculenta Crantz) root proteome: Protein identification and differential expression. Proteomics, 2006, 6: 1588-1598.
pmid: 16421938 |
[17] |
Mistry J, Finn R D, Eddy S R, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res, 2013, 41: e121.
doi: 10.1093/nar/gkt263 |
[18] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[19] |
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME suite: Tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335 |
[20] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[21] |
Bustin S A, Benes V, Nolan T, Pfaffl M W. Quantitative real-time RT-PCR: a perspective. J Mol Endocrinol, 2005, 34: 597-601.
pmid: 15956331 |
[22] |
Pu Y Y, Liu L J, Wu J Y, Zhao Y H, Bai J, Ma L, Yue J L, Jin J J, Niu Z X, Fang Y, Sun W C. Transcriptome profile analysis of winter rapeseed (Brassica napus L.) in response to freezing stress, reveal potentially connected events to freezing stress. Int J Mol Sci, 2019, 20: 2771.
doi: 10.3390/ijms20112771 |
[23] |
Zhang L, Tian L H, Zhao J F, Song Y, Zhang C J, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol, 2009, 149: 916-928.
doi: 10.1104/pp.108.131144 pmid: 19036832 |
[24] | Wang X Q, Liu Y L, Yang P F. Proteomic studies of the abiotic stresses response in model moss-Physcomitrella patens. Front Plant Sci, 2012, 3: 258. |
[25] |
He C Y, Gao G R, Zhang J G. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn. Proteome Sci, 2016, 14: 14.
pmid: 27761102 |
[26] | Kong F J, Oyanagi A, Komatsu S. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta Proteins Prot, 2010, 1804: 124-136. |
[27] |
Tian X, Liu Y, Huang Z G, Duan H P, Tong J H, He X L, Gu W H, Ma H, Xiao L T. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Mol Biol Rep, 2015, 42: 581-601.
doi: 10.1007/s11033-014-3803-4 |
[28] |
Liu Z G, Sun W C, Zhao Y N, Li X C, Fang Y, Wu J Y, Zeng X C, Yang N N, Wang Y, He L. Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russ J Plant Physiol, 2016, 63: 451-460.
doi: 10.1134/S1021443716040099 |
[29] |
Jędrzejuk A, Rabiza-świder J, Skutnik E, Łukaszewska A. Growing conditions and preservatives affect longevity, soluble protein, H2O2 and MDA contents, activity of antioxidant enzymes and DNA degradation in cut lilacs. Sci Hortic, 2018, 228: 122-131.
doi: 10.1016/j.scienta.2017.10.026 |
[30] |
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399.
pmid: 15377225 |
[31] |
Cao Y Y, Yang M T, Li X, Zhou Z Q, Wang X J, Bai J G. Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci Hortic, 2014, 179: 67-77.
doi: 10.1016/j.scienta.2014.09.016 |
[32] |
Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cel Proteomics, 2006, 5: 484-496.
doi: 10.1074/mcp.M500251-MCP200 |
[33] |
Sappl P G, Oñate-sánchez L, Singh K B, Millar H. Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant- specific phi and tau classes. Plant Mol Biol, 2004, 54: 205-219.
doi: 10.1023/B:PLAN.0000028786.57439.b3 |
[34] |
Vision T J, Brown D G, Tanksley S D. The origins of genomic duplications in Arabidopsis. Science, 2000, 290: 2114-2117.
doi: 10.1126/science.290.5499.2114 |
[35] |
Wei L J, Zhu Y, Liu R Y, Zhang A X, Zhu M C, Xu W, Lin A, Lu K, Li J N. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci Rep, 2019, 9: 9196.
doi: 10.1038/s41598-019-45744-5 |
[36] | He G, Guan C N, Chen Q X, Gou X J, Liu W, Zeng Q Y, Lan T. Genome-wide analysis of the glutathione S-transferase gene family in Capsella rubella: identification, expression, and biochemical functions. Front Plant Sci, 2016, 7: 1325. |
[37] |
Islam S, Sajib S D, Jui Z S, Arabia S, Islam T, Ghosh A. Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Sci Rep, 2019, 9: 9101.
doi: 10.1038/s41598-019-45320-x pmid: 31235811 |
[38] |
Song W, Zhou F K, Shan C H, Zhang Q, Ning M, Liu X M, Zhao X X, Cai W C, Yang X Q, Hao G F, Tang F X. Identification of glutathione S-transferase genes in hami melon (Cucumis melo var. saccharinus) and their expression analysis under cold stress. Front Plant Sci, 2021, 12: 672017.
doi: 10.3389/fpls.2021.672017 |
[39] |
Yang G Y, Xu Z G, Peng S B, Sun Y D, Jia C X, Zhai M Z. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Rep, 2016, 35: 681-692.
doi: 10.1007/s00299-015-1912-8 |
[40] |
Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha D K. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics, 2017, 18: 731.
doi: 10.1186/s12864-017-4126-3 |
[41] |
Du C F, Hu K N, Xian S S, Liu C Q, Fan J C, Tu J X, Fu T D. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Mol Genet Genomics, 2016, 291: 1053-1067.
doi: 10.1007/s00438-015-1161-0 |
[42] |
Jeon J, Kim J. Cold stress signaling networks in Arabidopsis. J Plant Biol, 2013, 56: 69-76.
doi: 10.1007/s12374-013-0903-y |
[43] | Li N N, Yue C, Cao H L, Qian W J, Hao X Y, Wang Y C, Wang L, Ding C Q, Wang X C, Yang Y J. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). J Plant Physiol, 2018, 224-225: 144-155. |
[44] |
Zhu H S, Yu X J, Xu T, Wang T L, Du L X, Ren G H, Dong K H. Transcriptome profiling of cold acclimation in bermudagrass (Cynodon dactylon). Sci Hortic, 2015, 194: 230-236.
doi: 10.1016/j.scienta.2015.08.024 |
[45] |
Carvajal F, Rosales R, Palma F, Manzano S, Cañizares J, Jamilena M, Garridp D. Transcriptomic changes in Cucurbita pepo fruit after cold storage: Differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics, 2018, 19: 125.
doi: 10.1186/s12864-018-4500-9 pmid: 29415652 |
[46] |
Basnet R K, Moreno P N, Lin K, Bucher J, Visser R G F, Maliepaard C, Bonnema G. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics, 2013, 14: 840.
doi: 10.1186/1471-2164-14-840 pmid: 24289287 |
[47] |
Kayum M A, Nath U K, Park J I, Biswas M K, Choi E K, Song J Y, Kim H T, Nou I S. Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance. Genes, 2018, 9: 84.
doi: 10.3390/genes9020084 |
[1] | 杨佳宝, 张展, 周至铭, 吕新华, 孙黎. 向日葵HaLACS9基因的克隆与功能分析[J]. 作物学报, 2023, 49(2): 426-437. |
[2] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[3] | 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[7] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[8] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[9] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[10] | 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236. |
[11] | 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364. |
[12] | 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400. |
[13] | 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656. |
[14] | 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169. |
[15] | 闫蕾,杨宗举,苏亮,肖阳,郭林,宋梅芳,孙蕾,孟凡华,白建荣,杨建平. 2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式[J]. 作物学报, 2016, 42(09): 1298-1308. |
|