欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 153-166.doi: 10.3724/SP.J.1006.2023.14207

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析

马骊1(), 白静2, 赵玉红3, 孙柏林3, 侯献飞4, 方彦1, 王旺田1, 蒲媛媛1, 刘丽君1, 徐佳1, 陶肖蕾1, 孙万仓1,*(), 武军艳1,*()   

  1. 1省部共建干旱生境作物学国家重点实验室 / 甘肃省油菜工程技术研究中心 / 甘肃农业大学农学院, 甘肃兰州 730070
    2张掖市农业科学院, 甘肃张掖 734000
    3甘肃亚盛农业研究院有限公司, 甘肃兰州 730030
    4新疆农业科学院经济作物研究所, 新疆乌鲁木齐 830091
  • 收稿日期:2021-11-04 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-19
  • 通讯作者: 孙万仓,武军艳
  • 作者简介:E-mail: mal@gsau.edu.cn
  • 基金资助:
    甘肃省青年科技计划项目(21JR7RA835);省部共建干旱生境作物学国家重点实验室(甘肃农业大学)开放基金课题(GSCS-2020-06);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12)

Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L.

MA Li1(), BAI Jing2, ZHAO Yu-Hong3, SUN Bo-Lin3, HOU Xian-Fei4, FANG Yan1, WANG Wang-Tian1, PU Yuan-Yuan1, LIU Li-Jun1, XU Jia1, TAO Xiao-Lei1, SUN Wan-Cang1,*(), WU Jun-Yan1,*()   

  1. 1State Key Laboratory of Aridland Crop Science / Gansu Research Center of Rapeseed Engineering and Technology / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Zhangye Academy of Agricultural Sciences, Zhangye 734000, Gansu, China
    3Gansu Yasheng Agricultural Research Institute Co. Ltd, Lanzhou 730030, Gansu, China
    4Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2021-11-04 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-19
  • Contact: SUN Wan-Cang,WU Jun-Yan
  • Supported by:
    Gansu Provincial Youth Science & Technology Department(21JR7RA835);Research Program Sponsored by State Key Laboratory of Aridland Crop Science (Gansu Agricultural University)(GSCS-2020-06);China Agriculture Research System of MOF and MARA(CARS-12)

摘要:

谷胱甘肽S-转移酶(glutathione S-transferases, GST)参与调节植物生长、发育和逆境胁迫反应的许多方面。本研究利用双向电泳和质谱技术分析‘16VHNTS309’在冷胁迫下差异表达的蛋白质, 基于GO和KEGG分析鉴定出BE、APX、SOD、GST等参与冷胁迫反应的蛋白质。利用qRT-PCR和生理指标鉴定到响应冷胁迫的关键蛋白质GST, 采用同源克隆法克隆到‘16VHNTS309’的GST基因。该基因CDS长度为642 bp, 编码213个氨基酸, 是一个不稳定蛋白, 属于GST_N_3谷胱甘肽S-转移酶家族, 与甘蓝型油菜‘ZS11’序列相似性为99.22%, 与‘ZS11’和‘Vision’两者的氨基酸序列相比较发现第127位亮氨酸(L)突变为脯氨酸(P)。基因家族分析表明, 在甘蓝型油菜中共鉴定到153个BnGSTs成员, 按其功能主要分为Zeta、Phi、Theta、CHQ、DHAR、Lambda和Tau这七大类型, 大部分的BnGSTs属于Phi和Tau这2种类型。系统进化将BnGSTs分为12个亚家族, 亚家族I和VIII包含了较多的成员, BnGSTs不均匀的分布在18条染色体上, C06染色体上分布BnGSTs基因数量最多, 含有10个保守的蛋白质基序。BnGSTs基因家族中有99对基因存在共线性关系, 131个基因来自基因复制事件, 片段重复事件在BnGSTs基因的进化中起着重要作用。冷胁迫下BnaA02g35760DBnaC06g20450DBnaC06g35490DBnaA02g03230DBnaA02g35980D在强抗寒品种中的显著高表达, 是弱抗寒品种的7~12倍, 并且强抗寒品种具有较高的生理酶活性。另外, 在冷冻胁迫下鉴定到一些瞬时和持续表达的关键候选基因。这些结果为进一步研究BnGSTs基因在强抗寒甘蓝型冬油菜抗寒分子调控中的作用奠定基础。

关键词: 甘蓝型冬油菜, 冷胁迫, 蛋白质谱, GST基因家族, 表达模式

Abstract:

Glutathione S-transferases (GST) are involved in regulating many aspects of plant growth, development, and response to adversity stress. In this study, the differentially expressed proteins of ‘16VHNTS309’ under cold stress were analyzed using bidirectional electrophoresis and mass spectrometry, and proteins involved in the cold stress response, such as BE, APX, SOD, and GST, were identified based on GO and KEGG analyses. The key protein GST was identified using qRT-PCR and physiological indicators in response to cold stress, and the GST gene of ‘16VHNTS309’ was cloned using homologous cloning. This gene CDS length was 642 bp, and encoded 213 amino acids, which was an unstable protein and belonged to the GST_N_3 glutathione S-transferase family. The sequence similarity with Brassica napus ‘ZS11’ was 99.22%, and a comparison of the amino acid sequences of both ‘ZS11’ and ‘Vision’ revealed a mutation from leucine (L) to proline (P) at position 127. The gene family analysis showed that 153 BnGSTs members were identified in Brassica napus and were classified into seven main types according to their functions: Zeta, Phi, Theta, CHQ, DHAR, Lambda, and Tau. Most BnGSTs belonged to Phi and Tau types. Phylogeny divided BnGSTs into 12 subfamilies, subfamilies I and VIII contained more members. BnGSTs were unevenly distributed on 18 chromosomes, and the number of BNGSTs genes on C06 chromosome was the largest, it contained 10 conserved protein motifs. There were 99 pairs of genes in the BnGSTs gene family that were colinearly related, 131 genes from gene duplication events, and segmental duplication events played an important role in the evolution of BnGSTs genes. Significantly higher expression of BnaA02g35760D, BnaC06g20450D, BnaC06g35490D, BnaA02g03230D, and BnaA02g35980D in strong cold-resistant varieties was 7-12 times higher than that in weak cold-resistant varieties under cold stress. And the strong cold-resistant varieties had higher physiological enzyme activities. In addition, a number of key candidate genes were identified for transient and sustained expression under freezing stress. This result lays the foundation for further studies on the molecular regulation of BnGSTs genes for cold resistance in strong cold resistant for Brassica napus.

Key words: winter Brassica napus L., cold stress, protein mass spectrometry, GST gene family, expression pattern

表1

qRT-PCR引物序列"

基因名称
Gene name
引物序列
Primer sequence (5'-3')
产物大小
Product size (bp)
BE F: GATGGAACCCAGAACGAG; R: GGAATGCCACTGACAACG 110
SPI F: CCCCTCTTTATCGGACAG; R: GGAACGAACCCAACTCTA 89
APX F: GAGCGGTGAGAAGGAAGG; R: CTCGTCAGCAGCGTATTT 100
SOD F: GCCACATTTCAACCCTAACA; R: ACCACAAAGGCTCTTCCAAC 174
GST F: ATCAACATCTCCGACAAACC; R: CGTCAGAATCAGACACCCAC 100
RBP F: CGTGTTTATGTCGGCAATC; R: GCCACTGTCCCTGTCGTAG 114
β-Actin F: TGGGTTTGCTGGTGACGAT; R: TGCCTAGGACGACCAACAATACT 63

图1

冷胁迫下差异表达蛋白的鉴定 A: CK; B: 4℃处理24 h。箭头表示25个蛋白点被鉴定(P ≤ 0.05)。"

附图1

‘16VHNTS309’中蛋白点的放大图"

附表1

甘蓝型冬油菜响应冷胁迫的差异蛋白质鉴定"

蛋白点编号
Spot number
基因登录号
Accession number
蛋白质名称
Protein name
分子质量
Molecular weight (kD)
等电点
pI
亚细胞定位
Cellular location
差异倍数
Fold change
2 XP_013688985.1 RNA-binding protein CP29B 31,076 4.82 叶绿体Chloroplast NDT
3 XP_013656707.1 glycine-rich RNA-binding protein 10-like 16,038 5.24 微体Microbody 1.87±0.06
4 XP_013656707.1 glycine-rich RNA-binding protein 10-like 16,038 5.24 微体Microbody 0.49±0.01
6 XP_013687602.1 bifunctional enolase 2/transcriptional activator 47,556 5.56 内质网
Endoplasmic reticulum
1.99±0.09
8 XP_013713332.1 oxygen-evolving enhancer protein 1-1 35,164 5.55 叶绿体Chloroplast 2.54±0.03
9 XP_013688985.1 RNA-binding protein CP29B 31,076 4.82 叶绿体Chloroplast NDT
11 XP_013649537.1 cysteine protease inhibitor WSCP 23,891 8.66 细胞外Extracellular 1.9±0.04
12 XP_013673398.1 ATP synthase subunit beta-2 53,800 5.39 细胞质Cytoplasm 2.52±0.06
13 XP_013659948.1 cysteine protease inhibitor WSCP-like 24,956 6.52 细胞外Extracellular NDC
14 XP_013678556.1 actin-7 41,665 5.31 细胞质Cytoplasm 2.01±0.11
15 XP_013641139.1 L-ascorbate peroxidase 1, cytosolic-like isoform X3 27,594 5.58 微体Microbody 2.63±0.06
16 XP_013697709.1 probable phospholipid hydroperoxide glutathione peroxidase 6 25,260 9.2 线粒体Mitochondrial 2.08±0.18
17 AIF75338.1 chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit 19,852 7.59 细胞外Extracellular 2.21±0.05
18 XP_013720130.1 PREDICTED: superoxide dismutase [Cu-Zn] 2 21,343 6.79 细胞外Extracellular 2.75±0.11
19 XP_013649537.1 cysteine protease inhibitor WSCP 23,891 8.66 细胞外Extracellular 3.01±0.05
20 XP_013649391.1 nucleoside diphosphate kinase 1 16,384 6.29 微体Microbody 1.94±0.04
21 XP_013712048.1 CBS domain-containing protein CBSX3 22,650 8.71 线粒体Mitochondrial NDC
23 AIF75338.1 chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit 19,852 7.59 细胞外Extracellular 3.33±0.39
24 XP_013649614.1 kunitz trypsin inhibitor 1-like 23,553 6.6 细胞外Extracellular NDC
25 XP_013641139.1 L-ascorbate peroxidase 1, cytosolic-like isoform X3 27,594 5.58 微体Microbody 3.41±0.22
26 AIF75338.1 chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit 19,852 7.59 细胞外Extracellular 3.11±0.29
27 XP_013641880.1 glutathione S-transferase DHAR1, mitochondrial 23,533 5.76 细胞质Cytoplasm 2.1±0.1
28 XP_013666490.1 malate dehydrogenase 1, cytoplasmic-like 35,695 6.11 细胞外Extracellular 3.12±0.06
29 XP_013666490.1 malate dehydrogenase 1, cytoplasmic-like 35,695 6.11 细胞外Extracellular 2.91±0.21
30 XP_013649614.1 kunitz trypsin inhibitor 1-like 23,553 6.6 细胞外Extracellular NDC

图2

冷胁迫下‘16VHNTS309’差异蛋白的功能及通路注释 A: 细胞组分; B: 分子功能; C: 生物学过程; D: KEGG注释。"

图3

冷胁迫下差异蛋白质和基因表达模式及生理指标的分析 A: 蛋白质的表达谱与聚类分析; B: 6个具有急剧变化的DEPs采用qRT-PCR揭示其基因表达水平; C: 冷胁迫下的生理变化模式。小写字母表示所有品种和处理间的显著性(P ≤ 0.05)。"

图4

‘16VHNTS309’ GST基因序列比对 黑色: 3个品种氨基酸序列一致; 红色: 2个品种氨基酸序列一致; 白色: 氨基酸序列与另2个品种不一致。"

附图2

GST蛋白基本理化性质 A:跨膜螺旋结构;B:疏水性;C:信号肽;D:磷酸化位点;E:结构域;F:三级结构;G:氨基酸序列。"

图5

甘蓝型油菜GST基因的染色体分布图"

图6

甘蓝型油菜和拟南芥GST蛋白的系统发育树 亚家族I~XVII用不同的颜色标记。绿色三角形代表拟南芥, 黄色五角星代表甘蓝型油菜。"

图7

甘蓝型油菜BnGSTs的系统进化、Motif组成和基因结构分析"

图8

甘蓝型油菜BnGSTs的共线性关系分析"

图9

BnGSTs在低温胁迫下的表达模式分析"

[1] 孙万仓, 刘海卿, 刘自刚, 武军艳, 李学才, 方彦, 曾秀存, 许耀照, 张亚宏, 董云. 北方寒旱区白菜型冬油菜安全越冬的临界指标分析. 作物学报, 2016, 42: 609-618.
Sun W C, Liu H Q, Liu Z G, Wu J Y, Li X C, Fang Y, Zeng X C, Xu Y Z, Zhang Y H, Dong Y. Critical index analysis of safe over-wintering rate of winter rapeseed (Brassica rapa) in cold and arid region in north China. Acta Agron Sin, 2016, 42: 609-618. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00609
[2] 刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 方彦, 曾秀存. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013, 46: 4679-4687.
Liu Z G, Sun W C, Yang N N, Wang Y, He L, Zhao C X, Shi P F, Yang G, Li X C, Wu J Y, Fang Y, Zeng X C. Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed (Brassica campestris L.) during cold acclimation. Sci Agric Sin, 2013, 46: 4679-4687. (in Chinese with English abstract)
[3] 蒲媛媛, 赵玉红, 武军艳, 刘丽君, 白静, 马骊, 牛早霞, 金姣姣, 方彦, 李学才, 孙万仓. 北方强冬性甘蓝型冬油菜品种(系)抗寒性评价. 中国农业科学, 2019, 52: 3291-3308.
Pu Y Y, Zhao Y H, Wu J Y, Liu L J, Bai J, Ma L, Niu Z X, Jin J J, Fang Y, Li X C, Sun W C. Comprehensive assessment on cold tolerance of the strong winter Brassica napus L. cultivated in northern China. Sci Agric Sin, 2019, 52: 3291-3308. (in Chinese with English abstract)
[4] 曹小东, 刘自刚, 米文博, 徐春梅, 邹娅, 徐明霞, 郑国强, 方新玲, 崔小茹, 董小云, 米超, 陈其鲜. 甘蓝型冬油菜北移种植的适应性分析. 中国农业科学, 2020, 53: 4164-4176.
Cao X D, Liu Z G, Mi W B, Xu C M, Zou Y, Xu M X, Zheng G Q, Fang X L, Cui X R, Dong X Y, Mi C, Chen Q X. Analysis on the adaptability of northward planting of Brassica napus. Sci Agric Sin, 2020, 53: 4164-4176. (in Chinese with English abstract)
[5] Li L J, Lu X C, Ma H Y, Lyu D G. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. J Plant Res, 2018, 131: 865-878.
doi: 10.1007/s10265-018-1045-6 pmid: 29855747
[6] Xuan J P, Song Y F, Zhang H X, Liu J X, Guo Z R, Hua Y L. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella. PLoS One, 2013, 8: e75705.
doi: 10.1371/journal.pone.0075705
[7] Wang J C, Meng Y X, Li B C, Ma X L, Lai Y, Si E J, Yang K, Xu X L, Shang X W, Wang H J, Wang D. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ, 2015, 38: 655-669.
doi: 10.1111/pce.12428
[8] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色. 中国生物工程杂志, 2017, 37(3): 92-98.
Zhang X, Tao L, Qiao S, Du B H, Guo C H. Roles of glutathione S-transferase in plant tolerance to abiotic. China Biotechnol, 2017, 37(3): 92-98. (in Chinese with English abstract)
[9] Lan T, Yang Z L, Yang X, Liu Y J, Wang X R, Zeng Q Y. Extensive functional diversification of the populus glutathione S-transferase supergene family. Plant Cell, 2009, 21: 3749-3766.
doi: 10.1105/tpc.109.070219
[10] Anderson J V, Davis D G. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Planta, 2004, 120: 421-433.
doi: 10.1111/j.0031-9317.2004.00249.x
[11] Dmitriev A A, Krasnov G S, Rozhmina T A, Kishlyan N V, Zyablitsin A V, Sadritdinova A F, Snezhkina A V, Fedorova M S, Yurkevich O Y, Muravenko O V, Bolsheva N L, Kudryavtseva A V, Melnikova N V. Glutathione S-transferases and UDP-glycosyltransferases are involved in response to aluminum stress in flax. Front Plant Sci, 2016, 7: 1920.
doi: 10.3389/fpls.2016.01920 pmid: 28066475
[12] Yang G Y, Chen S W, Li D P, Gao X Q, Su L Y, Peng S B, Zhai M Z. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress. Physiol Plant, 2019, 166: 748-761.
[13] Wang Z, Huang S Z, Jia C H, Liu J H, Zhang J B, Xu B Y, Jin Z Q. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Rep, 2013, 32: 1373-1380.
doi: 10.1007/s00299-013-1449-7
[14] Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep, 2011, 38: 4823-4832.
doi: 10.1007/s11033-010-0625-x
[15] 杨宁宁, 孙万仓, 刘自刚, 史鹏辉, 方彦, 武军艳, 曾秀存, 孔德晶, 鲁美宏, 王月. 北方冬油菜抗寒性的形态与生理机制. 中国农业科学, 2014, 47: 452-461.
Yang N N, Sun W C, Liu Z G, Shi P H, Fang Y, Wu J Y, Zeng X C, Kong D J, Lu M H, Wang Y. Morphological characters and physiological mechanisms of cold resistance of winter rapeseed in northern China. Sci Agric Sin, 2014, 47: 452-461. (in Chinese with English abstract)
[16] Sheffield J, Taylor N, Fauquet C, Chen S X. The cassava (Manihot esculenta Crantz) root proteome: Protein identification and differential expression. Proteomics, 2006, 6: 1588-1598.
pmid: 16421938
[17] Mistry J, Finn R D, Eddy S R, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res, 2013, 41: e121.
doi: 10.1093/nar/gkt263
[18] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[19] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME suite: Tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335
[20] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[21] Bustin S A, Benes V, Nolan T, Pfaffl M W. Quantitative real-time RT-PCR: a perspective. J Mol Endocrinol, 2005, 34: 597-601.
pmid: 15956331
[22] Pu Y Y, Liu L J, Wu J Y, Zhao Y H, Bai J, Ma L, Yue J L, Jin J J, Niu Z X, Fang Y, Sun W C. Transcriptome profile analysis of winter rapeseed (Brassica napus L.) in response to freezing stress, reveal potentially connected events to freezing stress. Int J Mol Sci, 2019, 20: 2771.
doi: 10.3390/ijms20112771
[23] Zhang L, Tian L H, Zhao J F, Song Y, Zhang C J, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol, 2009, 149: 916-928.
doi: 10.1104/pp.108.131144 pmid: 19036832
[24] Wang X Q, Liu Y L, Yang P F. Proteomic studies of the abiotic stresses response in model moss-Physcomitrella patens. Front Plant Sci, 2012, 3: 258.
[25] He C Y, Gao G R, Zhang J G. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn. Proteome Sci, 2016, 14: 14.
pmid: 27761102
[26] Kong F J, Oyanagi A, Komatsu S. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta Proteins Prot, 2010, 1804: 124-136.
[27] Tian X, Liu Y, Huang Z G, Duan H P, Tong J H, He X L, Gu W H, Ma H, Xiao L T. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Mol Biol Rep, 2015, 42: 581-601.
doi: 10.1007/s11033-014-3803-4
[28] Liu Z G, Sun W C, Zhao Y N, Li X C, Fang Y, Wu J Y, Zeng X C, Yang N N, Wang Y, He L. Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russ J Plant Physiol, 2016, 63: 451-460.
doi: 10.1134/S1021443716040099
[29] Jędrzejuk A, Rabiza-świder J, Skutnik E, Łukaszewska A. Growing conditions and preservatives affect longevity, soluble protein, H2O2 and MDA contents, activity of antioxidant enzymes and DNA degradation in cut lilacs. Sci Hortic, 2018, 228: 122-131.
doi: 10.1016/j.scienta.2017.10.026
[30] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399.
pmid: 15377225
[31] Cao Y Y, Yang M T, Li X, Zhou Z Q, Wang X J, Bai J G. Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci Hortic, 2014, 179: 67-77.
doi: 10.1016/j.scienta.2014.09.016
[32] Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cel Proteomics, 2006, 5: 484-496.
doi: 10.1074/mcp.M500251-MCP200
[33] Sappl P G, Oñate-sánchez L, Singh K B, Millar H. Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant- specific phi and tau classes. Plant Mol Biol, 2004, 54: 205-219.
doi: 10.1023/B:PLAN.0000028786.57439.b3
[34] Vision T J, Brown D G, Tanksley S D. The origins of genomic duplications in Arabidopsis. Science, 2000, 290: 2114-2117.
doi: 10.1126/science.290.5499.2114
[35] Wei L J, Zhu Y, Liu R Y, Zhang A X, Zhu M C, Xu W, Lin A, Lu K, Li J N. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci Rep, 2019, 9: 9196.
doi: 10.1038/s41598-019-45744-5
[36] He G, Guan C N, Chen Q X, Gou X J, Liu W, Zeng Q Y, Lan T. Genome-wide analysis of the glutathione S-transferase gene family in Capsella rubella: identification, expression, and biochemical functions. Front Plant Sci, 2016, 7: 1325.
[37] Islam S, Sajib S D, Jui Z S, Arabia S, Islam T, Ghosh A. Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Sci Rep, 2019, 9: 9101.
doi: 10.1038/s41598-019-45320-x pmid: 31235811
[38] Song W, Zhou F K, Shan C H, Zhang Q, Ning M, Liu X M, Zhao X X, Cai W C, Yang X Q, Hao G F, Tang F X. Identification of glutathione S-transferase genes in hami melon (Cucumis melo var. saccharinus) and their expression analysis under cold stress. Front Plant Sci, 2021, 12: 672017.
doi: 10.3389/fpls.2021.672017
[39] Yang G Y, Xu Z G, Peng S B, Sun Y D, Jia C X, Zhai M Z. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Rep, 2016, 35: 681-692.
doi: 10.1007/s00299-015-1912-8
[40] Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha D K. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics, 2017, 18: 731.
doi: 10.1186/s12864-017-4126-3
[41] Du C F, Hu K N, Xian S S, Liu C Q, Fan J C, Tu J X, Fu T D. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Mol Genet Genomics, 2016, 291: 1053-1067.
doi: 10.1007/s00438-015-1161-0
[42] Jeon J, Kim J. Cold stress signaling networks in Arabidopsis. J Plant Biol, 2013, 56: 69-76.
doi: 10.1007/s12374-013-0903-y
[43] Li N N, Yue C, Cao H L, Qian W J, Hao X Y, Wang Y C, Wang L, Ding C Q, Wang X C, Yang Y J. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). J Plant Physiol, 2018, 224-225: 144-155.
[44] Zhu H S, Yu X J, Xu T, Wang T L, Du L X, Ren G H, Dong K H. Transcriptome profiling of cold acclimation in bermudagrass (Cynodon dactylon). Sci Hortic, 2015, 194: 230-236.
doi: 10.1016/j.scienta.2015.08.024
[45] Carvajal F, Rosales R, Palma F, Manzano S, Cañizares J, Jamilena M, Garridp D. Transcriptomic changes in Cucurbita pepo fruit after cold storage: Differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics, 2018, 19: 125.
doi: 10.1186/s12864-018-4500-9 pmid: 29415652
[46] Basnet R K, Moreno P N, Lin K, Bucher J, Visser R G F, Maliepaard C, Bonnema G. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics, 2013, 14: 840.
doi: 10.1186/1471-2164-14-840 pmid: 24289287
[47] Kayum M A, Nath U K, Park J I, Biswas M K, Choi E K, Song J Y, Kim H T, Nou I S. Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance. Genes, 2018, 9: 84.
doi: 10.3390/genes9020084
[1] 杨佳宝, 张展, 周至铭, 吕新华, 孙黎. 向日葵HaLACS9基因的克隆与功能分析[J]. 作物学报, 2023, 49(2): 426-437.
[2] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[3] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[10] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[11] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[12] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
[13] 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656.
[14] 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169.
[15] 闫蕾,杨宗举,苏亮,肖阳,郭林,宋梅芳,孙蕾,孟凡华,白建荣,杨建平. 2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式[J]. 作物学报, 2016, 42(09): 1298-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .