作物学报 ›› 2022, Vol. 48 ›› Issue (1): 249-258.doi: 10.3724/SP.J.1006.2022.14019
余慧芳(), 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩*()
YU Hui-Fang(), ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao*()
摘要:
Catharanthus roseus receptor-like kinase1-like kinases (CrRLK1Ls)是植物所特有的一类蛋白类受体激酶, 在维持细胞壁完整性、细胞间通讯、生物和非生物应激反应中发挥重要作用。本研究鉴定了马铃薯CrRLK1Ls (StCrRLK1Ls)基因家族的成员数量, 并对其理化特性、染色体位置、进化特征、亚细胞定位和对晚疫病菌侵染时的表达模式进行全面分析。结果显示, 共获得17个StCrRLK1Ls基因, 其氨基酸序列大小为753~997 aa, 分子量和等电点分别为83.34~108.69 kD和5.30~7.56, 主要位于质膜。进化分析将马铃薯、拟南芥、水稻、苹果和番茄的CrRLK1Ls家族成员分为7个亚组, 马铃薯CrRLK1Ls家族成员分布于亚组III、IV、V、VI和VII。StCrRLK1Ls不均匀的分布于8条染色体上, 存在3个串联重复基因簇, 包含6个基因。此外, StCrRLK1Ls启动子区域存在响应植物激素、防卫和逆境等多种顺式调控元件。‘大西洋’和‘陇薯7号’接种晚疫病菌(Phytophthora infestans, Pi)后, 大量StCrRLK1Ls为差异表达。其中, StCrRLK1L8和StCrRLK1L10的相对表达量在晚疫病菌侵染期间明显上调; 在‘大西洋’接种Pi 8 d时, StCrRLK1L11的表达量是对照的9.74倍, 推断其可能在马铃薯响应病原真菌的过程中起重要的作用, 可作为进一步开展抗病研究和功能分析的候选基因。
[1] | Liu H, Xue X, Yu Y, Xu M, Lu C, Meng X, Zhang B, Ding X, Chu Z. Copper ions suppress abscisic acid biosynthesis to enhance defence against phytophthora infectants in potato. Mol Plant Pathol, 2020, 21:636-651. |
[2] | Farber D H, Koga C, Johnson D A. Disease gradients of late blight of potato from infrared images of commercial fields. Am J Potato Res, 2020, 97:347-359. |
[3] | Gish L A, Clark S E. The RLK/Pelle family of kinases. Plant J, 2011, 66:117-127. |
[4] | Walker J C, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990, 345:743-746. |
[5] | Shiu S H, Karlowski W M, Pan R, Tzeng Y H, Mayer K F X, Li W H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 2004, 16:1220-1234. |
[6] | Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a mono-phyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98:10763-10768. |
[7] | Han Y F, Yang Q, Zhang S W, Sun D Y, Sun Y. Receptor like kinase CrRLK1-L subfamily: novel motifs in extracellular domain and biological functions in plants. Prog Biochem Biophys, 2011, 38:891-899. |
[8] | Schulze-Muth P, Irmler S, Schröder G, Schröder J. Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus): cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation. J Biol Chem, 1996, 271:26684-26689. |
[9] | Lindner H, Muller L M, Boisson-Dernier A, Grossniklaus U. CrRLK1L receptor-like kinases: not just another brick in thewall. Curr Opin Plant Biol, 2012, 6:659-669. |
[10] | Boisson-Dernier A, Kessler S A, Grossniklaus U. The walls have ears: the role of plant CrRLK1Ls in sensingand transducing extracellular signalsyigw. J Exp Bot, 2011, 62:1581-1591. |
[11] | 韩永峰, 杨倩, 张胜伟, 孙大业, 孙颖. 植物类受体激酶 CrRLK1-L 亚家族及其生物学功能. 生物化学与生物物理进展, 2011, 38:891-899. |
Han Y F, Yang Q, Zhang S W, Sun D Y, Sun Y. The biological functions of Plant receptor kinase CRRLK1-L subfamily. Prog Biochem Biophys, 2011, 38:891-899 (in Chinese with English abstract). | |
[12] | Greeff C C, Roux M M, Mundy J J, Petersen M M. Receptor-like kinase complexes in plant innate immunity. Front Plant Sci, 2012, 3:209. |
[13] | Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9:436-442. |
[14] | Nguyen Q N, Lee Y S, Cho L H, Jeong H J, An G, Jung K H. Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. Planta, 2015, 241:603-613. |
[15] | Zuo C W, Zhang W N, Ma Z H, Chu M Y, Mao J, An Z S, Chen B H. Genome-wide identification and expression analysis of the CrRLK1L gene family in apple (Malus domestica). Plant Mol Biol Rep, 2018, 36:844-857. |
[16] | Kou X B, Qi K J, Qiao X, Yin H, Liu X, Zhang S L, Wu J Y. Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics, 2017, 109:290-301. |
[17] | Guo H, Nolan T M, Song G, Liu S, Xie Z, Chen J, Schnable P S, Walley J W, Yin Y. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol, 2018, 28:3316-3324. |
[18] | Kanaoka M M, Torii K U. FERONIA as an upstream receptor kinase for polar cell growth in plants. Proc Natl Acad Sci USA, 2010, 107:17461-17462. |
[19] | Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser M T. Role of CrRLK1L cell wall sensors HERCULES1 and 2, THESEUS1, and FERONIA in growth adaptation triggered by heavy metals and trace elements. Front Plant Sci, 2017, 8:1554. |
[20] | Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol, 2009, 19:1327-1331. |
[21] | Yang Z, Xing J, Wang L, Liu Y, Qu J, Tan Y, Fu X, Lin Q, Deng H, Yu F. Mutations of two FERONIA-like receptor genes enhance rice blast resistance without growth penalty. J Exp Bot, 2020, 71:2112-2126. |
[22] | Liu R H, Meng J L. MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas, 2003, 25:317-321. |
[23] | Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25:4876-4882. |
[24] | 蒋锐. 马铃薯晚疫病广谱抗性QTL dPI09c的精细定位及抗性基因克隆. 华中农业大学博士学位论文,湖北武汉, 2017. |
Jiang R. Fine Mapping, Cloning and Function Dissection of the Gene Conferring Durable Late Blight Resistance of QTL dPI09c in Potato. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2017 (in Chinese with English abstract). | |
[25] | 巩檑, 甘晓燕, 张丽, 陈虞超, 聂峰杰, 石磊, 郭志乾, 宋玉霞. 马铃薯StNAC72 基因克隆及表达分析. 分子植物育种, 2016, 14:2589-2595. |
Gong L, Gan X Y, Zhang L, Chen Y C, Nie F J, Shi L, Guo Z Q, Song Y X. Cloning and function analysis of the StNAC72 gene from potato(Solanum tuberosum). Mol Plant Breed, 2016, 14:2589-2595 (in Chinese with English abstract). | |
[26] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-Time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25:402-408. |
[27] | Hématy K, Sado P E, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou J P, Höfte H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol, 2007, 17:922-931. |
[28] | Yin Z, Ke X, Kang Z, Huang L. Apple resistance responses against valsa mali, revealed by transcriptomics analyses. Physiol Mol Plant, 2016, 93:85-92. |
[29] | Niu E, Cai C, Zheng Y, Shang X, Fang L, Guo W. Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development. Mol Genet Genomics, 2016, 291:1137-1154. |
[30] | Liu P, Wan J, Guo Y, Ge S, Rao G. Adaptive evolution of the chrysanthemyl diphosphate synthase gene involved in irregular monoterpene metabolism. BMC Evol Biol, 2012, 12:214. |
[31] | Zhang S. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol, 2005, 139:1107-1124. |
[32] | Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109:1187-1192. |
[33] | Bari R, Jones J D. Role of plant hormones in plant defense response. Plant Mol Biol, 2009, 69:473-488. |
[34] | Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43:205-227. |
[35] | Ballester A R, Norelli J, Burchard E, Abdelfattah A, Levin E, Gonzálezcandelas L, Droby S, Wisniewski M. Transcriptomic response of resistant (pi613981-pi613981-Malus sieversii) and susceptible (“royal gala”) genotypes of apple to blue mold (Penicillium expansum) infection. Front Plant Sci, 2017, 8:1981. |
[36] | Solis-Miranda J, Fonseca-García C, Nava N, Pacheco R, Quinto C. Genome-wide identification of the CrRLK1L subfamily and comparative analysis of its role in the legume-rhizobia symbiosis. Genes, 2020, 11:793. |
[1] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[2] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[3] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[4] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[5] | 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236. |
[6] | 张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J]. 作物学报, 2020, 46(5): 680-689. |
[7] | 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400. |
[8] | 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213. |
[9] | 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能 分析[J]. 作物学报, 2018, 44(7): 1021-1031. |
[10] | 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801. |
[11] | 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656. |
[12] | 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169. |
[13] | 苏亚春,黄珑,凌辉,王竹青,刘峰,苏炜华,黄宁,吴期滨,高世武,阙友雄. 甘蔗CDK基因的cDNA全长克隆与表达分析[J]. 作物学报, 2017, 43(01): 42-50. |
[14] | 闫蕾,杨宗举,苏亮,肖阳,郭林,宋梅芳,孙蕾,孟凡华,白建荣,杨建平. 2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式[J]. 作物学报, 2016, 42(09): 1298-1308. |
[15] | 李海峰,韩英,刘梦佳,王冰华,苏亚丽,孙其信. 小麦花发育MADS-box基因的表达模式分析[J]. 作物学报, 2016, 42(07): 1067-1073. |
|