欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (05): 650-656.doi: 10.3724/SP.J.1006.2018.00650

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位

施军琼1,2(), 王亚琴1, 张天泉1, 马玲1, 桑贤春1, 何光华1,*()   

  1. 1西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室, 重庆 400716
    2西南大学生命科学学院, 重庆 400716
  • 收稿日期:2017-09-23 接受日期:2018-01-08 出版日期:2018-05-20 网络出版日期:2018-01-29
  • 通讯作者: 何光华
  • 作者简介:

    第一作者联系方式: E-mail: shijunqiong@163.com

  • 基金资助:
    本研究由科技部重点研发计划项目(2017YFD0100201), 重庆市科委项目(CSTCCXLJRC201713, cstc2016shms-ztzx0017)和中央高校基本业务费专项(XDJK2016C111)资助

Expression Pattern and Protein Localization of a Yellow-Green Leaf 6 (YGL6) Gene in Rice (Oryza sativa)

Jun-Qiong SHI1,2(), Ya-Qin WANG1, Tian-Quan ZHANG1, Ling MA1, Guang-Hua HE1,*()   

  1. 1 Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400716, China
    2 School of Life Sciences, Southwest University, Chongqing 400716, China
  • Received:2017-09-23 Accepted:2018-01-08 Published:2018-05-20 Published online:2018-01-29
  • Contact: Guang-Hua HE
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2017YFD0100201), Chongqing Science and Technology Commission Project (CSTCCXLJRC201713, cstc2016shms-ztzx0017), and the Fundamental Research Funds for the Central Universities (XDJK2016C111).

摘要:

叶色突变既可作为形态标记用于杂交稻育种, 又是研究光合系统的结构和功能、叶绿素生物合成及其调控机制的理想材料。EMS (ethyl methane sulfonate)诱变籼稻恢复系“缙恢10号”获得1个稳定遗传的黄绿叶突变体, 暂命名为ygl6 (yellow-green leaf 6)。前期我们通过图位克隆筛选出候选基因Os12g23180, 通过遗传互补实验证实了黄绿叶基因YGL6Os12g23180, BLASTp分析表明YGL6基因编码NAD(P)-结合的Rossmann折叠超家族蛋白质, 属于短链脱氢酶/还原酶家族, 推断为异黄酮还原酶、糖脱水酶或mRNA结合蛋白。利用qRT-PCR进行表达模式的分析表明YGL6基因仅在绿色组织如心叶、成熟叶、叶鞘和绿色颖壳中表达, 尤其以心叶的表达量最高, 同时YGL6基因表达还受光照的诱导。构建亚细胞定位载体, 转水稻原生质体结果表明YGL6蛋白定位于叶绿体。本研究丰富了水稻突变体库, 为YGL6基因的功能分析奠定了基础。

关键词: 水稻(Oryza sativa), 黄绿叶, YGL6基因, 叶绿体, 表达模式

Abstract:

Leaf color mutants are used not only as morphological markers in hybrid rice breeding, but also as ideal materials in studies on the structure and function of photosystem, chlorophyll biosynthesis and regulation mechanism. A new rice mutant exhibiting stable inheritance was derived from ethyl methane sulfonate (EMS)-treated restorer line Jinhui 10 (Oryza sativa), tentatively named as yellow-green leaf 6 (ygl6). The ygl6 leaf displayed yellow-green at seeding stage, and pale green at jointing stages. The YGL6 complementation experiment implied that the Os12g23180 is the YGL6 gene. The expression pattern analysis indicated that YGL6 was expressed in green tissues including young leaves, mature leaves, sheaths and green glume, with the highest expression level in young leaves. And YGL6 expression was induced by light. Transient expression of the YGL6-GFP protein in rice protoplast showed that YGL6 was localized in chloroplasts. These results provide a foundation for functional analysis of YGL6.

Key words: rice (Oryza sativa), yellow-green leaf 6 (ygl6), YGL6 gene, chloroplast, expression pattern

图1

YGL6基因的互补验证 A: WT、ygl6和转基因互补植株; B: WT、ygl6和转基因互补植株的叶片; C: WT、ygl6和转基因互补植株突变位点的测序结果; D: WT、ygl6和转基因互补植株的色素含量。*表示在0.05水平上差异显著。"

图2

YGL6基因的进化分析"

图3

YGL6基因表达分析 A: 苗期YGL6基因在WT和ygl6的表达分析; B: 孕穗期YGL6基因在WT的表达分析。*表示在0.05水平上差异显著。"

图4

光照对YGL6基因表达的分析 A: 连续黑暗培养后在不同光照时间YGL6基因的表达; B: 连续光照培养后在不同黑暗时间YGL6基因的表达。"

图5

YGL6蛋白的亚细胞定位 A~D: 阴性对照(35S-GFP); E~H: YGL6蛋白定位(35S-YGL6ORF-GFP)。"

[1] Fromme P, Melkozernov A, Jordan P, Krauss N.Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems.Febs Lett, 2003, 555: 40-44
doi: 10.1016/S0014-5793(03)01124-4 pmid: 14630316
[2] Larkin R M, Alonso J M, Ecker J R, Chory J.GUN4, a regulator of chlorophyll synthesis and intracellular signaling.Science, 2003, 299: 902-906
doi: 10.1126/science.1079978 pmid: 12574634
[3] Dong H, Fei G L, Wu CY, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M.A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867-1880
[4] Yoo S, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C.Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388-401
[5] Kusumi K, Mizutani A, Nishimura M, Iba K.A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12: 1241-1250
doi: 10.1046/j.1365-313x.1997.12061241.x
[6] Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K.A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions.Plant J, 2011, 68: 1039-1050
doi: 10.1111/j.1365-313X.2011.04755.x pmid: 21981410
[7] Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G.Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.Plant Cell Physiol, 2003, 44: 463-472
doi: 10.1093/pcp/pcg064 pmid: 12773632
[8] Lee S, Kim J H, Enu S Y, Lee C H, Hirochika H, An G.Differential regulation of chlorophyll a oxygenase genes in rice.Plant Mol Biol, 2005, 57: 805-818
doi: 10.1007/s11103-005-2066-9
[9] Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K.The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation.Plant Cell Physiol, 2004, 45: 985-996
doi: 10.1093/pcp/pch111 pmid: 15356324
[10] Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K.The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512-527
doi: 10.1111/j.1365-313X.2007.03251.x pmid: 17727616
[11] Zhang H, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325-337
[12] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J.A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol, 2007, 145: 29-40
doi: 10.1104/pp.107.100321 pmid: 17535821
[13] Koussevitzky S, Nott A, Mockler T C, Hong F.Signals from chloroplasts converge to regulate nuclear gene expression.Science, 2007, 316: 715-719
doi: 10.1126/science. 1140516
[14] Terry M J, Kendrick R E.Feedback inhibition of chlorophyll synthesis in the phyochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato.Plant Physiol, 1999, 119: 143-152
doi: 10.1104/pp.119.1.143 pmid: 9880355
[15] Huq E, Al-Sady B, Hudson M.Phytochrome-interacting factor l is a critical bHLH regulator of chlorophyll biosynthesis.Science, 2004, 305: 1937-1942
doi: 10.1126/science.1099728 pmid: 15448264
[16] Reinbothe S, Polhnann S, Springer A.A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH: protochlorophyllide oxidoteductase (POR). Plant J, 2005, 42: 1-12
doi: 10.1111/j.1365-313X.2005.02353.x pmid: 15773849
[17] Sergei K, Elena B, Sergei S A.Mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13: 89-100
doi: 10.2307/3871155 pmid: 11158531
[18] Shi J Q, Wang Y Q, Guo S, Ma L, Wang Z W, Zhu X Y, Sang X C, Ling Y H, Wang N, Zhao F M, He G H.Molecular mapping and candidate gene analysis of a Yellow-green leaf 6 (ygl6) mutant in rice. Crop Sci, 2015, 55: 669-680
doi: 10.2135/cropsci2014.07.0483
[19] Ren D Y, Li Y F, Zhao F M, Sang X C, Shi J Q, Wang N, Guo S, Ling Y H, Zhang C W, Yang Z L, He G H.MULTI-FLORET SPIKELET1, encoding an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice. Plant Physiol, 2013, 162: 872-884
[20] Lichtenthaler H K.Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.Method Enzymol, 1987, 48: 350-382
doi: 10.1016/0076-6879(87)48036-1
[21] Gothandarn K M, Kim E S, Cho H J, Chung Y Y.OsPPR1 a pentatricopeptide tepeat protein office is essential for the chloroplast biogenesis, Plant Mo1 Bio1, 2005, 58: 421-433
[22] Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K.Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp.Plant Cell Physiol, 2004, 45: 1194-1201
doi: 10.1093/pcp/pch133 pmid: 15509842
[23] Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park N C.The senescence-induced stay green protein regulates chloropgyll degradation.Plant Cell, 2007, 19: 1649-1664
doi: 10.1105/tpc.106.044891 pmid: 17513504
[24] Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirpchika H, Nishimura M, Tanaka A.Rice NON-YELLOW COLORING 1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375
[25] Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M.Two short-chain dehydrogenase/reductases NON-YELLOW COLORING 1 and NYC1-LIKE are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120-131
[26] Eberhard S, Loiselay C, Drapier D, Bujaldon S, Girard-Bascou J, Kuras R, Choquet Y, Wollman F A.Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J, 2011, 67: 1055-1066
doi: 10.1111/j.1365-313X.2011.04657.x pmid: 21623973
[27] Gottesman S, Storz G.Bacterial small RNA regulators: versatile roles and rapidly evolving variations.Cold Spring Harb Perspect Biol, 2011, 3: 1-16
doi: 10.1101/cshperspect.a003798 pmid: 20980440
[28] Stern D B, Goldschmidt-Clermont M, Hanson M R.Chloroplast RNA metabolism.Annu Rev Plant Biol, 2010, 61: 125-155
doi: 10.1146/annurev-arplant-042809-112242
[29] Barkan A.Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold.Plant Physiol, 2011, 155: 1520-1532
doi: 10.1104/pp.110.171231 pmid: 21346173
[30] Baker M E, Grundy W N, Elkan C P.Spinach CSP41, an mRNA-binding protein and ribonuclease, is homologous to nucleotide-sugar epimerases and hydroxysteroid dehydrogenases.Biochem Biophys Res Commun, 1998, 248: 250-254
doi: 10.1006/bbrc.1998.8951 pmid: 9675122
[31] Yang J, Schuster G, Stern D B.CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease.Plant Cell, 1996, 8: 1409-1420
doi: 10.1105/tpc.8.8.1409
[32] Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer H E, Link G.The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem, 2000, 267: 253-261
[33] Yamaguchi K, Beligni M V, Prieto S, Haynes P A, McDonald W H. Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to the 70S ribosome. J Biol Chem, 2003, 278: 33774-33785
[34] Pfalz J, Bayraktar O A, Prikryl J, Barkan A.Site-specific binding of a PPR protein defines and stabilizes 5° and 3° mRNA termini in chloroplasts.EMBO J, 2009, 28: 2042-2052
doi: 10.1038/emboj.2009.121 pmid: 19424177
[35] Bollenbach T J, Stern D B.Secondary structures common to chloroplast mRNA 3°-untranslated regions direct cleavage by CSP41, an endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily.J Biol Chem, 2003, 278: 25832-25838
doi: 10.1074/jbc.M303559200 pmid: 12734190
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[9] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[10] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[11] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
[12] 翟玉山,赵贺,张海,邓宇晴,程光远,杨宗桃,王彤,彭磊,徐倩,董萌,徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作[J]. 作物学报, 2019, 45(10): 1478-1487.
[13] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[14] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[15] 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!