欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 597-607.doi: 10.3724/SP.J.1006.2022.14023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析

黄成(), 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝*()   

  1. 华中农业大学作物遗传改良国家重点实验室/国家油菜工程技术研究中心, 湖北武汉 430070
  • 收稿日期:2021-02-02 接受日期:2021-06-16 出版日期:2022-03-12 网络出版日期:2021-07-14
  • 通讯作者: 马朝芝
  • 作者简介:E-mail: 822075664@qq.com
  • 基金资助:
    湖北省重点研发计划项目(2020BBB061);国家重点研发计划项目(2016YFD100803)

Genome wide analysis of BnAPs gene family in Brassica napus

HUANG Cheng(), LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi*()   

  1. National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2021-02-02 Accepted:2021-06-16 Published:2022-03-12 Published online:2021-07-14
  • Contact: MA Chao-Zhi
  • Supported by:
    Key Research and Development Program in Hubei Province(2020BBB061);National Key Research and Development Program of China(2016YFD100803)

摘要:

天冬氨酸蛋白酶(AP)属于四大蛋白水解酶之一, 在蛋白质加工、信号转导和胁迫反应中发挥着重要作用。甘蓝型油菜是我国重要的油料作物, 利用蛋白质同源性分析, 在甘蓝型油菜中鉴定出154个APs编码基因, 分别编码典型、非典型和珠心类天冬氨酸蛋白酶。基因结构分析结果表明, 多数BnAPs基因包含1~4个外显子, 同一类型的天冬氨酸蛋白酶成员之间蛋白质基序(Motif)分布相似。共线性分析表明, 甘蓝型油菜与白菜、甘蓝和拟南芥存在大量的同源基因, 约89%的BnAPs基因来自于全基因组复制事件。转录水平检测结果表明, BnAPs基因家族成员在各个组织中均有表达, 其中BnAP30.A05.1/A05.2/C05.1/C05.2BnAP36.A04/C08BnAP39.A06/C03在授粉后的柱头显著提高。BnAPs基因启动子区域顺式元件分析结果表明, 逆境相关的顺式调控元件被显著富集; 进一步利用RT-qPCR验证了这些富含逆境相关顺式调控元件的基因在逆境(ABA、NaCl或4℃)处理后的表达水平显著变化, 推测这些BnAPs基因可能参与甘蓝型油菜对逆境的响应。进一步和拟南芥同源基因组织表达模式进行比较后发现, 大约有24%的BnAPs与其同源AtAPs具有相同的表达模式。本研究为进一步解析天冬氨酸蛋白酶家族在甘蓝型油菜中的生物学功能奠定了基础。

关键词: 甘蓝型油菜, 天冬氨酸蛋白酶, 共线性分析, 表达模式, RT-qPCR

Abstract:

Aspartate protease (AP) is one of the four major proteolytic enzymes and plays an important role in protein processing, signal transduction, and stress response. Brassica napus is an important oil crop in China. We identified 154 APs coding genes in Brassica napu by protein homology analysis, which encoded typical, atypical, and nucellar aspartate proteases, respectively. Gene structure analysis showed that most BnAPs genes contained 1-4 exons and the motif distribution of the same type of aspartic protease was similar. Collinearity analysis revealed that there was a large number of homologous genes between Brassica napus and Brassica rape, Brassica oleracea and Arabidopsis thaliana, and about 89% of BnAPs genes came from genome-wide replication events. Transcriptional analysis demonstrated that BnAPs gene family was expressed in all tissues. The stigma of BnAP30.A05.1/ A05.2/C05.1/C05.2, BnAP36.A04/C08, and BnAP39.A06/C03 increased significantly after pollination. Cis-element analysis in the promoter region of BnAPs gene presented that stress-related cis regulatory elements were significantly enriched. We further verify that the relative expression levels of these genes rich in stress-related cis regulatory elements changed significantly after stress (ABA, NaCl, or 4℃), suggesting that these BnAPs genes may be involved in response to stress in Brassica napus. Compared with Arabidopsis homologous genes, about 24% of BnAPs had the same expression pattern as their homologous AtAPs. This study laid a foundation for further understanding the biological function of aspartic protease family in Brassica napus.

Key words: Brassica napus, aspartic protease, collinearity analysis, expression patterns, RT-qPCR

图1

甘蓝型油菜和拟南芥APs蛋白系统发育树 不同的颜色表示APs家族的不同亚组。"

图2

甘蓝型油菜BnAPs的系统进化树、基因结构和Motif组成分析"

图3

甘蓝型油菜BnAPs基因家族基因组内共线性关系以及与芸薹属植物共线性分析 A: 灰色区域表示甘蓝型油菜基因组中的所有共线性区域, 红色线条表示共线性的BnAPs基因对, 基因在染色体上的位置显示在每个染色体的顶部。B: 灰色线条背景显示甘蓝型油菜和其他植物基因组中的共线区, 彩色线条区突出了与不同物种间的共线性同线APs基因对。"

图4

BnAPs组织和发育时期特异性表达模式 a: BnAPs基因在5个不同生育时期(根、茎、叶、花、种子)的表达模式。b: BnAPs基因在花发育时期及授粉前后柱头中的表达模式。c: 柱头中BnAP30/36/39在授粉前后RT-PCR分析。UP: 未授粉; AP: 授粉之后。"

图5

BnAPs与AtAPs共表达模式分析 BnAPs和AtAPs在根、茎、叶、花、种子5个生育时期的表达模式, 红色代表BnAPs, 绿色代表AtAPs。"

图6

脱落酸(ABA)、NaCl以及4℃处理下BnAPs的表达模式"

[1] Chen H J, Huang Y H, Huang G J, Huang S S, Chow T J, Lin Y H. SPAP1 is a typical aspartic protease and participates in etheon-mediated leaf senescence SPAP1 is a typical aspartic protease and participates in etheon-mediated leaf senescence. J Plant Physiol, 2015, 180:1-17.
[2] Simões I, Faro C. Structure and function of plant aspartic proteinases. Eur J Biochem, 2004, 271:2067-2075.
doi: 10.1111/j.1432-1033.2004.04136.x
[3] Soares A, Carlton S M R, Simoes I. Atypical and nucellin-like aspartic proteases: emerging players in plant developmental processes and stress responses. J Exp Bot, 2019, 70:2059-2076.
doi: 10.1093/jxb/erz034 pmid: 30715463
[4] Tamura T, Terauchi K, Kiyosaki T, Asakura T, Funaki J, Matsumoto I, Misaka T, Abe K. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds. J Plant Physiol, 2007, 164:470-477.
doi: 10.1016/j.jplph.2006.02.009
[5] Huang J, Zhao X, Cheng K, Jiang Y, Ou-Yang Y, Xu C. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth. J Exp Bot, 2013, 11:3351-3360.
[6] Phan H A, Iacuone S, Parish L R W. Arabidopsis thaliana Arabidopsis thaliana. Plant Cell, 2011, 23:2209-2224.
doi: 10.1105/tpc.110.082651
[7] Xia Y, Suzuki H, Borevitz J, Blout J, Guo Z, Patel K, Dixon R A, Lamb C. Arabidopsis disease resistance signaling Arabidopsis disease resistance signaling. EMBO J, 2014, 23:980-988.
doi: 10.1038/sj.emboj.7600086
[8] Prasad B D, Creissen G, Lamb C, Chattoo B. Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis. Mol Plant-Microbe Interact, 2009, 22:1635-1644.
doi: 10.1094/MPMI-22-12-1635
[9] Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y. Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep, 2005, 6:282-288.
doi: 10.1038/sj.embor.7400357
[10] Gao H, Zhang Y H, Wang W L, Zhao K K, Liu C M, Bai L, Li R, Guo Y. Two membrane-anchored aspartic proteases contribute to pollen and ovule development. Plant Physiol, 2017, 173:219-239.
doi: 10.1104/pp.16.01719
[11] Yao X, Xiong W, Ye T, Wu Y. ASPG1 gene confers drought avoidance in Arabidopsis ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot, 2012, 63:2579-2593.
doi: 10.1093/jxb/err433
[12] Shen W, Yao X, Ye T, Ma S, Liu X, Yin X. Arabidopsis aspartic protease ASPG1 affects seed dormancy, seed longevity and seed germination. Plant Cell Physiol, 2018, 59:1415-1431.
[13] Faro C, Gal S. Arabidopsis genome Arabidopsis genome. Curr Protein Pept Sci, 2005, 6:493-500.
doi: 10.2174/138920305774933268
[14] Finn R D, Tate J, Mistry J, Coggill P C, Sammut S J, Hotz H R, Ceric G, Forslund K, Eddy S R, Sonnhammer E L L, Bateman A. The Pfam protein families database. Nucleic Acids Res, 2008, 36:D281-D288.
doi: 10.1093/nar/gkm960
[15] Potter S C, Luciani A, Eddy S R. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46:W200-W204.
doi: 10.1093/nar/gky448
[16] Marchler B A, Bryant S H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res, 2004: 32:327-331.
pmid: 15215404
[17] Chen F, Foolad M R. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol, 1997, 35:821-831.
pmid: 9426602
[18] Chen J, Ouyang Y, Wang L, Xie W, Zhang Q. Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and ylogenetic relation. Gene, 2009, 442:108-118.
doi: 10.1016/j.gene.2009.04.021
[19] Nakano T, Murakami S, Shoji T, Yoshida S, Sato Y F. A novel protein with DNA binding activity from tobacco chloroplastroplast nucleoids. Plant Cell, 1997, 9:1673-1682.
pmid: 9338968
[20] Castanheira P, Samyn B, Sergeant K, Clemente J C, Dunn B M, Pires E. Activation, proteolytic processing, and peptide specificity of recombinant cardosin A. J Biol Chem, 2005, 280:13047-13054.
pmid: 15677463
[21] Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23:2947-2948.
pmid: 17846036
[22] Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37:W202-W208.
doi: 10.1093/nar/gkp335
[23] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009
[24] Lescot M, Patrice D. cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30:325-327.
doi: 10.1093/nar/30.1.325
[25] Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017, 45:D1040-D1045.
doi: 10.1093/nar/gkw982
[26] Wang Y, Tang H B, Debarry J D. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40:e49.
doi: 10.1093/nar/gkr1293
[27] Tang H B, Bowers J E, Wang X Y, Ming R, Alam M, Paterson A H. Perspective-synteny and collinearity in plant genomes. Science, 2008, 320:486-488.
doi: 10.1126/science.1153917
[28] Muylu A, Gal S. Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant, 1999, 105:569-576.
doi: 10.1034/j.1399-3054.1999.105324.x
[29] Takahashi K, Niwa H, Yokota N, Kubota K, Inoue H. Arabidopsis thaliana Arabidopsis thaliana. Plant Physiol Biochem, 2008, 46:724-729.
doi: 10.1016/j.plaphy.2008.04.007
[30] Guo R R, Xu X Z, Carole B, Li X Q, Gao M, Zheng Y, Wang X P. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genomics, 2013, 14:1-18.
doi: 10.1186/1471-2164-14-1
[31] Cao S, Guo M, Wang C. Populus trichocarpa and identification of the potential PtAPs involved in wood formation Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC Plant Biol, 2019, 19:1-17.
doi: 10.1186/s12870-018-1600-2
[32] Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y. Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 43:14-93.
[33] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290:1151-1155.
pmid: 11073452
[34] Cheng F, Mandáková T, Wu J, Xie Q, Lysak M, Wang X. Deciering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell, 2013, 25:1541-1554.
doi: 10.1105/tpc.113.110486
[35] Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet, 2010, 11:97-108.
doi: 10.1038/nrg2689
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[5] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[6] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[7] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[8] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[9] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[10] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[11] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[12] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[13] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[14] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[15] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!