欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 608-623.doi: 10.3724/SP.J.1006.2022.14004

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯Dof基因家族挖掘及表达分析

靳容1(), 蒋薇1, 刘明1, 赵鹏1, 张强强1, 李铁鑫2, 王丹凤1, 范文静2, 张爱君1, 唐忠厚1,*()   

  1. 1江苏徐淮地区徐州农业科学研究所/江苏徐州甘薯研究中心/农业农村部甘薯生物学与遗传育种重点实验室, 江苏徐州 221131
    2安徽农业大学, 安徽合肥 230036
  • 收稿日期:2021-01-11 接受日期:2021-04-26 出版日期:2022-03-12 网络出版日期:2021-05-20
  • 通讯作者: 唐忠厚
  • 作者简介:E-mail: jinrong_2012@126.com
  • 基金资助:
    国家农业现代产业技术体系建设专项(CARS-11-B-13);农业农村部薯类作物生物学与遗传育种综合性重点实验开放课题(NYBSL201802)

Genome-wide characterization and expression analysis of Dof family genes in sweetpotato

JIN Rong1(), JIANG Wei1, LIU Ming1, ZHAO Peng1, ZHANG Qiang-Qiang1, LI Tie-Xin2, WANG Dan-Feng1, FAN Wen-Jing2, ZHANG Ai-Jun1, TANG Zhong-Hou1,*()   

  1. 1Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province/Xuzhou Sweetpotato Research Center of Jiangsu Province/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu, China
    2Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2021-01-11 Accepted:2021-04-26 Published:2022-03-12 Published online:2021-05-20
  • Contact: TANG Zhong-Hou
  • Supported by:
    China Agriculture Research System(CARS-11-B-13);Open Project of Ministry of Agriculture and Rural Affairs: Key Laboratory of Biology, Genetics and Breeding of Potato Crops(NYBSL201802)

摘要:

单锌指蛋白超家族Dof (DNA binding with one finger)转录因子广泛参与植物的各种生命活动。以甘薯泰中6号基因组为参照挖掘得到46个甘薯Dof基因, 每个家族成员均具有C2C2-Dof锌指结构, 按照其在染色体上的位置, 命名为IbDof1~IbDof46。该基因家族可分为4个亚家族(A~D), 且不同亚族的基因结构和基序的分布差异显著。基序1和基序2存在于所有亚家族中; 基序5和基序9只存在于亚家族A中; 基序6、基序7、基序8和基序10只存在亚家族D中。IbDof的进化极为保守, 共有12对染色体复制事件和5对串联重复序列事件(IbDof2/IbDof3IbDof12/IbDof13IbDof9/IbDof10IbDof28/IbDof29IbDof32/IbDof33), 分歧时间平均是3552万年前和186万年前, Ka/Ks比值范围从0.07 (IbDof12/IbDof13)到0.68 (IbDof6/IbDof25), 且与甘薯野生近缘种Ipomoea trifida同一染色体上的Dof同源基因对有38对。组织特异性分析表明, IbDof各亚族在各个组织器官中表达强度不同, 且亚族内部呈现不同的表达趋势。IbDof启动子序列中包含逆境和激素响应等相关元件, 实时荧光定量PCR进一步分析表明, IDof基因受低温、干旱、高盐和H2O2等非生物胁迫诱导表达。比如大部分IbDof受低温调控表达; IbDof10IbDof14受干旱胁迫诱导表达; IbDof2IbDof14IbDof37IbDof41IbDof43受高盐诱导表达; 而IbDof8IbDof10IbDof25IbDof41则受H2O2诱导表达, 这说明IbDof家族成员协同控制了甘薯的生长发育及参与非生物胁迫过程。

关键词: 甘薯, Dof基因家族, 系统进化, 表达分析

Abstract:

DNA-binding One Zinc Finger (Dof) transcription factors are widely involved in various life activities of plants. Forty-six IbDof genes from sweetpotato cv. Taizhong 6 with a highly conserved Dof domain structured as a C2C2-type zinc finger were identified and named from IbDof1 to IbDof46 according to their position on the chromosomes. IbDof family could be divided into four subgroups (A-D), which shared the similar motifs and gene structures. Motif 1 and Motf 2 occurred in all of the identified IbDofs, Motif 5 and Motif 9 only occurred in subgroup A, and Motif 6-Motif 8 and Motif 10 only occurred in subgroup D. Twelve segment duplicated gene pairs and five tandem duplicated gene pairs of IbDofs (IbDof2/IbDof3, IbDof12/IbDof13, IbDof9/IbDof10, IbDof28/IbDof29, and IbDof32/IbDof33) contributed to the expansion of IbDof family in sweetpotato. The average divergence times of segmental duplication gene pairs and tandem duplicated gene pairs seemed to have emerged 35.22 MYA and 1.86 MYA, and the Ka/Ks ratios of the paralogous IbDofs were range from 0.07 (IbDof12/IbDof13) to 0.68 (IbDof6/IbDof25). Tirty-eight orthologous IbDof gene pairs between sweetpotato and their wild relative species Ipomoea trifida were involved in duplicated genomic blocks based on synteny analysis. Transcriptome analysis indicated different subgroups expressed specifically in various tissues, and IbDofs in the same subgroup also revealed different expression tends. Various hormones and stresses response element were identified in the promoters of IbDof genes, and qRT-PCR demonstrated specific IbDof genes responded to various environmental stresses, including cold, drought, salt, and H2O2. Most IbDof genes were regulated by cold treatment; IbDof10 and IbDof14 were up-regulated by drought treatment; IbDof-2, -14, -37, -41, -43 were up regulated by high salt stress; and IbDof-8, -10, -25, -41 were up regulated by H2O2 treatment. In summary, our result indicated that IbDof family genes coordinately regulated the growth and development of sweetpotato and been involved in the various abiotic stresses process.

Key words: sweetpotato, Dof gene family, evolution analysis, gene expression profiling

表1

实时荧光定量PCR所用的引物"

基因名称
Gene name
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
Dof2 GCTGTTGTTGTTGGATTATC CGTTGTTAGGTAGAGTTGTC
Dof5 CTCATTGCCGTCATATTACC TCCTGCCATAGAACTTGTAG
Dof8 GCTGGAGATAATGGAGATGA AACTGCGGTCAATGGATAA
Dof10 GGTTGTGGAGAATGTTGTG GAGGAAGAAGATGATAAGGAAG
Dof14 GAAGGTGATGATGACAACAG CCATGCCAAGAAGAACCA
Dof15 GCTTCATCTCCTCCTCCT GTTCCTTCATCCTCTTCACT
Dof17 CAACTATGGCGACTGATAATC GATGTTCCTCCTCCTCCT
Dof21 TTACTGTCGAACATGCAGACGC GTGGTTGGAGTTGAGGTAGTGA
基因名称
Gene name
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
Dof24 CGACGAGATATTGGAACCTT GGCTGGCTCTGTTGAATC
Dof25 CTACAACAACTACAACCTCTC AGCAATGACGTGAAGGAG
Dof33 TCCGTTCCTCGATCCAAT TGATGGTGTGATTGTTGTTG
Dof37 CGACCAAGACTGAAGATGA GGTGATGTGGCAATGAGA
Dof40 CTCCATCATCATCATCATCATC GGCAGCAGTAGTCATTCC
Dof41 CATCATCATCATCATCTCCATC GGCAGCAGTAGTCATTCC
Dof43 TTCTGTTACGACACCTTCC TACTGCTTCTACCGACTCT

表2

IbDof基因家族相关信息"

基因名称
Gene name
基因编号
Gene ID
染色体定位
Chromosome
CDS长度
Coding domain sequence (bp)
氨基酸长度
Amino acid length
等电点
Isoelectric point (pI)
分子量
Molecular weight (kD)
亚细胞定位
Subcellular location
分组
Group
IbDof1 g1970.t1 1 891 297 6.35 31.96 细胞核 Nucleus D3
IbDof2 g5563.t1 1 807 269 4.94 29.78 细胞核 Nucleus D3
IbDof3 g5605.t1 1 807 269 4.94 29.76 细胞核 Nucleus D3
IbDof4 g6131.t1 1 600 200 9.16 20.99 细胞核 Nucleus C2.2
IbDof5 g9564.t1 2 1164 388 9.33 42.57 细胞核 Nucleus B1
IbDof6 g10705.t1 2 561 187 9.60 21.15 细胞核 Nucleus B2
IbDof7 g11533.t1 3 1542 514 5.28 55.81 细胞核 Nucleus B1
IbDof8 g11556.t1 3 1494 498 5.09 53.53 细胞核 Nucleus B1
IbDof9 g15022.t1 3 759 253 8.15 27.43 细胞核 Nucleus D1
IbDof10 g15141.t1 3 732 244 8.90 26.49 细胞核 Nucleus D1
IbDof11 g17470.t1 4 330 110 9.66 12.60 细胞核 Nucleus B2
IbDof12 g21747.t1 4 960 320 9.20 33.86 细胞核 Nucleus A
IbDof13 g21785.t1 4 957 319 9.20 33.80 细胞核 Nucleus A
IbDof14 g21856.t1 4 846 282 6.78 30.99 细胞核 Nucleus D2
IbDof15 g26198.t1 5 1587 529 6.19 58.14 细胞核 Nucleus B1
IbDof16 g26413.t1 5 786 262 9.18 27.65 细胞核 Nucleus C1
IbDof17 g26723.t1 5 825 275 7.17 29.90 细胞核 Nucleus D1
IbDof18 g27204.t1 5 807 269 5.03 29.57 细胞核 Nucleus D3
IbDof19 g28361.t1 6 498 166 9.73 19.31 细胞核 Nucleus B2
IbDof20 g28392.t1 6 606 202 9.32 22.91 细胞核 Nucleus B2
IbDof21 g28584.t1 6 606 202 8.45 22.54 细胞核 Nucleus B2
IbDof22 g28692.t1 6 687 229 8.79 25.43 细胞核 Nucleus B2
IbDof23 g31777.t1 6 630 210 8.16 22.06 细胞核 Nucleus C2.2
IbDof24 g32164.t1 6 1164 388 9.05 42.28 细胞核 Nucleus C2.2
IbDof26 g34747.t1 7 786 262 8.64 28.71 细胞核 Nucleus D2
IbDof27 g34761.t1 7 786 262 8.49 28.58 细胞核 Nucleus D2
IbDof28 g38905.t1 8 657 219 8.84 23.95 细胞核 Nucleus D1
IbDof29 g38982.t1 8 1038 346 8.83 38.71 细胞核 Nucleus D1
IbDof30 g42311.t1 9 939 313 9.33 34.08 细胞核 Nucleus C3
IbDof31 g42323.t1 9 1014 338 9.14 36.42 细胞核 Nucleus C3
IbDof32 g46228.t1 9 972 324 9.60 33.39 细胞核 Nucleus A
IbDof33 g46266.t1 9 1032 344 9.30 35.94 细胞核 Nucleus A
IbDof34 g48623.t1 10 861 287 6.19 31.08 细胞核 Nucleus D3
IbDof35 g50844.t1 10 1050 350 8.90 37.73 细胞核 Nucleus C3
IbDof36 g50864.t1 10 837 279 6.15 30.23 细胞核 Nucleus B1
IbDof37 g53865.t1 11 1398 466 5.76 50.71 细胞核 Nucleus B1
基因名称
Gene name
基因编号
Gene ID
染色体定位
Chromosome
CDS长度
Coding domain sequence (bp)
氨基酸长度
Amino acid length
等电点
Isoelectric point (pI)
分子量
Molecular weight (kD)
亚细胞定位
Subcellular location
分组
Group
IbDof38 g55460.t1 11 1050 350 6.97 38.44 细胞核 Nucleus D2
IbDof39 g57153.t1 12 1002 334 9.63 35.93 细胞核 Nucleus A
IbDof40 g58686.t1 12 1008 336 8.24 36.37 细胞核 Nucleus D1
IbDof41 g59490.t1 12 1011 337 8.21 36.31 细胞核 Nucleus D1
IbDof42 g59977.t1 12 939 313 9.48 33.42 细胞核 Nucleus A
IbDof43 g65472.t1 14 1317 439 7.22 47.43 细胞核 Nucleus B1
IbDof44 g65553.t1 14 1053 351 8.99 39.00 细胞核 Nucleus B2
IbDof45 g68289.t1 14 804 268 8.24 29.58 细胞核 Nucleus D2
IbDof46 g68388.t1 14 882 294 9.17 30.81 细胞核 Nucleus A

图1

甘薯、拟南芥和水稻Dof家族蛋白系统发育树"

图2

甘薯Dof基因保守序列和基因结构分析"

图3

甘薯Dof启动子顺式作用元件分析"

表3

甘薯Dof基因复制事件类型、同义替换率、非同义替换率及其比值"

基因I
Gene I
基因II
Gene II
复制类型
Type of duplication
同义
替换率
Ka
非同义
替换率
Ks
Ka/Ks 分歧时间(百万年前)
Divergence time (MYA)
IbDof2 IbDof3 串联重复序列 Tandem duplicated gene pairs 0.001611 0.016886 0.095413 0.562876
IbDof4 IbDof25 染色体片段复制 Segmental duplication gene pairs 0.158131 0.233118 0.678330 7.77059
IbDof7 IbDof15 染色体片段复制 Segmental duplication gene pairs 0.275346 0.952055 0.289212 31.73516
IbDof9 IbDof10 串联重复序列 Tandem duplicated gene pairs 0.016325 0.053043 0.307773 1.768089
IbDof10 IbDof17 染色体片段复制 Segmental duplication gene pairs 0.291817 1.563082 0.186693 52.10274
IbDof12 IbDof13 串联重复序列 Tandem duplicated gene pairs 0.006995 0.097434 0.071789 3.247803
IbDof14 IbDof27 染色体片段复制 Segmental duplication gene pairs 0.228799 1.117142 0.204807 37.23806
IbDof28 IbDof29 串联重复序列 Tandem duplicated gene pairs 0.008162 0.020799 0.392429 0.693285
IbDof32 IbDof33 串联重复序列 Tandem duplicated gene pairs 0.030506 0.102014 0.299038 3.400458
IbDof35 IbDof30 染色体片段复制 Segmental duplication gene pairs 0.495625 1.024638 0.483707 34.15461
IbDof39 IbDof12 染色体片段复制 Segmental duplication gene pairs 0.624101 1.595607 0.391137 53.1869
基因I
Gene I
基因II
Gene II
复制类型
Type of duplication
同义
替换率
Ka
非同义
替换率
Ks
Ka/Ks 分歧时间(百万年前)
Divergence time (MYA)
IbDof40 IbDof41 染色体片段复制 Segmental duplication gene pairs 0.006582 0.044195 0.148927 1.47318
IbDof40 IbDof29 染色体片段复制 Segmental duplication gene pairs 0.338989 0.932423 0.363557 31.08075
IbDof45 IbDof14 染色体片段复制 Segmental duplication gene pairs 0.290234 0.953107 0.304514 31.77022
IbDof45 IbDof27 染色体片段复制 Segmental duplication gene pairs 0.287356 1.117214 0.257208 37.24048
IbDof46 IbDof13 染色体片段复制 Segmental duplication gene pairs 0.217848 1.104950 0.197156 36.83168
IbDof46 IbDof12 染色体片段复制 Segmental duplication gene pairs 0.192186 1.127080 0.170517 37.56932

图4

甘薯Dof基因在染色体上的位置及基因复制事件"

图5

甘薯和其近缘野生种Ipomoea trifida同源Dof共线性关系 甘薯染色体(上部)与Ipomoea trifida (下部)之间的连线表示Dof同源基因对。"

图6

甘薯Dof基因在不同组织的表达模式 A: 甘薯Dof基因在徐薯22中不同组织中的表达模式; B: 甘薯Dof基因在徐薯18中不同组织中的表达模式。图中IbDof基因在每个组织中的数值为FPKM值。"

图7

甘薯Dof基因在低温胁迫下相对表达分析 *和**分别表示在0.05和0.01水平上差异显著。"

图8

甘薯Dof基因在干旱胁迫下相对表达分析 **表示在0.01水平上差异显著。"

图9

甘薯Dof基因在盐胁迫下相对表达分析 *和**分别表示在0.05和0.01水平上差异显著。"

图10

甘薯Dof基因在H2O2胁迫下相对表达分析 *和**分别表示在0.05和0.01水平上差异显著。"

[1] 马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28:969-973.
Ma D F, Li Q, Cao Q H, Niu F X, Xie Y P, Tang J, Li H M. Development and prospect of sweetpotato industry and its technologies in China. Jiangsu J Agric Sci, 2012, 28:969-973 (in Chinese with English abstract).
[2] Shubhendu S, Doivya M, Alak K B, Subhra C, Niranjan C. Ipomoea batatas L.) Ipomoea batatas L.). Food Chem, 2015, 173:957-965.
doi: 10.1016/j.foodchem.2014.09.172 pmid: 25466112
[3] 李思明, 司成成, 刘永华, 梁清干, 黄婷, 朱国鹏. 不同甘薯品种块根营养品质与产量综合评价. 热带作物学报, 2021, 42:713-719.
Li S M, Si C C, Liu Y H, Liang Q G, Huang T, Zhu G P. Comprehensive evaluation of root nutrition quality and yield of different sweet potato varieties. Chin J Trop Crops, 2021, 42:713-719 (in Chinese with English abstract).
[4] Shuichi Y. Dof family of plant transcription factors Dof family of plant transcription factors. Trends Plant Sci, 2002, 7:555-560.
doi: 10.1016/S1360-1385(02)02362-2
[5] Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht N C, Singh V K, Yadva D. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. Planta, 2015, 241:549-562.
doi: 10.1007/s00425-014-2239-3 pmid: 25564353
[6] Umemura Y, Ishiduka T, Yamamoto R, Esaka M. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain. Plant J, 2004, 37:741-749.
doi: 10.1111/tpj.2004.37.issue-5
[7] Jesus V C, Stephen P M, Ronald L P, Robert J S. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA, 1997, 94:7685-7690.
doi: 10.1073/pnas.94.14.7685
[8] Yanagisawa S, Izui K. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. J Biol Chem, 1993, 268:16028-16036.
pmid: 8340424
[9] Wu Q, Liu X, Yin D D, Yuan H, Xie Q, Zhao X F, Li X B, Zhu L H, Li S G, Li D Y. Oryza sativa L.) Oryza sativa L.). BMC Evol Biol, 2017, 17:166.
doi: 10.1186/s12862-017-1012-1
[10] Li D J, Yang C N, Li X B, Gan Q, Zhao X F, Zhu L H. Functional characterization of rice OsDof12. Planta, 2009, 229:1159-1169.
doi: 10.1007/s00425-009-0893-7
[11] Goralogia G S, Liu T K, Zhao L, Panipinto P M, Groover E D, Bains Y S, Imaizumi T. Arabidopsis Arabidopsis. Plant J, 2017, 92:244-262.
doi: 10.1111/tpj.2017.92.issue-2
[12] Xu J Y, Dai H B. Brassica napus cycling Dof factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant Growth Regul, 2016, 80:315-322.
doi: 10.1007/s10725-016-0168-9
[13] Xu P P, Chen H Y, Ying L, Cai W M. AtDOF5.4/OBP4, a DOF transcription factor gene that negatively regulates cell cycle progression and cell expansion in Arabidopsis thaliana. Sci Rep(UK), 2016, 6:276-281.
[14] Ahmad M, Rim Y, Chen H, Kim J Y. Arabidopsis Dof transcription factor AtDof4.1 Arabidopsis Dof transcription factor AtDof4.1. Russ J Plant Physiol, 2013, 60:116-123.
doi: 10.1134/S1021443712060027
[15] Jason M W, Carie A C, Megan A D, Michael M N. Arabidopsis Arabidopsis. Plant Cell, 2005, 17:475-485.
pmid: 15659636
[16] Mlanie N, Rana M A, Sergio O, Richard D T. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci, 2013, 209:32-45.
doi: 10.1016/j.plantsci.2013.03.016
[17] Alessandra B, Silvia S, Davide C, Riccardo L, Emanuele M, Giovanna S, Paolo C, Paola V. AtGA3ox1 gene AtGA3ox1 gene. Mol Plant, 2014, 7:1486-1489.
doi: S1674-2052(14)60950-3 pmid: 24719470
[18] Qi X, Li S X, Zhu Y X, Zhao Q, Zhu D Y, Yu J J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. Plant Mol Biol, 2017, 93:7-20.
doi: 10.1007/s11103-016-0543-y
[19] Alba R C, Laura C, Pilar L, Sergio G N, Jose D F, Begoña M, Stephan P, Antonio G, Rosa V M, Jess V C, Joaquín M. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell Environ. 2017, 40:748-764.
doi: 10.1111/pce.v40.5
[20] Su Y, Liang W, Liu Z J, Wang Y M, Zhao Y P, Ijaz B, Hua J P. GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. J Plant Physiol, 2017, 218:222-234.
doi: 10.1016/j.jplph.2017.07.017
[21] Cai X F, Zhang C J, Shu W B, Ye Z B, Li H X, Zhang Y Y. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun, 2016, 474:736-741.
doi: 10.1016/j.bbrc.2016.04.148
[22] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28:2731-2739.
doi: 10.1093/molbev/msr121
[23] Chen C J, Chen H, Zhang Y, Thomas H R, Frankm H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009
[24] Yang S H, Zhang X H, Yue J X, Tian D C, Chen J Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics, 2008, 280:187-198.
doi: 10.1007/s00438-008-0355-0
[25] Nekrutenko A, Makova K D, Li W H. The Ka/Ks ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res, 2002, 12:198-202.
pmid: 11779845
[26] Koch M A, Haubold B, Mitchell O T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera(Brassicaceae). Mol Biol Evol, 2000, 17:1483-1498.
pmid: 11018155
[27] Yang J, Moeinzadeh M H, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G L, Zheng J L, Sun Z, Fan W J, Deng G F, Wang H W, Hu F H, Zhao S S, Fernie A R, Boerno S, Timmermann B, Zhang P, Vingron M. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants, 2017, 3:696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752
[28] Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25:402-408.
doi: 10.1006/meth.2001.1262
[29] Diego L, Pilar C, Jess V C. Arabidopsis Dof gene families Arabidopsis Dof gene families. BMC Evol Biol, 2003, 3:631-637.
[30] Wu S, Lau K H, Cao Q H, Hamilton J P, Sun H H, Zhou C X, Eserman L, Gemenet D C, Olukolu B A, Wang H Y, Crisovan E, Godden G T, Jiao C, Wang X, Kitavi M, Manrique C N, Vaillancourt B, Wiegert R K, Yang Xs, Bao K, Schaff J, Kreuze J, Gruneberg W, Khan A, Ghislain M, Ma D F, Jiang J M, Mwanga R O M, Leebens M J, Coin L J M, Yencho G C, Buell C R, Fei Z J. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun, 2018, 9:4580.
doi: 10.1038/s41467-018-06983-8
[31] Song A P, Gao T W, Li P L, Chen S M, Guan Z Y, Wu D, Xin J J, Fan Q Q, Zhao K K, Chen F D. Chrysanthemum morifolium Chrysanthemum morifolium. Front Plant Sci, 2016, 7:199.
[32] 吴智明, 张圣旭, 梁关生. 马铃薯基因组中Dof转录因子家族的鉴定与表达特征分析. 核农学报, 2015, 29:1260-1270.
Wu Z M, Zhang S X, Liang G S. Genome-wide identification and expression analysis of the Dof transcription factor family in potato (Solanum tuberosum L.). J Nucl Agric Sci, 2015, 29:1260-1270 (in Chinese with English abstract).
[33] Liu Y, Liu N N, Deng X, Liu D M, Li M F, Cui D D, Huy K, Yan Y M. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics, 2020, 21:549-562.
doi: 10.1186/s12864-020-06963-7
[34] Zou Z, Zhu J L, Zhang X C. Genome-wide identification and characterization of the Dof gene family in cassava(Manihot esculenta). Gene, 2019, 687:298-307.
doi: 10.1016/j.gene.2018.11.053
[35] Ren R, Wang H F, Guo C C, Zhang N, Zeng L P, Chen Y M, Ma H, Qi J. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant, 2018, 11:414-428.
doi: S1674-2052(18)30022-4 pmid: 29317285
[36] 张莉, 荐红举, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析. 作物学报, 2018, 44:197-207.
Zhang L, Jian H J, Yang B, Zhang A X, Zhang C, Yang H, Zhang L Y, Liu L Z, Xu X F, Lu K, Li J N. Genome-wide analysis and expression profiling of SPS gene family in Brassica nupus L. Acta Agron Sin, 2018, 44:197-207 (in Chinese with English abstract).
[37] Pamela S S, Douglas E S. Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol, 2016, 30:159-165.
doi: 10.1016/j.pbi.2016.03.015 pmid: 27064530
[38] Jiao Y N, Jim L M, Saravanaraj A, John E B, Michael R M, Joel M, Megan R, Daniel R R, Eric W, Norman J W, Wu X L, Zhang Y, Wang J, Zhang Y T, Eric J C, Michael K D, Toni M K, Andre S C, Pamela S S, Dennis W S, Richard M, Pires J C, Gane K S W, Douglas E S, Claude W D. A genome triplication associated with early diversification of the core eudicots. Genome Biol, 2012, 13:135-141.
[39] Jiao Y N, Li J P, Tang H B, Paterson A H. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell, 2014, 26:2792-2802.
doi: 10.1105/tpc.114.127597
[40] Nicholas P, Melissa L S, Shin H S. Evolution of gene duplication in plants. Plant Physiol, 2016, 171:2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366
[41] John E B, Brad A C, Rong J K, Andrew H P. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 2003, 422:433-438.
doi: 10.1038/nature01521
[42] Wang Y P, Tan X, Andrew H P. Arabidopsis Arabidopsis. BMC Genomics, 2013, 14:1-9.
doi: 10.1186/1471-2164-14-1
[43] 宋天晓, 刘意, 饶莉萍, Soviguidi D R J, 朱国鹏, 杨新笋, . 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析. 作物学报, 2021, 47:1297-1308.
doi: 10.3724/SP.J.1006.2021.04180
Song T X, Liu Y, Rao L P, Soviguidi D R J, Zhu G P, Yang X S. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato. Acta Agron Sin, 2021, 47:1297-1308 (in Chinese with English abstract).
[44] 李强, 刘庆昌, 马代夫. 甘薯近缘野生种研究利用现状及展望. 分子植物育种, 2006, 4(6):105-110.
Li Q, Liu Q C, Ma D F. Advances and prospects in wild relatives of sweetpotato. Mol Plant Breed, 2006, 4(6):105-110 (in Chinese with English abstract).
[45] Corrales A R, Nebauer S G, Carrillo L, Fernández N P, Marqués J, Renau-Morata B, Granell A, Pollmann S, Vicente C J, Molina R V, Medina J. Characterization of tomato cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J Exp Bot, 2014, 65:995-1012.
doi: 10.1093/jxb/ert451
[46] Zang D D, Wang C, Ji X Y, Wang Y C. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities. Plant Sci, 2015, 235:111-121.
doi: 10.1016/j.plantsci.2015.02.016
[47] 李辉, 黄蔚, 刘志薇, 王永鑫, 吴致君, 庄静. 茶树两个Dof转录因子的分离及其在温度胁迫中的响应分析. 茶叶科学, 2016, 36:312-322.
Li H, Huang W, Liu Z W, Wang Y X, Wu Z J, Zhuang J. Isolation and expression analysis of two temperature responsive Dof genes from Camellia sinensis. J Tea Sci, 2016, 36:312-322 (in Chinese with English abstract).
[48] Shubhra G, Gulab C A, Neha M, Naveen C B, Dinesh Y. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor(L.). Mol Biol Rep, 2016, 43:767-774.
doi: 10.1007/s11033-016-4019-6 pmid: 27230576
[49] Wu Z M, Cheng J W, Cui J J, Xu X W, Liang G S, Luo X R, Chen X C, Tang X Q, Hu K L, Qin C. Capsicum annuum L.) Capsicum annuum L.). Front Plant Sci, 2016, 7:574.
[50] 唐跃辉, 包欣欣, 王健, 冯荆城, 张梦, 张慧聪, 刘梦兰, 王玉瑾, 娄慧敏, 闫浩, 谭结, 王清伟, 刘坤. 小桐子Dof基因家族生物信息学与表达分析. 江苏农业学报, 2019, 35(1):15-25.
Tang Y H, Bao X X, Wang J, Feng J C, Zhang M, Zhang H C, Liu M L, Wang Y J, Lou H M, Yan H, Tan J, Wang Q W, Liu K. Bioinformatics and expression analysis of the Dof gene family in physic nut. Jiangsu J Agric Sci, 2019, 35(1):15-25 (in Chinese with English abstract).
[51] Yang Q, Chen Q J, Zhu Y D, Li T Z. MdDof genes in apple and analysis of their response to biotic or abiotic stress MdDof genes in apple and analysis of their response to biotic or abiotic stress. Funct Plant Biol, 2018, 45:528-541.
doi: 10.1071/FP17288
[1] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[2] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[3] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[4] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[5] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[6] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[7] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[8] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[9] 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545.
[10] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[11] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[12] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[13] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[14] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[15] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .