欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2080-2087.doi: 10.3724/SP.J.1006.2022.14134

• 耕作栽培·生理生化 • 上一篇    下一篇

甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究

解黎明1(), 姜仲禹1, 柳洪鹃1, 韩俊杰2, 刘本奎1, 王晓陆1, 史春余1,*()   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
    2山东省烟台市农业科学研究院, 山东烟台 265500
  • 收稿日期:2021-07-29 接受日期:2022-01-05 出版日期:2022-08-12 网络出版日期:2022-02-08
  • 通讯作者: 史春余
  • 作者简介:E-mail: 1215948128@qq.com
  • 基金资助:
    山东省薯类产业创新团队首席专家项目(SDAIT-16-01);海南省国家重点实验室开放课题(HNZDSYS(HNZDSYS(YY)-08)

Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage

XIE Li-Ming1(), JIANG Zhong-Yu1, LIU Hong-Juan1, HAN Jun-Jie2, LIU Ben-Kui1, WANG Xiao-Lu1, SHI Chun-Yu1,*()   

  1. 1College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai'an 271018, Shandong, China
    2Yantai Academy of Agricultural Sciences, Yantai 265500, Shandong, China
  • Received:2021-07-29 Accepted:2022-01-05 Published:2022-08-12 Published online:2022-02-08
  • Contact: SHI Chun-Yu
  • Supported by:
    Potato Innovation Program for Chief Expert of Shandong Province(SDAIT-16-01);Key Laboratory of Tropical Horticultural Crop Quality Regulation of Hainan Province(HNZDSYS(YY)-08)

摘要:

为探讨土壤水分对甘薯块根形成的影响及其与块根数量和整齐度的关系。选用鲜食型甘薯品种烟薯25作为试验材料, 在发根分枝期设置50%±5% (W50)、60%±5% (W60)、70%±5% (W70)、80%±5% (W80)、90%±5% (W90) 5个土壤相对含水量水平, 通过2年田间试验, 研究了土壤水分对甘薯潜在块根中碳水化合物含量及其代谢相关酶活性及收获期块根数量、整齐度和产量的影响。结果表明, 甘薯潜在块根中蔗糖、葡萄糖和果糖含量以及蔗糖转化酶活性, 栽植后10~35 d, W70处理均显著高于其他处理。甘薯潜在块根中蔗糖合酶活性和淀粉含量, 栽植后10~25 d, W70处理显著低于其他处理; 栽植后30~35 d, W70处理显著高于其他处理。W70处理的单株结薯数和块根产量分别较其他处理提高14%~120%和22%~122%、单薯重的变异系数较其他处理降低9%~34%。甘薯发根分枝期土壤相对含水量70%有利于促进块根形成, 增加收获期单株结薯数、单薯重和块根产量, 改善块根商品品质。

关键词: 甘薯, 发根分枝期土壤水分, 己糖供应, 单株结薯数, 块根整齐度

Abstract:

The objective of this study is to explore the effect of soil moisture on the formation of storage roots in sweet potato and its relationship with the number and uniformity of storage roots. In this experiment, the sweet potato variety Yanshu 25 was used as the experimental material. We performed five soil relative water content levels with 50%±5% (W50), 60%±5% (W60), 70%±5% (W70), 80%±5% (W80), and 90%±5% (W90) at root branching stage. The effects of soil moisture on the content of carbohydrate and the activity of metabolic enzymes in the potential storage roots, as well as the number, uniformity and yield of storage roots at the harvest time were studied by a two-year field experiment. The results showed that the content of sucrose, glucose, and fructose and the activity of sucrose invertase in the potential storage roots of sweet potato in W70 treatment were significantly higher than those of other treatments during 10-35 days after planting. The activity of sucrose synthase and the content of starch in the potential storage roots of sweet potato in W70 treatment were significantly lower than those of other treatments at 10-25 days after planting, while the trend was opposite during 30-35 days after planting. Compared with other treatments, the number of storage roots per plant and the yield of storage root in W70 treatment increased by 14%-120% and 22%-122%, respectively. The variable coefficient of the single storage root weight decreased by 9%-34%. The soil relative water content of 70% at root branching stage of sweet potato was beneficial to the formation of storage roots, which increased the number of storage roots per plant, weight of the single storage root and yield of storage roots, and improved the commercial quality of storage roots at harvest time.

Key words: sweet potato, soil moisture at root branching stage, the supply of hexose, the number of storage roots per plant, storage roots uniformity

表1

试验田土壤理化性状"

年份
Year
0-20 cm土层 0-20 cm soil layer 0-40 cm土层 0-40 cm soil layer
有机质
Organic matter
(%)
碱解氮
Alkaline nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
容重
Bulk density
(g cm-3)
田间持水量
Field capacity
(%)
2019 1.07 81.23 25.87 80.57 1.25 24.14
2020 1.04 82.09 26.83 79.44 1.27 25.11

表2

甘薯块根产量及其构成因素"

年份
Year
处理
Treatment
单株结薯数
Storage root (lump plant-1)
单薯重
Fresh weight (g lump-1)
块根产量
Storage root yield (t hm-2)
2019 W50 1.78 e 255.82 c 22.76 e
W60 2.25 d 270.86 bc 30.46 d
W70 3.26 a 309.66 a 50.55 a
W80 2.86 b 289.79 ab 41.50 b
W90 2.51 c 280.33 bc 35.21 c
2020 W50 2.00 c 177.39 b 21.95 c
W60 3.00 bc 201.42 ab 30.59 bc
W70 4.40 a 219.95 a 48.76 a
W80 3.60 ab 207.12 a 38.68 b
W90 3.00 bc 177.78 b 27.83 c

表3

收获期甘薯块根长度、直径和单薯重的变异系数"

年份
Year
处理
Treatment
块根长度Storage root length 块根直径Storage root diameter 单薯重Weight
长度
Length (cm)
变异系数
CV (%)
直径
Diameter (mm)
变异系数
CV (%)
鲜重
Fresh weight (g lump-1)
变异系数
CV (%)
2019 W50 21.21 b 22.17 49.53 c 29.73 255.82 c 102.52
W60 23.30 ab 18.52 52.16 c 25.13 270.86 bc 77.04
W70 25.67 a 6.26 78.41 a 7.71 309.66 a 68.10
W80 24.67 a 7.78 74.45 ab 14.64 289.79 ab 74.52
W90 23.50 ab 14.73 69.24 b 16.21 280.33 bc 75.47
2020 W50 11.70 c 37.83 43.32 a 40.78 177.39 b 53.89
W60 14.66 b 20.71 47.17 a 39.07 201.42 ab 51.20
W70 17.84 a 9.41 49.55 a 20.30 219.95 a 36.42
W80 17.35 a 12.17 50.56 a 33.68 207.12 a 43.98
W90 14.03 b 18.38 54.35 a 40.17 177.78 b 51.24

图1

土壤水分对甘薯潜在块根中蔗糖含量的影响(2019) 图柱上标以不同字母的表示同一时期处理间差异显著(P < 0.05)。处理同表2。"

图2

土壤水分对甘薯潜在块根中葡萄糖含量的影响(2019年) 图柱上标以不同字母的表示同一时期处理间差异显著(P < 0.05)。处理同表2。"

图3

土壤水分对甘薯潜在块根中果糖含量的影响(2019年) 图柱上标以不同字母的表示同一时期处理间差异显著(P < 0.05)。处理同表2。"

图4

土壤水分对甘薯潜在块根中淀粉含量的影响(2019年) 图柱上标以不同字母的表示同一时期处理间差异显著(P < 0.05)。处理同表2。"

图5

土壤水分对甘薯潜在块根中蔗糖转化酶活性的影响(2019年) 图柱上标以不同字母的表示同一时期处理间差异显著(P < 0.05)。处理同表2。"

图6

土壤水分对甘薯潜在块根中蔗糖合酶活性的影响(2019年) 图柱上标以不同字母的表示同一时期处理间差异显著(P < 0.05)。处理同表2。"

[1] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系. 作物学报, 2020, 46: 1750-1759.
doi: 10.3724/SP.J.1006.2020.04097
Jiang Z Y, Tang L X, Liu H J, Shi C Y. Changes of endogenous hormones on storage root formation and its relationship with storage root number under different potassium supplication rates of sweet potato. Acta Agron Sin, 2020, 46: 1750-1759. (in Chinese with English abstract)
[2] 闫会, 张允刚, 刘亚菊, 王欣, 后猛, 唐维, 马代夫, 李强. 生育期对徐紫薯8号品质及结薯性的影响. 江苏农业学报, 2019, 35(1): 9-14.
Yan H, Zhang Y G, Liu Y J, Wang X, Hou M, Tang W, Ma D F, Li Q. Effects of growth stage on quality and tuber traits of new sweet potato cultivar Xuzishu 8. Jiangsu J Agric Sci, 2019, 35(1): 9-14. (in Chinese with English abstract)
[3] 于振文. 作物栽培学各论北方本(第2版). 北京: 中国农业出版社, 2013. pp 162-168.
Yu Z W. On Crop Cultivation in North China, 2nd edn. Beijing: China Agriculture Press, 2013. pp 162-168. (in Chinese)
[4] Chowdhury S R, Varma S P. Dry matter production and partitioning in sweet potato in response to different levels of irrigation. Indian J Plant Physiol, 1997, 2: 29-31.
[5] 肖利贞. 土壤干旱对甘薯生育及产量的影响. 华北农学报, 1995, (2): 106-110.
Xiao L Z. Effects of soil drought on growth and yield of sweet potato. Acta Agric Boreali-Sin, 1995, (2): 106-110. (in Chinese)
[6] 张海燕, 段文学, 解备涛, 董顺旭, 汪宝卿, 史春余, 张立明. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018, 44: 126-136.
Zhang H Y, Duan W X, Xie B T, Dong S X, Wang B Q, Shi C Y, Zhang L M. Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweet potato. Acta Agron Sin, 2018, 44: 126-136. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00126
[7] 张海燕, 解备涛, 汪宝卿, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和抗氧化能力的影响. 中国农业科学, 2020, 53: 1126-1139.
Zhang H Y, Xie B T, Wang B Q, Dong S X, Duan W X, Zhang L M. Effects of drought treatments at different growth stages on growth and the activity of antioxidant enzymes in sweet potato. Sci Agric Sin, 2020, 53: 1126-1139. (in Chinese with English abstract)
[8] Villordon A Q, La Bonte D R, Firon N, Kfir Y, Pressman E, Schwartz A. Characterization of adventitious root development in sweet potato. Hortscience, 2009, 44: 651-655.
doi: 10.21273/HORTSCI.44.3.651
[9] 张庆会, 徐步东. 试论甘薯块根的生长机理. 生物学通报, 2002, 37(8): 22-23.
Zhang Q H, Xu B D. Growth mechanism of sweet potato tuber root. Bull Biol, 2002, 37(8): 22-23. (in Chinese with English abstract)
doi: 10.2307/1536396
[10] Villordon A, LaBonte D, Solis J. Characterization of lateral root development at the onset of storage root initiation in ‘beauregard' sweet potato adventitious roots. Hortic Sci, 2012, 47: 961-968.
[11] Ravi V, Indira P. Crop physiology of sweet potato. Hortic Rev, 1999, 23: 277-339.
[12] Ravi V, Naskar S, Makeshkumar T, Babu B, Prakash Krishnan B S. Molecular physiology of storage root formation and development in sweet potato (Ipomoea batatas (L.) Lam.). J Root Crops, 2009, 35: 1-27.
[13] 刘国琴, 张曼夫, 生物化学(第2版). 北京: 中国农业大学出版社, 2011. pp 210-230.
Liu G Q, Zhang M F. Biochemistry, 2nd edn. Beijing: China Agricultural University Press, 2011. pp 210-230. (in Chinese)
[14] 李长志, 李欢, 刘庆, 史衍玺. 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, 2016, 22: 511-517.
Li C Z, Li H, Liu Q, Shi Y X. Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages. J Plant Nutr Fert, 2016, 22: 511-517. (in Chinese with English abstract)
[15] 张海燕, 解备涛, 段文学, 董顺旭, 汪宝卿, 张立明, 史春余. 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 2018, 29: 1943-1950.
pmid: 29974705
Zhang H Y, Xie B T, Duan W X, Dong S X, Wang B Q, Zhang L M, Shi C Y. Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. Chin J Appl Ecol, 2018, 29: 1943-1950. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201806.024 pmid: 29974705
[16] 吴海云, 郭琪琳, 王金强, 李欢, 刘庆. 不同水分供应对甘薯叶片光合与荧光特性的影响及其光响应模型比较. 中国生态农业学报, 2019, 27: 908-918.
Wu H Y, Guo Q L, Wang J Q, Li H, Liu Q. Effects of water supply on photosynthesis and fluorescence characteristics of sweet potato leaves and comparison of light response models. Chin J Eco-Agric, 2019, 27: 908-918. (in Chinese with English abstract)
[17] 王东. 黄淮流域冬小麦按需补灌方法及其应用. 水土保持学报, 2017, 31(6): 223-231.
Wang D. A method of supplemental irrigation on-demand for winter wheat and its application in Huang-Huai Plain. J Soil Water Conserv, 2017, 31(6): 223-231. (in Chinese with English abstract)
[18] 毛善巧, 杨锋, 黄永春. 高效液相色谱法测定车厘子中果糖、葡萄糖及蔗糖含量. 中国酿造, 2016, 35(9): 168-171.
Mao S C, Yang F, Huang Y C. Determination of fructose, glucose and sucrose contents in cherry by HPLC. China Brew, 2016, 35(9): 168-171. (in Chinese with English abstract)
[19] 卞科, 刘孝沾. 甘薯中可溶性糖的HPLC法测定及其在加工中的变化研究. 河南工业大学学报, 2012, 33(1): 1-4.
Bian K, Liu X Z. Determination of soluble sugars in sweet potato by HPLC and its changes during processing. J Henan Technol (Nat Sci Edn), 2012, 33(1): 1-4 (in Chinese with English abstract).
[20] 汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. p 126.
Tang Z C. A Guide to Modern Plant Physiology Experiments. Beijing: Science Press, 1999. p 126. (in Chinese)
[21] 刘卫群, 陈良存, 甄焕菊, 石永春. 烟叶成熟过程中碳氮代谢关键酶对追施氮肥的响应. 华北农学报, 2005, 20(3): 74-78.
Liu W Q, Chen L C, Zhen H J, Shi Y C. Effect of nitrogen topdressing on the key enzymes of carbon and nitrogen metabolism during the process of tobacco leaf maturation. Acta Agric Boreali-Sin, 2005, 20(3): 74-78. (in Chinese with English abstract)
[22] 柳洪鹃, 姚海兰, 史春余, 张立明. 施钾时期对甘薯济徐23块根淀粉积累与品质的影响及酶学生理机制. 中国农业科学, 2014, 47: 43-52.
Liu H J, Yao H L, Shi C Y, Zhang L M. Effect of potassium application time on starch accumulation and related enzyme activities of sweet potato variety Jixu 23. Sci Agric Sin, 2014, 47: 43-52. (in Chinese with English abstract)
[23] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46: 1760-1770.
doi: 10.3724/SP.J.1006.2020.04079
Zhang H Y, Wang B Q, Feng X Y, Li G L, Xie B T, Dong S X, Duan W X, Zhang L M. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato. Acta Agron Sin, 2020, 46: 1760-1770. (in Chinese with English abstract)
[24] 刘倩, 侯松, 刘庆, 李欢, 史衍玺. 移栽时期对食用型甘薯品种烟薯25号产量和品质的影响. 作物杂志, 2017, (5): 136-141.
Liu Q, Hou S, Liu Q, Li H, Shi Y X. Effect of transplanting period on yield and quality of edible sweet potato variety Yanshu 25. Crops, 2017, (5): 136-141. (in Chinese with English abstract)
[25] 陈俊伟, 秦巧平, 谢鸣, 蒋桂华, 徐红霞, 程建徽, 吴江, 孙崇波. 草莓果实蔗糖和已糖的代谢特性及其与糖积累的关系. 果树学报, 2007, 24(1): 49-54.
Chen J W, Qin Q P, Xie M, Jiang G H, Xu H X, Cheng J H, Wu J, Sun C B. Characteristics of sucrose and hexose metabolism in to sugar accumulation in developing strawberry fruit. J Fruit Sci, 2007, 24(1): 49-54. (in Chinese with English abstract)
[26] 郭小路. 薄荷幼叶蔗糖酶的分离纯化及部分性质与功能基团研究和固定化初探. 西南大学硕士学位论文,重庆, 2008.
Guo X L. Purification, Some Properties and Modification of Groups and Immobilization of the Sucrase from Mentha haplocalyx Briq Leaves. MS Thesis of Southwest University, Chongqing, China, 2008. (in Chinese with English abstract)
[27] Ruan Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol, 2014, 65: 33-67.
doi: 10.1146/annurev-arplant-050213-040251
[28] Li X Q, Zhang D P. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato. Plant Cell Physiol, 2003, 44: 630.
doi: 10.1093/pcp/pcg080
[29] Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999, 4: 401.
pmid: 10498964
[30] 王翠娟, 史春余, 刘娜, 刘双荣, 余新地. 结薯数差异显著的甘薯品种生长前期根系特性及根叶糖组分比较. 作物学报, 2016, 42: 131-140.
doi: 10.3724/SP.J.1006.2016.00131
Wang C J, Shi C Y, Liu N, Liu S R, Yu X D. Comparison of root characteristics and sugar components in root and leaf at early growth phase of sweet potato varieties with significant different in valid storage root number. Acta Agron Sin, 2016, 42: 131-140. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00131
[31] Du F R, Liu H J, Yin X B, Zhao Q X, Shi C Y. Potassium- mediated regulation of sucrose metabolism and storage root formation in sweet potato. Arch Agron Soil Sci, 2021, 67: 703-713.
doi: 10.1080/03650340.2020.1751824
[32] Toshihiko E. Satoshi Y. Effects of application of sucrose and cytokine in to roots on the formation of tuberous roots in sweet potato (Ipomoea batatas (L.) Lam.). Plant Root, 2008, 2: 7-13.
doi: 10.3117/plantroot.2.7
[33] Si C C, Shi C Y, Liu H J, Zhan X D, Liu Y C. Effects of nitrogen forms on carbohydrate metabolism and storage-root formation of sweet potato. J Plant Nutr Soil Sci, 2018, 181: 419-428.
doi: 10.1002/jpln.201700297
[1] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[2] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[5] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[6] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[7] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[8] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[9] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[10] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[11] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[12] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[13] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[14] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[15] 史文卿,张彬彬,柳洪鹃,赵庆鑫,史春余,王新建,司成成. 甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系[J]. 作物学报, 2019, 45(5): 755-763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .