欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2147-2162.doi: 10.3724/SP.J.1006.2021.04271

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位

马猛(), 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强*()   

  1. 中国农业科学院甘薯研究所 / 江苏徐淮地区徐州农业科学研究所 / 农业农村部甘薯生物学与遗传育种重点实验室, 江苏徐州 221131
  • 收稿日期:2020-12-13 接受日期:2021-03-19 出版日期:2021-11-12 网络出版日期:2021-04-12
  • 通讯作者: 李强
  • 作者简介:E-mail: 1325428037@qq.com
  • 基金资助:
    国家重点研发计划项目(2019YFD1001300);国家重点研发计划项目(2019YFD1001304);国家现代农业产业技术体系建设专项(CARS-10, 甘薯)

Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato

MA Meng(), YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang*()   

  1. Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences / Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu, China
  • Received:2020-12-13 Accepted:2021-03-19 Published:2021-11-12 Published online:2021-04-12
  • Contact: LI Qiang
  • Supported by:
    National Key Research and Development Program of China(2019YFD1001300);National Key Research and Development Program of China(2019YFD1001304);China Agriculture Research System(CARS-10, 甘薯)

摘要:

理想农艺性状是甘薯育种的重要目标, 而选择甘薯理想农艺性状的育种手段还很缺乏。本研究以分枝数多、蔓长中等、高产紫肉甘薯品种徐紫薯8号为母本, 分枝数少、长蔓、中等产量白肉甘薯品种美国红为父本, 以F1代分离群体的274个单株为作图群体, 利用SSR分子标记技术, 构建了甘薯分子连锁图谱, 能够加密已有的遗传图谱。其中母本图谱包含24个连锁群(linkage groups, LGs), 图谱总长1325.8 cM, 标记间平均距离9.2 cM; 父本图谱包含21个LGs, 图谱总长1088.6 cM, 标记间平均距离8.2 cM。通过复合区间作图法对甘薯地上部分枝数、茎蔓直径、最长蔓长、叶柄长度和节间长度5个重要农艺性状进行QTL分析, 检测到1个与分枝数相关的QTL, 解释表型变异的53.2%; 1个与茎蔓直径相关的QTL, 解释表型变异的16.7%; 2个与最长蔓长相关的QTL, 解释表型变异的9.5%和13.7%; 2个与叶柄长度相关定位的重要农艺性状QTL, 可以开发与其连锁的分子标记, 辅助室内早代苗期筛选具有理想农艺性状的株系, 从而提高田间选择效率的QTL, 解释表型变异的8.8%和11.3%; 5个与节间长度相关的QTL, 解释表型变异的9.6%~28.1%。利用定位的重要农艺性状QTL,可以开发与其连锁的分子标记,辅助室内早代苗期筛选具有理想农艺性状的株系,从而提高田间选择效率。。

关键词: 甘薯, 分枝数, 茎蔓直径, 最长蔓长, 叶柄长度, 节间长度, QTL

Abstract:

Ideal agronomic traits are the important objectives in sweetpotato breeding, but the breeding methods are still lacking. We constructed linkage maps using a mapping population of 274 individuals derived from a cross between the female parent Xuzishu 8 (a purple-fleshed cultivar with many branches, medium vine, and high yield) and the male parent Meiguohong (a white-fleshed cultivar with few branches, long vine, and medium yield) by simple sequence repeats (SSR) markers in this study. The female parent map contained 24 linkage groups, and covered 1325.8 cM with an average marker interval of 9.2 cM. The male parent map contained 21 linkage groups, and covered 1088.6 cM with an average marker interval of 8.2 cM. The maps could increase the density of existing genetic maps. Using the composite interval mapping, we analyzed five important agronomic traits, including branch number, vine diameter, longest vine length, petiole length, and internode length in sweetpotato, thus identified one QTL related to branch number explaining the phenotypic variance of 53.2%, one QTL related to internode diameter explaining the phenotypic variance of 16.7%, two QTLs related to longest vine length explaining the phenotypic variance of 9.5% and 13.7%, two QTLs related to petiole length explaining the phenotypic variance of 8.8% and 11.3%, and five QTLs related to internode length explaining the phenotypic variance of 9.6%-28.1%. The QTLs can be used to develop molecular markers and assist the screening of plants with ideal agronomic traits at early seedling stage, thus improved the efficiency of field selection.

Key words: sweetpotato, the number of branches, vine diameter, the longest vine length, petiole length, internode length, QTLs

图1

徐紫薯8号分子连锁图谱"

图2

美国红分子连锁图谱"

表1

甘薯分枝数双亲值及其在F1群体中的分布"

年份
Year
母本(个)
Maternal
父本(个)
Paternal
最大值(个)
Max.
最小值(个)
Min.
平均值(个)
Mean
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 14.83 6.67 75.00 7.00 23.00 10.47 1.37 3.29
2020 14.20 8.00 25.80 2.33 11.95 3.70 0.64 1.03
平均Average 14.52 7.33 66.00 6.20 18.14 8.56 2.04 6.41

图3

分枝数在F1分离群体中的频率分布图"

图4

甘薯分枝数QTL在分子连锁图谱上的分布"

表2

甘薯茎蔓直径双亲值及其在F1群体中的分布"

年份
Year
母本
Maternal (mm)
父本
Paternal (mm)
最大值
Max. (mm)
最小值
Min. (mm)
平均值
Mean (mm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 3.93 6.88 7.04 2.52 5.17 0.80 -0.21 0.39
2020 4.19 6.90 7.26 2.80 5.23 0.72 0.06 0.75
平均Average 4.06 6.89 7.19 2.96 5.19 0.72 -0.13 0.54

图5

茎蔓直径在F1分离群体中的频率分布图"

图6

甘薯茎蔓直径QTL在分子连锁图谱上的分布"

表3

甘薯最长蔓长双亲值及其在F1群体中的分布"

年份
Year
母本
Maternal (cm)
父本
Paternal (cm)
最大值
Max. (cm)
最小值
Min. (cm)
平均值
Mean (cm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 178.33 185.00 425.00 75.00 178.09 52.82 0.93 2.41
2020 182.00 195.00 361.00 77.00 172.74 47.83 0.50 0.60
平均Average 180.17 190.00 393.00 75.00 174.68 43.86 0.63 2.20

图7

最长蔓长在F1分离群体中的频率分布图"

表4

甘薯最长蔓长的QTL分析"

QTL名称
QTL name
连锁图谱
Linkage group
QTL位置
QTL location (cM)
年份
Year
遗传效应
Genetic effect
贡献率
R2 (%)
qVLm-1p Meiguohong (2) 5.006 2020 正向Positive 18.0
平均Average 13.7
qVLf-1p Xuzishu 8 (18) 15.775 2019 正向Positive 12.4
平均Average 9.5

图8

甘薯最长蔓长QTL在分子连锁图谱上的分布"

表5

甘薯叶柄长度双亲值及其在F1群体中的分布"

年份
Year
母本
Maternal (cm)
父本
Paternal (cm)
最大值
Max. (cm)
最小值
Min. (cm)
平均值
Mean (cm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 14.17 15.48 27.98 5.80 16.74 4.18 0.47 -0.24
2020 17.94 10.92 26.64 8.80 18.60 3.16 -0.05 0.10
平均Average 16.05 13.20 25.24 5.80 17.54 3.38 0.02 -0.14

图9

叶柄长度在F1分离群体中的频率分布图"

表6

甘薯叶柄长度的QTL分析"

QTL名称
QTL name
连锁图谱
Linkage group
QTL位置
QTL location (cM)
年份
Year
遗传效应
Genetic effect
贡献率
R2 (%)
qPLf-1p Xuzishu 8 (1) 40.483 2019 正向Positive 6.5
平均Average 11.3
qPLf-2p Xuzishu 8 (18) 41.837 2020 正向Positive 6.5
平均Average 8.8

图10

甘薯叶柄长度QTL在分子连锁图谱上的分布"

表7

甘薯节间长度双亲值及其在F1群体中的分布"

年份
Year
母本
Maternal (cm)
父本
Paternal (cm)
最大值
Max. (cm)
最小值
Min. (cm)
平均值
Mean (cm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 4.08 3.95 10.35 2.00 4.16 1.45 1.46 2.78
2020 4.98 3.48 9.46 3.10 5.39 1.17 0.63 0.51
平均Average 4.53 3.72 9.55 2.40 4.73 1.23 0.76 1.50

图11

节间长度在F1分离群体中的频率分布图"

表8

甘薯节间长度的QTL分析"

QTL名称
QTL name
连锁图谱
Linkage group
QTL位置
QTL location (cM)
年份
Year
遗传效应
Genetic effect
贡献率
R2 (%)
qILm-1p Meiguohong (2) 5.006 2020 正向Positive 9.8
平均Average 9.6
qILf-1p Xuzishu 8 (1) 40.483 2019 正向Positive 15.0
平均Average 15.8
qILf-2n Xuzishu 8 (2) 13.470 2019 负向Negative 13.1
平均Average 16.1
qILf-3n Xuzishu 8 (9) 24.405 2019 负向Negative 53.6
平均Average 28.1
qILf-4p Xuzishu 8 (18) 21.380 2019 正向Positive 43.5
平均Average 20.6

图12

甘薯节间长度QTL在分子连锁图谱上的分布"

[1] 刘庆昌. 甘薯在我国粮食和能源安全中的重要作用. 科技导报, 2004, (9):21-22.
Liu Q C. Importance of sweetpotato in the security of food and energy in China. Sci Technol Rev, 2004, (9):21-22 (in Chinese with English abstract)
[2] 张凯, 罗小敏, 王季春, 唐道彬, 吴正丹, 叶爽, 王莉. 甘薯淀粉产量及相关性状的遗传多样性和关联度分析. 中国生态农业学报, 2013, 21: 365-374.
Zhang K, Luo X M, Wang J C, Tang D B, Wu Z D, Ye S, Wang L. Genetic diversity and correlation analysis of starch yield-related traits in sweet potato. Chin J Eco-Agric, 2013, 21: 365-374 (in Chinese with English abstract).
[3] 闫会, 李强, 张允刚, 后猛, 唐维, 王欣, 刘亚菊, 马代夫. 基因型和栽插密度对甘薯农艺性状及结薯习性的影响. 西南农业学报, 2017, 30: 1739-1745.
Yan H, Li Q, Zhang Y G, Hou M, Tang W, Wang X, Liu Y J, Ma D F. Effects of genotype and planting density on agronomic traits and storage root of sweetpotato. Southwest China J Agric Sci, 2017, 30: 1739-1745 (in Chinese with English abstract).
[4] Cervantes-Flores J C, Yencho G C, Davis E L. Efficient evaluation of resistance to three root-knot nematode species in selected sweetpotato cultivars. Hortscience, 2002, 37: 390-392.
doi: 10.21273/HORTSCI.37.2.390
[5] 梁雪莲, 罗忠霞, 房伯平, 谢振文. 甘薯分子遗传图谱研究进展与展望. 广东农业科学, 2014, 41(3):145-148.
Liang X L, Luo Z X, Fang B P, Xie Z W. Research progress and prospect on the Molecular Genetic Maps of sweet potato. Guangdong Agric Sci, 2014, 41(3):145-148 (in Chinese with English abstract).
[6] 唐道彬, 张凯, 吕长文, 谢德斌, 傅体华, 王季春. 基于EST-SSR标记甘薯连锁图谱构建及淀粉性状的QTL定位. 中国农业科学, 2016, 49: 4488-4506.
Tang D B, Zhang K, Lyu C W, Xie D B, Fu T H, Wang J C. Genetic linkage map construction based on EST-SSR and analysis of QTLs for starch content in sweetpotato (Ipomoea batatas (L.) Lam.). Sci Agric Sin, 2016, 49: 4488-4506 (in Chinese with English abstract).
[7] Zhao N, Yu X, Jie Q, Li H, Li H, Hu J, Zhai H, He S, Liu Q. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Mol Breed, 2013, 32: 807-820.
doi: 10.1007/s11032-013-9908-y
[8] 李爱贤, 申春云, 王庆美, 解备涛, 侯夫云, 董顺旭, 张海燕, 张立明. 甘薯β-胡萝卜素含量的QTL定位. 分子植物育种, 2014, 12: 270-277.
Li A X, Shen C Y, Wang Q M, Xie B T, Hou F Y, Dong S X, Zhang H Y, Zhang L M. Mapping QTLs for carotene content in sweetpotato (Ipomoea batatas (L.) Lam.). Mol Plant Breed, 2014, 12: 270-277 (in Chinese with English abstract).
[9] Chang K Y, Lo H F, Lai Y C. Identification of quantitative trait loci associated with yield-related traits in sweetpotato (Ipomoea Batatas). Bot Stud, 2009, 50: 43-55.
[10] 李慧. 甘薯SSR分子连锁图谱的构建和块根产量相关QTL的定位. 中国农业大学博士学位论文, 北京, 2014.
Li H. Development of SSR Genetic Linkage Maps and Mapping of QTLs for Storage Root Yield in Sweetpotato [Ipomoea batatas (L.) Lam.]. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[11] Kriegner A, Cervantes J C, Burg K, Mwanga R O M, Zhang D. A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Plant Breed, 2003, 11: 169-185.
[12] Sasai R, Tabuchi H, Shirasawa K, Kishimoto K, Sato S, Okada Y, Kuramoto A, Kobayashi A, Isobe S, Tahara M, Monden Y. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato. DNA Res, 2019, 26: 399-409.
doi: 10.1093/dnares/dsz018 pmid: 31377774
[13] Ma Z, Gao W, Liu L, Liu M, Zhao N, Han M, Wang Z, Jiao W, Gao Z, Hu Y, Liu Q. Identification of QTL for resistance to root rot in sweetpotato (Ipomoea batatas (L.) Lam) with SSR linkage maps. BMC Genomics, 2020, 21: 366.
doi: 10.1186/s12864-020-06775-9
[14] 张允刚, 房伯平. 甘薯种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 23.
Zhang Y G, Fang B P. Sweetpotato Germplasm Resource Description Specification and Data Standard. Beijing: China Agriculture Press, 2006. p 23 (in Chinese).
[15] 李强, 揭琴, 刘庆昌, 王欣, 马代夫, 翟红, 王玉萍. 甘薯基因组DNA高效快速提取方法. 分子植物育种, 2007, 5: 743-746.
Li Q, Jie Q, Liu Q C, Wang X, Ma D F, Zhai H, Wang Y P. An efficient and rapid method for sweetpotato genomic DNA extraction. Mol Plant Breed, 2007, 5: 743-746 (in Chinese with English abstract).
[16] Meng Y, Zhao N, Li H, Zhai H, He S, Liu Q. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties. J Integr Agric, 2018, 17: 86-93.
doi: 10.1016/S2095-3119(17)61687-3
[17] 高闰飞. 利用形态学和SSR标记分析中国紫心甘薯育成品种遗传多样性. 中国农业科学院硕士学位论文, 北京, 2019.
Gao R F. Genetic Diversity Analysis of Purple-fleshed Sweetpotato Cultivars Bred in China Revealed by Morphology and SSR Markers. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract).
[18] 于肖夏. 甘薯高密度分子连锁图谱的构建和干物质含量的QTL定位. 中国农业大学博士学位论文, 北京, 2013.
Yu X X. Development of a High-density Genetic Linkage Map and Mapping of QTLs for Dry-matter Content in Sweetpotato [Ipomoea batatas (L.) Lam.]. PhD Dissertation of China Agricultural University, Beijing, China, 2013 (in Chinese with English abstract).
[19] 李强. 甘薯及其近缘野生种的遗传多样性分析. 中国农业大学博士学位论文, 北京, 2008.
Li Q. Analysis of Genetic Diversity in Sweetpotato and Its Wild Relatives. PhD Dissertation of China Agricultural University, Beijing, China, 2008 (in Chinese with English abstract).
[20] 赵大伟, 徐宁生, 黄兴粉, 邓国军, 孟凡来. 甘薯新品种“文薯2号”产量和农艺性状的环境效应分析. 农业研究与应用, 2019, 32(1):1-5.
Zhao D W, Xu N S, Huang X F, Deng G J, Meng F L. Environmental effects on yield and agronomic traits of new sweet potato variety “Wenshu 2”. Agric Res Appl, 2019, 32(1):1-5 (in Chinese with English abstract).
[21] 崔翠, 周清元, 蒲海斌, 张建奎, 何凤发. 甘薯部分数量性状的遗传力及其相关分析. 西南农业大学学报(自然科学版), 2004, 26: 560-562.
Cui C, Zhou Q Y, Pu H B, Zhang J K, He F F. Study on heritability and correlation of some quantitative characters in sweetpotato. J Southwest Agric Univ (Nat Sci Edn), 2004, 26: 560-562 (in Chinese with English abstract).
[22] 郑光武, 郑金仲, 沈正熙, 黄锦龙, 刘文滔. 甘薯主要数量性状的配合力分析. 福建农业科技, 1985, (4):22-24.
Zheng G W, Zheng J Z, Shen Z X, Huang J L, Liu W T. Combining analysis on main quantitative traits of sweetpotato. Fujian Agric Sci Technol, 1985, (4):22-24 (in Chinese with English abstract).
[23] 后猛, 李强, 马代夫, 张允刚, 王欣, 唐维, 李秀英. 甘薯主要经济性状的遗传倾向及其相关性分析. 西北农业学报, 2011, 20(2):99-103.
Kou M, Li Q, Ma D F, Zhang Y G, Wang X, Tang W, Li X Y. Inherited tendency and correlation of main economic traits in sweetpotato. Acta Agric Boreali-Occident Sin, 2011, 20(2):99-103 (in Chinese with English abstract).
[24] 余金龙. 甘薯块根产量及相关性状的典型相关分析. 西南农业学报, 2001, 14(2):107-110.
Yu J L. Canonical correlation analysis on the tuber yield and its relative characters of sweetpotato. Southwest Chin J Agric Sci, 2001, 14(2):107-110 (in Chinese with English abstract)
[25] 李爱贤, 刘庆昌, 王庆美, 翟红, 阎文昭, 张海燕, 李明. 甘薯淀粉含量的QTL定位. 分子植物育种, 2010, 8: 516-520.
Li A X, Liu Q C, Wang Q M, Zhai H, Yan W Z, Zhang H Y, Li M. Mapping QTLs for starch content in sweetpotato. Mol Plant Breed, 2010, 8: 516-520 (in Chinese with English abstract).
[26] 李俊, 王章英, 罗忠霞, 陈新亮, 房伯平, 李育军, 刘小红. 分子生物学技术在甘薯育种中的应用. 广东农业科学, 2011, 38(15):108-113.
Li J, Wang Z Y, Luo Z X, Chen X L, Fang B P, Li Y J, Liu X H. Application of molecular biology in sweet potato breeding. Guangdong Agric Sci, 2011, 38(15):108-113 (in Chinese with English abstract).
[27] Thompson P G, Hong L L, Ukoskit K, Zhu Z. Genetic linkage of randomly amplified polymorphic DNA (RAPD) markers in sweetpotato. J Am Soc Hortic Sci, 1997, 122: 79-82.
[28] Grattapaglia D, Sederoff R. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics, 1994, 137: 1121-1137
pmid: 7982566
[29] Jones A. Theoretical segregation ratios of qualitatively inherited characters for hexaploid sweetpotato (Ipomoea batatas). In: Department of Agriculture in cooperation with Georgia Agricultural Experiment Stations. USA: Agricultural Research Service, 1967. pp 1-6.
[30] Kim J H, Chung I K, Kim K M. Construction of a genetic map using EST-SSR markers and QTL analysis of major agronomic characters in hexaploid sweet potato (Ipomoea batatas (L.) Lam). PLoS One, 2017, 12: e185073.
[31] Mangelsdorf P C, Jones D F. The expression of mendelian factors in the gametophyte of maize. Genetics, 1926, 11: 423-455.
pmid: 17246465
[32] Charlesworth B. Driving genes and chromosomes. Nature, 1988, 332: 394-395.
doi: 10.1038/332394a0
[33] Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Thero Appl Genet, 1996, 93: 1017-1025.
[34] 马建强. 茶树高密度遗传图谱构建及重要性状QTL定位. 中国农业科学院博士学位论文, 北京, 2013.
Ma J Q. Construction of High-Density Genetic Map and Its Application for QTL Analysis in Tea Plant. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[6] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[7] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[8] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[9] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[10] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[11] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[12] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[13] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[14] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[15] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!