作物学报 ›› 2022, Vol. 48 ›› Issue (2): 380-395.doi: 10.3724/SP.J.1006.2022.04273
ZHANG Yan-Bo(), WANG Yuan(), FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying*()
摘要:
本研究对棉籽油分、棕榈酸、油酸和亚油酸含量进行了不同遗传体系的QTL分析, 为相关性状挖掘出更多有用的基因信息。分别于2017年和2018年, 利用陆地棉亲本HS46 (P1)和MARCABUCAG8US-1-88 (P2)所构建的188个重组近交系分别与双亲杂交构建F1群体BC (P1)和BC (P2)。基于这些回交群体种子, 采用专为种子性状设计的母体和胚核基因组QTL定位的混合线性遗传模型及QTL Network-CL-2.0-Seed软件, 对棉籽油分、棕榈酸、油酸和亚油酸含量进行QTL定位分析。共检测到7个控制棉籽油分含量、3个控制棕榈酸含量、2个控制油酸含量和3个控制亚油酸含量的QTL, 均具有显著或极显著的源自母体和胚2个核基因组的加性主效应, 其中有7个QTL的表型变异贡献率大于10%。研究结果可为这些性状的分子标记辅助选择育种提供更为可靠的参考, 为这些性状的分子遗传机制研究提供理论基础。
[1] | 许红霞, 杨伟华, 王延琴, 周大云, 匡猛, 冯新爱. 我国油用棉子质量状况分析. 中国棉花, 2009,36(7):2-3. |
Xu H X, Yang W H, Wang Y Q, Zhou D Y, Kuang M, Feng X A. Analysis of the cottonseed amount in China. China Cotton, 2009,36(7):2-3 (in Chinese with English abstract). | |
[2] | Jones L A, King C C. Bailey’s industrial oil and fat products, volume 1, edible oil and fat products: general applications (5th edn). Trends Food Sci Technol, 1996,7:379-380. |
[3] | Meneghetti S M P, Meneghetti M R, Serra T M, Barbosa D C, Wolf C R. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels, 2007,21:3746-3747. |
[4] | Kohel R J. Survey of Gossypium hirsutum L. Germplasm Collections for Seed Oil Percentage and Seed Characteristics. London: Agricultural Research Service Publication, 1978. pp 1-38. |
[5] | Singh M, Singh T H, Chahal G S. Genetic analysis of some seed quality characters in upland cotton (Gossypium hirsutum L.). Theor Appl Genet, 1985,71:126-128. |
[6] | 季道藩, 朱军. 陆地棉品种间杂种的种仁油分和氨基酸成分的遗传分析. 作物学报, 1988,14:1-6. |
Ji D F, Zhu J. Genetic analysis of oil and amino acid content in shelled seed of upland cotton hybrids. Acta Agron Sin, 1988,14:1-6 (in Chinese with English abstract). | |
[7] | Wu J X, Jenkins J N, McCarty J C, Thaxton P. Seed trait evaluation of Gossypium barbadense L. chromosomes/arms in a G. hirsutum L. background. Euphytica, 2009,167:371-380. |
[8] | Dani R G, Kohel R J. Maternal effects and generation mean analysis of seed-oil content in cotton (Gossypium hirsutum L.). Theor Appl Genet, 1989,77:569-575. |
[9] | 王国印, 李蒙恩. 棉子品质性状的遗传研究. 华北农学报, 1991,6(2):20-25. |
Wang G Y, Li M E. Genetic study of cottonseed quality traits. Acta Agric Boreali-Sin, 1991,6(2):20-25 (in Chinese with English abstract). | |
[10] | Yuan Y L, Zhang T Z, Jing S R, Pan J J, Xing C Z, Guo L R, Tang C M. Studies of the inheritanee of seed qualities and the exploitation of F2 heterosis in low gossypol strains in upland cotton. J Genet Genomics, 2001,28:471-481. |
[11] | 秦利. 陆地棉种子品质性状遗传及其QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2009. |
Qin L. Inheritance of Seed Quality Traits and Their QTL Mapping in Unpanned Cotton (G. hirsutum L.). PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2009 (in Chinese with English abstract). | |
[12] | Lukonge E, Labuschagne M T, Hugo A. The evaluation of oil and fatty acid composition in seed of cotton accessions from various countries. J Sci Food Agric, 2007,87:340-347. |
[13] | Dowd M K, Boykin D L, William R. Fatty acid profiles of cottonseed genotypes from the national cotton variety trials. J Cotton Sci, 2010,14:64-73. |
[14] | Zou J, Katavic V, Giblim E M, Barton D L, MacKenzie S L, Keller W A, Hu X, Taylor D C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase. Plant Cell, 1997,9:909-923. |
[15] | 丁检, 吴双, 蔡彩平, 郭旺珍. 棉花溶血磷酸酯酰转移酶(LPAT)家族基因的发掘和表达分析. 作物学报, 2015,41:378-385. |
Ding J, Wu S, Cai C P, Guo W Z. Genome-wide identification of lysophospatidic acid acyltransferase gene family and their expression analysis in cotton. Acta Agron Sin, 2015,41:378-385 (in Chinese with English abstract). | |
[16] | 刘丽, 王玉美, 赵彦朋, 王丹, 赵鹏, 刘正杰, 华金平. 棉花脂肪酸合成酶基因GhKAR和GhENR表达载体构建及其功能初探. 棉花学报, 2016,28:527-537. |
Liu L, Wang Y M, Zhao Y P, Wang D, Zhao P, Liu Z J, Hua J P. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton. Cotton Sci, 2016,28:527-537 (in Chinese with English abstract). | |
[17] | 张军. 利用外源DGAT基因和编辑GoPGF基因创造棉花高油低酚种质. 华中农业大学硕士学位论文, 湖北武汉, 2018. |
Zhang J. Creating Cotton Germplasm with High Oil and Low Phenol by Exogenous DGAT and GoPGF Gene Editing. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract). | |
[18] | Chapman K D, Brown S A, Spapace S A, Kinney A J, Ripp K G, Pirtle I L, Pirtle R M. Transgenic cotton plants with increased seed oleic acid content. J Am Oil Chem Soc, 2001,78:941-947. |
[19] | Liu Q, Singh S P, Green A G. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol, 2002,129:1732-1743. |
[20] | Liu Z J, Zhao Y P, Liang W, Cui Y P, Hua J P. Over-expression of transcription factor GhWRI1 in upland cotton. Biol Plant, 2018,62:335-342. |
[21] | Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res, 2007,17:243-251. |
[22] | Yu J W, Yu S X, Fan S L Song M Z, Zhai H H, Li X L, Zhang J F. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica, 2012,187:191-201. |
[23] | 刘小芳, 李俊文, 余学科, 石玉真, 贾菲, 孙福鼎, 刘爱英, 龚举武, 商海红, 巩万奎, 王涛, 邓化冰, 袁有禄. 利用重组自交系进行陆地棉(Gossypium hirsutum L.)棉籽油分含量和蛋白质含量的QTL定位. 分子植物育种, 2013,11:520-528. |
Liu X F, Li J W, Yu X K, Shi Y Z, Jia F, Sun F D, Liu A Y, Gong J W, Shang H H, Gong W K, Wang T, Deng H B, Yuan Y L. Identification of QTL for cottonseed oil and protein content in upland cotton (Gossypium hirsutum L.) based on a RIL population. Mol Plant Breed, 2013,11:520-528 (in Chinese with English abstract). | |
[24] | Liu G Z, Hong X M, Wang S, Li X H, Zhu X F, Zhang T Z. Association mapping of seed oil and protein contents in upland cotton. Euphytica, 2015,205:637-645. |
[25] | 刘欣欣. 棉花含油量候选基因GhA05KASI的鉴定及表达分析. 华中农业大学硕士学位论文, 湖北武汉, 2018. |
Liu X X. Identification and Expression Analysis of Candid Genes GhA05KASI for Oil Content in Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract). | |
[26] | Yuan Y C, Wang X L, Wang L Y, Xing H X, Wang Q K, Saeed M, Tao J C, Feng W, Zhang G H, Song X L, Sun X Z. Genome-Wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci, 2018,9:871. |
[27] | Ma J J, Liu J, Pei W F, Ma Q F, Wang N H, Zhang X, Cui Y P, Li D, Liu G Y, Wu M, Zang X S, Song J K, Zhang J F, Yu S X, Yu J W. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTL qOC-Dt5-1. Plant Sci, 2019,286:89-97. |
[28] | Zhao W X, Kong X H, Yang Y, Nie X H, Lin Z X. Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs. Mol Breed, 2019,39:105. |
[29] | Quampah A, Huang Z R, Wu J G, Liu H Y, Li J R, Zhu S J, Shi C H. Estimation of oil content and fatty acid composition in cottonseed kernel powder using near infrared reflectance spectroscopy. J Am Oil Chem Soc, 2012,89:567-575. |
[30] | 孔广超. 陆地棉RIL群体遗传图谱构建及产量与纤维品质QTL定位. 浙江大学博士学位论文, 浙江杭州, 2009. |
Kong G C. Construction of Genetic Linkage Map Based on RIL Population of Upland Cotton (G. hirsutum L.) and QTL Mapping for Yield and Fiber Quality. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2009 (in Chinese with English abstract). | |
[31] | Zhu Z H, Hayart Y, Yang J, Cao L Y, Lou X Y, Xu H M. Statistical method for mapping QTLs for complex traits based on two backcross populations. Chin Sci Bull, 2012,57:2645-2654. |
[32] | Qi T, Jiang B, Zhu Z, Wei C, Gao Y, Zhu S, Xu H, Lou X. Mixed linear model approach for mapping quantitative trait loci underlying crop seed traits. Heredity, 2014,113:224-232. |
[33] | McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, McCouch S, Cho Y. Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13. |
[34] | Ye Z H, Lu Z Z, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in Upland cotton (Gossypum hirsutum L.). Euphytica, 2003,129:183-191. |
[35] | Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993,27:205-233. |
[36] | Guo W Z, Zhang T Z, Ding Y Z Zhu Y C, Shen X L, Zhu X F. Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in upland cotton. Acta Genet Sin, 2006,32:1275-1285. |
[37] | Shi Y Z, Liu A Y, Li J W, Shao Y H, Yuan Y L. The major QTLs linked to fiber strength for cotton breeding program by molecular marker assisted selection. Mol Plant Breed, 2007,5:521-527. |
[38] | Liu D X, Liu F, Shan X R, Zhang J, Tang S Y, Fang X M, Liu X Y, Wang W W, Tan Z Y, Teng Z H, Zhang Z S, Liu D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics, 2015,290:1683-1700. |
[39] | Wang W W, Sun Y, Yang P, Cai X Y, Yang L, Ma J R, Ou Y C, Liu T P, Ali I, Liu D J, Zhang J, Teng Z H, Guo K, Liu D X, Liu F, Zhang Z S. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019,20:599. |
[40] | Park Y, Alabady M, Ulloa M, Sickler B, Wilkins T, Yu J, Stelly D, Kohel R, El-Shihy O, Cantrell R. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics, 2005,274:428-441. |
[41] | Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004,272:308-327. |
[42] | Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006,112:430-439. |
[43] | Reddy O U K, Pepper A E, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci, 2001,5:103-113. |
[44] | Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004,109:167-175. |
[45] | Yu J Z, Kohel R J, Fang D D, Cho J, Van Deynze A, Ulloa M, Hoffman S M, Pepper A E, Stelly D M, Jenkins J N, Saha S, Kumpatla S P, Shah M R, Hugie W V, Percy R G. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3: Genes Genet Genom(Bethesda), 2012,2:43-58. |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[5] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[8] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[9] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[10] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[11] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[14] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[15] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
|