欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 380-395.doi: 10.3724/SP.J.1006.2022.04273

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉籽油分和3种主要脂肪酸含量QTL分析

张艳波(), 王袁(), 冯甘雨, 段慧蓉, 刘海英*()   

  1. 云南大学农学院, 云南昆明 650091
  • 收稿日期:2020-12-14 接受日期:2021-07-12 出版日期:2022-02-12 网络出版日期:2021-08-10
  • 通讯作者: 刘海英
  • 作者简介:张艳波, E-mail: zhangyanbo@mail.ynu.edu.cn;
    王袁, E-mail: wymorning@outlook.com
  • 基金资助:
    本研究由国家自然科学基金项目(31760404);云南大学农学学科建设项目资助(C176210302)

QTLs analysis of oil and three main fatty acid contents in cottonseeds

ZHANG Yan-Bo(), WANG Yuan(), FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying*()   

  1. School of Agriculture, Yunnan University, Kunming 650091, Yunnan, China
  • Received:2020-12-14 Accepted:2021-07-12 Published:2022-02-12 Published online:2021-08-10
  • Contact: LIU Hai-Ying
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31760404);the Agricultural Discipline Construction Project of Yunnan University(C176210302)

摘要:

本研究对棉籽油分、棕榈酸、油酸和亚油酸含量进行了不同遗传体系的QTL分析, 为相关性状挖掘出更多有用的基因信息。分别于2017年和2018年, 利用陆地棉亲本HS46 (P1)和MARCABUCAG8US-1-88 (P2)所构建的188个重组近交系分别与双亲杂交构建F1群体BC (P1)和BC (P2)。基于这些回交群体种子, 采用专为种子性状设计的母体和胚核基因组QTL定位的混合线性遗传模型及QTL Network-CL-2.0-Seed软件, 对棉籽油分、棕榈酸、油酸和亚油酸含量进行QTL定位分析。共检测到7个控制棉籽油分含量、3个控制棕榈酸含量、2个控制油酸含量和3个控制亚油酸含量的QTL, 均具有显著或极显著的源自母体和胚2个核基因组的加性主效应, 其中有7个QTL的表型变异贡献率大于10%。研究结果可为这些性状的分子标记辅助选择育种提供更为可靠的参考, 为这些性状的分子遗传机制研究提供理论基础。

关键词: 棉花, QTL定位, 油分含量, 脂肪酸含量, 胚核基因组, 母体核基因组

Abstract:

In this study, in order to uncover more useful gene information for these traits, the analysis of QTLs controlling the contents of oil, palmitic acid, oleic acid, and linoleic acid in cottonseeds was conducted in different genetic systems. Based on a set of 188 recombinant inbred lines (RILs) derived from an intra-specific cross between two upland germplasms HS46 (P1) and MARCABUCAG8US-1-88 (P2), double backcross populations BC (P1) and BC (P2) were constructed in 2017 and 2018, respectively. BC (P1) and BC (P2) populations were obtained through backcrossing each of the two parents (HS46 and MARCABUCAG8US-1-88) with the 188 RILs, respectively. The cottonseeds from these backcross populations were used for QTLs analysis of oil, palmitic acid, oleic acid, and linoleic acid contents. To map QTLs for these traits, the mixed linear genetic model and the QTL Network-CL-2.0-Seed software, which were developed especially for seed traits, were applied. In total, seven QTLs for the oil content, three for the palmitic acid content, two for the oleic acid content, and three for the linoleic acid content were detected. Significant additive effects of QTLs from maternal plants and embryos were detected for all the QTLs. Seven QTLs, each of which explained more than 10% of total phenotypic variation, were found. The detected QTLs in the present study may give us better understanding of the molecular inheritance for these four traits, and provide more reliable information for molecular marker assisted breeding.

Key words: cotton, quantitative trait loci (QTL), oil content, fatty acid, embryo nuclear genome, maternal nuclear genome

表1

亲本和回交群体的棉籽油分及3种脂肪酸含量表现"

年份Year 性状
Trait
回交群体BC(P1) 回交群体BC(P2) 亲本Parents
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
偏度
Skew
峰度
Kurt
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
偏度
Skew
峰度
Kurt
HS46 MAR
2017 油分含量
Oil content
32.28 1.85 25.26 38.06 -0.23 0.12 33.05 1.98 27.59 37.30 -0.18 -0.17 31.01 a 33.49 b
棕榈酸含量
Palmitic acid content
25.66 0.63 24.19 27.40 0.13 -0.07 25.73 0.67 23.82 27.75 -0.38 0.56 25.49 a 25.94 b
油酸含量
Oleic acid content
17.86 0.80 15.84 20.53 0.34 0.34 17.51 1.01 14.88 20.34 -0.11 0.54 17.31 17.01
亚油酸含量
Linoleic acid content
56.90 1.16 53.81 59.79 -0.13 -0.31 56.85 1.29 52.80 60.85 -0.14 0.88 57.55 a 56.81 b
2018 油分含量
Oil content
32.86 0.92 29.58 35.08 -0.80 0.75 33.58 0.97 30.94 36.82 -0.22 0.29 29.70 A 32.69 B
棕榈酸含量
Palmitic acid content
24.72 0.57 23.13 26.45 0.17 0.36 25.16 0.51 23.26 27.17 -0.37 0.09 24.63 A 25.22 B
油酸含量
Oleic acid content
17.38 0.68 15.63 19.15 0.10 -0.07 17.02 0.59 15.24 18.85 -0.01 0.33 16.60 a 16.21 b
亚油酸含量
Linoleic acid content
58.47 0.97 55.76 61.14 -0.05 0.21 58.06 0.70 56.16 59.80 -0.03 0.12 59.06 58.45

图1

棉籽油分、棕榈酸、油酸和亚油酸含量分别在BC (P1)和BC (P2)群体中分布(2017年和2018年)"

表2

棉籽4个品质性状的相关性分析"

性状
Trait
油分
Oil content
棕榈酸
Palmitic acid content
油酸
Oleic acid content
亚油酸
Linoleic acid content
油分Oil content 1.00000
棕榈酸Palmitic acid content 0.45145** 1.00000
油酸Oleic acid content -0.14629** 0.15922** 1.00000
亚油酸Linoleic acid content -0.13874** -0.64037** -0.73753** 1.00000

表3

棉籽油分及3种脂肪酸的QTL定位及其遗传效应"

性状
Trait
QTL 连锁群
Chr. / LG
标记区间
Marker interval
位置Position
(cM)
范围
Range
(cM)
ae de am aeE1 aeE2 deE1 deE2 amE1 amE2
油分含量
Oil content
qOil-3-1 Chr. 3 MUCS127(c3)-NAU808 4.8 2.0-7.3 9.49** 0.05 -9.32** -0.02 -0.05 0.11 -0.10 0.02 0.06
qOil-18-1 Chr. 18 JESPR204(c18)-CIR099(18) 0.0 0.0-1.0 -21.10** -0.10 20.88** 0.09 0.00 -0.00 0.00 -0.09 -0.00
qOil-18-2 Chr. 18 TM0409a-NAU1001 14.8 13.9-16.8 -5.02** -0.23** 5.24** -0.07 -0.04 -0.07 0.07 0.07 0.03
qOil-18-3 Chr. 18 NAU5152b-NAU3053a 76.7 72.3-79.7 -0.32** 0.11* 0.50** -0.12* -0.01 0.08 -0.08 0.12* 0.01
qOil-LG3-1 lg3 NAU5146c-RAPD-I10-620 51.4 48.6-58.4 13.45** -0.01 -13.72** 0.07 0.08 0.00 -0.00 -0.07 -0.08
qOil-LG7-1 lg7 NAU983-TMB1791 0.0 0.0-2.0 0.81** -0.28** -0.90** -0.00 0.22** -0.22* 0.21** -0.00 -0.22**
qOil-LG8-1 lg8 NAU4919b*-NAU4960d 31.7 30.7-34.5 1.84** 0.05 -1.48** -0.16* 0.00 0.07 -0.09 0.16* -0.01
棕榈酸含量
Palmitic acid content
qC16-0-15-1 Chr. 15 BNL1579-BNL4082(c15) 25.1 23.1-27.0 5.72** -0.06* -5.66** -0.02 -0.00 0.00 -0.00 0.02 0.00
qC16-0-LG3-1 lg3 NAU5146c-RAPD-I10-620 56.4 50.6-62.4 -3.88** 0.04 3.74** 0.11** -0.13** -0.00 0.00 -0.11** 0.13**
qC16-0-LG6-1 lg6 NAU4852-NAU1247 40.5 39.2-42.5 -2.02** -0.04* 2.10** -0.01 -0.00 0.05 -0.05 0.02 0.00
油酸含量
Oleic acid content
qC18-1-18-1 Chr. 18 NAU5152a-NAU1232 44.6 40.6-47.6 -1.44** 0.01 1.28** 0.21** -0.20** 0.00 -0.00 -0.21** 0.20**
qC18-1-LG6-1 lg6 NAU456-NAU5328-170 19.9 17.9-21.9 1.74** -0.09** -1.83** 0.10** -0.02 -0.10* 0.09* -0.10** 0.02
亚油酸含量
Linoleic acid content
qC18-2-6-1 Chr. 6 NAU932*-NAU2566 81.4 75.4-91.0 10.47** 0.01 -10.60** 0.04 0.00 0.11* -0.11* -0.04 -0.00
qC18-2-15-1 Chr. 15 BNL1579-BNL4082(c15) 25.1 23.1-27.0 -4.83** 0.08* 4.71** -0.27** 0.29** -0.00 0.00 0.26** -0.28**
qC18-2-LG6-1 lg6 NAU5328-170-RAPD-G17-120 23.0 22.0-24.0 -5.45** -0.09* 5.64** -0.00 -0.05 0.15** -0.15** 0.00 0.04

图2

棉籽油分及3种脂肪酸含量QTL在胚和母体植株核基因组上的位置"

表4

棉籽油分及3种脂肪酸的QTL遗传贡献率"

性状Trait QTL R2 (am) R2 (ae) R2 (de) R2 (amE) R2 (aeE) R2 (deE) R2 (T)
油分含量
Oil content
qOil-3-1 1.1 1.4 0.0 0.0 0.0 0.0 2.5
qOil-18-1 5.3 6.7 0.0 0.0 0.0 0.0 12.0
qOil-18-2 0.3 0.4 0.0 0.0 0.0 0.0 0.7
qOil-18-3 0.0 0.0 0.0 5.4 0.0 0.0 5.4
qOil-LG3-1 2.3 2.7 0.0 0.0 0.0 0.0 5.0
qOil-LG7-1 0.0 0.0 0.0 0.0 21.3 6.2 27.5
qOil-LG8-1 0.0 0.1 0.0 8.6 0.0 0.0 8.7
棕榈酸含量
Palmitic acid content
qC16-0-15-1 5.0 6.4 0.0 0.0 0.0 0.0 11.4
qC16-0-LG3-1 2.2 3.0 0.0 11.6 19.6 0.0 36.5
qC16-0-LG6-1 0.7 0.8 0.0 0.0 0.0 0.0 1.5
油酸含量
Oleic acid content
qC18-1-18-1 1.4 2.5 0.0 8.0 8.8 0.0 20.9
qC18-1-LG6-1 3.3 3.7 0.0 1.8 0.0 0.6 9.4
亚油酸含量
Linoleic acid content
qC18-2-6-1 5.5 6.7 0.0 0.0 0.0 0.9 13.1
qC18-2-15-1 1.1 1.4 0.0 14.2 20.6 0.0 37.3
qC18-2-LG6-1 1.6 1.8 0.0 0.0 0.0 1.7 5.1

附表1

棉籽4个性状QTL位点相关分子标记信息"

染色体/连锁群
Chr./Linkage group
分子标记
Molecular markers
引物
Primers
(5°-3°)
标记类型
Marker type
标记引物来源
Source of marker primer
标记来源
Source of marker
重复基序
Repeat motif
Chr3 MUCS127(c3) F: TTTGTACTCATGTTCCCGCC;
R: GCATGCTTGAAGAAGGTTCC
SSR Park et al.[40] G. arboreum EST TCTT(2)CTT(4)
Chr3 NAU808 F: GATGGCTACCTCCCTTTGTA;
R: CGTAAGGAAGCCTAGCAAAA
SSR Han et al. [41,42] G. hirsutum EST none
Chr18 JESPR204(c18) F: CTCCAGGTTCAATGGTCTG;
R: GCCATGTTGGACAAGTAGTC
SSR Reddy et al.[43] G. hirsutum genome (CTT)20
Chr18 CIR099(18) F: ATGATTCAAGTCGCGT;
R: TTCAAGGCTGAGTCAAA
SSR Nguyen et al.[44] G. hirsutum genome (GT)8
Chr18 TMO409a F: CAGAGGACGAAGGTAGCAG;
R: TGGTGGGTTTCACTTTCACA
SSR USDA-ARS G. hirsutum genome (CA)10+(GA)5
Chr18 NAU1001 F: TAAAGGAAGAAAACCCACCA;
R: TTTCTCTTCAACAGCAGCAG
SSR Han et al.[41,42] G. hirsutum EST (ACA )7
Chr18 NAU5152b F: TCCTTTCTACCCATGCCTAC;
R: GTCACGAGAAGCAGAGGACT
SSR Han et al.[41,42] G. hirsutum EST (tct)9
Chr18 NAU3053a F: TTGGAGGTGTCAGATCCTCT;
R: AAGATCCATGACCCAGAAAA
SSR Han et al.[41,42] G. hirsutum EST (at)13
LG3 NAU5146c F: ATCTCCATTCCCTCTCCTCT;
R: ATAAACGCAACGGATAAAGG
SSR Han et al.[41,42] G. hirsutum EST (ttta)5
LG3 RAPD-I10-620 GTCCACACGG RAPD 购于上海赛百盛生物技术公司
(The marker primer purchased from SBS Genetech Co.,Ltd)
G. hirsutum genome None
LG7 NAU983 F: GAAGGTCATGTTTTGCATTG;
R: AGCCATCAAATGACCAGTCT
SSR Han et al.[41,42] G. hirsutum EST (CAGCAT)3
LG7 TMB1791 F: GAGATCGTTTATCATTCCCACA;
R: TCTACCGGCCTCGTAAGCTA
SSR Yu et al.[45] G. hirsutum genome (GA)15+(CA)8
LG8 NAU4919b* F: ATCTAATGGGGGAGGAAGAG;
R: CTCCTTGAAACCCTTTGAGA
SSR Han et al.[41,42] G. hirsutum EST (cca)6
LG8 NAU4960d F: CGGCCTACCTCTTCCTCT;
R: TTAACGACAATTCCATCGTG
SSR Han et al.[41,42] G. hirsutum EST (tcc)6
Chr15 BNL4082(c15) F:GTAAAATGAAATAAAATAAAAGGAGAGA;
R: TTCAACACCGCCAAACATAA
SSR Brookhaven National Laboratory, NY, USA G. hirsutum genome (GA)24
LG3 NAU4852 F: ATCTCAAGGCCCAAATTACA;
R: CCTAAATTGTCAAGCGAGGT
SSR Han et al.[41,42] G. hirsutum EST (cat)6
LG3 NAU1247 F: AATTGGCTTCCAAGAGACTG;
R: CACCATCATCATCAAACTCG
SSR Han et al.[41,42] G. hirsutum EST (AAG)8
Chr18 NAU5152a F: TCCTTTCTACCCATGCCTAC;
R: GTCACGAGAAGCAGAGGACT
SSR Han et al.[41,42] G. hirsutum EST (tct)9
Chr18 NAU1232 F:GTGGAATGTGGTGATGAGAA;
R:CAATCCCACCCCATATCTA
SSR Han et al.[41,42] G. hirsutum EST (TGTA)5
LG6 NAU456 F: GAAGGAGGGCGAAAAACATA;
R: TTGGAGATTACGCGACCTTC
SSR Han et al.[41,42] G. hirsutum EST (CAC )8
LG6 NAU5328-170 F: AATGAGAGTGGCGGCTATAC;
R: CTTATAGCTCTGGGCAGCAT
SSR Han et al.[41,42] G. hirsutum EST (aatgca)3
Chr6 NAU932* F: ACAAAGCAAATATGGGTTCC;
R: CCCCCTTAAAATGGAAGAAG
SSR Han et al.[41,42] G. hirsutum EST (GGTGAA)3
Chr6 NAU2566 F: CAAAATCCACCCCCTCCT;
R: CCCTTCCCAGGAAAGTTTAT
SSR Han et al.[41,42] G. hirsutum EST (aata)4
Chr15 BNL1579 F: CATGAGAACTTCATGCATATTCA;
R: ATTTAAGTGCCTCCGTCCCT
SSR Brookhaven National Laboratory, NY, USA G. hirsutum genome (AG)17
LG6 RAPD-G17-120 GACGGATCAG RAPD 购于上海赛百盛生物技术公司
(The marker primer purchased from SBS Genetech Co., Ltd)
G. hirsutum genome None
[1] 许红霞, 杨伟华, 王延琴, 周大云, 匡猛, 冯新爱. 我国油用棉子质量状况分析. 中国棉花, 2009,36(7):2-3.
Xu H X, Yang W H, Wang Y Q, Zhou D Y, Kuang M, Feng X A. Analysis of the cottonseed amount in China. China Cotton, 2009,36(7):2-3 (in Chinese with English abstract).
[2] Jones L A, King C C. Bailey’s industrial oil and fat products, volume 1, edible oil and fat products: general applications (5th edn). Trends Food Sci Technol, 1996,7:379-380.
[3] Meneghetti S M P, Meneghetti M R, Serra T M, Barbosa D C, Wolf C R. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels, 2007,21:3746-3747.
[4] Kohel R J. Survey of Gossypium hirsutum L. Germplasm Collections for Seed Oil Percentage and Seed Characteristics. London: Agricultural Research Service Publication, 1978. pp 1-38.
[5] Singh M, Singh T H, Chahal G S. Genetic analysis of some seed quality characters in upland cotton (Gossypium hirsutum L.). Theor Appl Genet, 1985,71:126-128.
[6] 季道藩, 朱军. 陆地棉品种间杂种的种仁油分和氨基酸成分的遗传分析. 作物学报, 1988,14:1-6.
Ji D F, Zhu J. Genetic analysis of oil and amino acid content in shelled seed of upland cotton hybrids. Acta Agron Sin, 1988,14:1-6 (in Chinese with English abstract).
[7] Wu J X, Jenkins J N, McCarty J C, Thaxton P. Seed trait evaluation of Gossypium barbadense L. chromosomes/arms in a G. hirsutum L. background. Euphytica, 2009,167:371-380.
[8] Dani R G, Kohel R J. Maternal effects and generation mean analysis of seed-oil content in cotton (Gossypium hirsutum L.). Theor Appl Genet, 1989,77:569-575.
[9] 王国印, 李蒙恩. 棉子品质性状的遗传研究. 华北农学报, 1991,6(2):20-25.
Wang G Y, Li M E. Genetic study of cottonseed quality traits. Acta Agric Boreali-Sin, 1991,6(2):20-25 (in Chinese with English abstract).
[10] Yuan Y L, Zhang T Z, Jing S R, Pan J J, Xing C Z, Guo L R, Tang C M. Studies of the inheritanee of seed qualities and the exploitation of F2 heterosis in low gossypol strains in upland cotton. J Genet Genomics, 2001,28:471-481.
[11] 秦利. 陆地棉种子品质性状遗传及其QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2009.
Qin L. Inheritance of Seed Quality Traits and Their QTL Mapping in Unpanned Cotton (G. hirsutum L.). PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2009 (in Chinese with English abstract).
[12] Lukonge E, Labuschagne M T, Hugo A. The evaluation of oil and fatty acid composition in seed of cotton accessions from various countries. J Sci Food Agric, 2007,87:340-347.
[13] Dowd M K, Boykin D L, William R. Fatty acid profiles of cottonseed genotypes from the national cotton variety trials. J Cotton Sci, 2010,14:64-73.
[14] Zou J, Katavic V, Giblim E M, Barton D L, MacKenzie S L, Keller W A, Hu X, Taylor D C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase. Plant Cell, 1997,9:909-923.
[15] 丁检, 吴双, 蔡彩平, 郭旺珍. 棉花溶血磷酸酯酰转移酶(LPAT)家族基因的发掘和表达分析. 作物学报, 2015,41:378-385.
Ding J, Wu S, Cai C P, Guo W Z. Genome-wide identification of lysophospatidic acid acyltransferase gene family and their expression analysis in cotton. Acta Agron Sin, 2015,41:378-385 (in Chinese with English abstract).
[16] 刘丽, 王玉美, 赵彦朋, 王丹, 赵鹏, 刘正杰, 华金平. 棉花脂肪酸合成酶基因GhKARGhENR表达载体构建及其功能初探. 棉花学报, 2016,28:527-537.
Liu L, Wang Y M, Zhao Y P, Wang D, Zhao P, Liu Z J, Hua J P. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton. Cotton Sci, 2016,28:527-537 (in Chinese with English abstract).
[17] 张军. 利用外源DGAT基因和编辑GoPGF基因创造棉花高油低酚种质. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Zhang J. Creating Cotton Germplasm with High Oil and Low Phenol by Exogenous DGAT and GoPGF Gene Editing. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[18] Chapman K D, Brown S A, Spapace S A, Kinney A J, Ripp K G, Pirtle I L, Pirtle R M. Transgenic cotton plants with increased seed oleic acid content. J Am Oil Chem Soc, 2001,78:941-947.
[19] Liu Q, Singh S P, Green A G. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol, 2002,129:1732-1743.
[20] Liu Z J, Zhao Y P, Liang W, Cui Y P, Hua J P. Over-expression of transcription factor GhWRI1 in upland cotton. Biol Plant, 2018,62:335-342.
[21] Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res, 2007,17:243-251.
[22] Yu J W, Yu S X, Fan S L Song M Z, Zhai H H, Li X L, Zhang J F. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica, 2012,187:191-201.
[23] 刘小芳, 李俊文, 余学科, 石玉真, 贾菲, 孙福鼎, 刘爱英, 龚举武, 商海红, 巩万奎, 王涛, 邓化冰, 袁有禄. 利用重组自交系进行陆地棉(Gossypium hirsutum L.)棉籽油分含量和蛋白质含量的QTL定位. 分子植物育种, 2013,11:520-528.
Liu X F, Li J W, Yu X K, Shi Y Z, Jia F, Sun F D, Liu A Y, Gong J W, Shang H H, Gong W K, Wang T, Deng H B, Yuan Y L. Identification of QTL for cottonseed oil and protein content in upland cotton (Gossypium hirsutum L.) based on a RIL population. Mol Plant Breed, 2013,11:520-528 (in Chinese with English abstract).
[24] Liu G Z, Hong X M, Wang S, Li X H, Zhu X F, Zhang T Z. Association mapping of seed oil and protein contents in upland cotton. Euphytica, 2015,205:637-645.
[25] 刘欣欣. 棉花含油量候选基因GhA05KASI的鉴定及表达分析. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Liu X X. Identification and Expression Analysis of Candid Genes GhA05KASI for Oil Content in Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[26] Yuan Y C, Wang X L, Wang L Y, Xing H X, Wang Q K, Saeed M, Tao J C, Feng W, Zhang G H, Song X L, Sun X Z. Genome-Wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci, 2018,9:871.
[27] Ma J J, Liu J, Pei W F, Ma Q F, Wang N H, Zhang X, Cui Y P, Li D, Liu G Y, Wu M, Zang X S, Song J K, Zhang J F, Yu S X, Yu J W. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTL qOC-Dt5-1. Plant Sci, 2019,286:89-97.
[28] Zhao W X, Kong X H, Yang Y, Nie X H, Lin Z X. Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs. Mol Breed, 2019,39:105.
[29] Quampah A, Huang Z R, Wu J G, Liu H Y, Li J R, Zhu S J, Shi C H. Estimation of oil content and fatty acid composition in cottonseed kernel powder using near infrared reflectance spectroscopy. J Am Oil Chem Soc, 2012,89:567-575.
[30] 孔广超. 陆地棉RIL群体遗传图谱构建及产量与纤维品质QTL定位. 浙江大学博士学位论文, 浙江杭州, 2009.
Kong G C. Construction of Genetic Linkage Map Based on RIL Population of Upland Cotton (G. hirsutum L.) and QTL Mapping for Yield and Fiber Quality. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2009 (in Chinese with English abstract).
[31] Zhu Z H, Hayart Y, Yang J, Cao L Y, Lou X Y, Xu H M. Statistical method for mapping QTLs for complex traits based on two backcross populations. Chin Sci Bull, 2012,57:2645-2654.
[32] Qi T, Jiang B, Zhu Z, Wei C, Gao Y, Zhu S, Xu H, Lou X. Mixed linear model approach for mapping quantitative trait loci underlying crop seed traits. Heredity, 2014,113:224-232.
[33] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, McCouch S, Cho Y. Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[34] Ye Z H, Lu Z Z, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in Upland cotton (Gossypum hirsutum L.). Euphytica, 2003,129:183-191.
[35] Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993,27:205-233.
[36] Guo W Z, Zhang T Z, Ding Y Z Zhu Y C, Shen X L, Zhu X F. Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in upland cotton. Acta Genet Sin, 2006,32:1275-1285.
[37] Shi Y Z, Liu A Y, Li J W, Shao Y H, Yuan Y L. The major QTLs linked to fiber strength for cotton breeding program by molecular marker assisted selection. Mol Plant Breed, 2007,5:521-527.
[38] Liu D X, Liu F, Shan X R, Zhang J, Tang S Y, Fang X M, Liu X Y, Wang W W, Tan Z Y, Teng Z H, Zhang Z S, Liu D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics, 2015,290:1683-1700.
[39] Wang W W, Sun Y, Yang P, Cai X Y, Yang L, Ma J R, Ou Y C, Liu T P, Ali I, Liu D J, Zhang J, Teng Z H, Guo K, Liu D X, Liu F, Zhang Z S. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019,20:599.
[40] Park Y, Alabady M, Ulloa M, Sickler B, Wilkins T, Yu J, Stelly D, Kohel R, El-Shihy O, Cantrell R. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics, 2005,274:428-441.
[41] Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004,272:308-327.
[42] Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006,112:430-439.
[43] Reddy O U K, Pepper A E, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci, 2001,5:103-113.
[44] Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004,109:167-175.
[45] Yu J Z, Kohel R J, Fang D D, Cho J, Van Deynze A, Ulloa M, Hoffman S M, Pepper A E, Stelly D M, Jenkins J N, Saha S, Kumpatla S P, Shah M R, Hugie W V, Percy R G. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3: Genes Genet Genom(Bethesda), 2012,2:43-58.
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[14] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[15] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!