欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1616-1623.doi: 10.3724/SP.J.1006.2021.04206

• 研究简报 • 上一篇    下一篇

低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响

曾紫君(), 曾钰, 闫磊, 程锦, 姜存仓*()   

  1. 华中农业大学资源与环境学院/微量元素研究中心, 湖北武汉 430070
  • 收稿日期:2020-09-08 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-02-18
  • 通讯作者: 姜存仓
  • 作者简介:E-mail: zjzeng.hzau.edu.cn@webmail.hzau.edu.cn
  • 基金资助:
    国家自然科学基金项目(41271320);中央高校基本科研业务费专项资金项目(2017PY055)

Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings

ZENG Zi-Jun(), ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang*()   

  1. College of Resources and Environment, Huazhong Agricultural University/Microelement Research Center, Wuhan 430070, Hubei, China
  • Received:2020-09-08 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-02-18
  • Contact: JIANG Cun-Cang
  • Supported by:
    National Natural Science Foundation of China(41271320);Fundamental Research Funds for the Central Universities(2017PY055)

摘要:

以‘鄂抗10号’棉花品种为材料, 采用营养液培养, 设置不加硼(B0, 0 mg L-1)、低硼(B0.002, 0.002 mg L-1)、适硼(CK, B0.2, 0.20 mg L-1)、高硼(B50, 50 mg L-1) 4个硼(Boron, B)水平, 探究低硼和高硼胁迫处理下棉花幼苗生长及脯氨酸代谢的响应。结果表明, B0、B0.002及B50处理较CK显著抑制植株生长, 表现出较低的植株鲜重和干重, 根系伸长受到抑制。在供硼处理下, 随着硼浓度的升高, 棉花幼苗根、茎和叶中硼含量均呈梯度性上升, 其中, B0.2和B50处理下叶片中硼含量均高于根和茎; 而在B0和B0.002处理下, 根中的硼含量高于叶和茎。低硼和高硼处理下叶片中脯氨酸含量明显增加, 而根中脯氨酸含量显著减少。进一步分析叶片和根中脯氨酸合成代谢相关酶活性发现, B0.002和B50处理较CK增加棉花幼苗叶片Δ1-吡咯啉-5-羧酸合成酶(Δ1-pyrroline-5-carboxylate synthetase, P5CS)和鸟氨酸转氨酶(Ornithine-δ-aminotransferase, OAT)活性而降低脯氨酸脱氢酶(Proline dehydrogenase, ProDH)的活性; 叶片中Δ1-吡咯啉-5-羧酸还原酶(Δ1-pyrroline-5-carboxylate reductase, P5CR)活性在B50处理下显著高于CK, 而B0.002处理下该酶活性变化差异不显著。另外, B50处理较CK显著降低棉花幼苗根中OAT和P5CR酶活性, 而B0.002处理显著增加根中P5CS和ProDH的活性。表明低硼和高硼胁迫均抑制棉花幼苗的生长。硼胁迫条件下, 脯氨酸主要积累在棉花幼苗叶片中, 根中脯氨酸含量显著降低。缺硼和硼毒害时, 棉花幼苗叶片中脯氨酸的积累主要是通过调节脯氨酸Glu和Orn途径中的关键酶(OAT、P5CS合成酶和ProDH分解酶)活性, 使得脯氨酸的合成速度高于其降解。而在根中, 缺硼胁迫下主要是促进脯氨酸的降解导致根中脯氨酸含量降低, 高硼胁迫下主要是通过降低OAT和P5CS合成酶以及ProDH分解酶活性来抑制脯氨酸的合成及其分解, 但是对脯氨酸合成的抑制作用远大于其降解, 最终导致根系脯氨酸含量降低。

关键词: 棉花, 硼, 脯氨酸, 合成和降解

Abstract:

To investigate the response of cotton seedlings growth and proline metabolism to low- and excess-boron stress treatment conditions, the experiment was conducted using ‘E kang 10’ as experimental material using hydroponic method in a greenhouse of Huazhong Agricultural University. Boron (B) were applied at four levels at 0 mg L-1 (B0, no boron), 0.002 mg L-1 (B0.002, low concentration boron), 0.20 mg L-1 (B0.2, CK, sufficient concentration boron), and 50 mg L-1(B50, high concentration boron). The results showed that B0, B0.002, and B50 treatments significantly decreased the fresh and dry weights of plants, and inhibited root elongation relative to sufficient boron (CK, B0.2) treatment. With the increase of B concentration, B content in roots, stems, and leaves of cotton seedlings increased gradiently. Among them, B contents in the leaves under B0.2 and B50 treatments were higher than those in roots and stems, while B content in the roots was increased in leaves and stems under B0 and B0.002 treatments. Under low- and high-boron stress treatments, the content of proline in leaves increased dramatically, while proline in roots decreased. Further analysis of related enzyme activities in proline metabolism, we found that B0.002 and B50 treatments promoted the activities of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT) in leaves, but decreased the activity of proline dehydrogenase (ProDH) compared to CK; and the activity of Δ1-pyrroline-5- carboxylate reductase (P5CR) in leaves under B50 treatment was obviously increased, but there was no significant difference under B0.002 treatment. In addition, compared with CK, B50 treatment reduced the enzyme activities of OAT and P5CR in roots, while B0.002 treatment prominently increased the activities of P5CS and ProDH. The results showed that both low- and excess-boron stress inhibited the growth of cotton seedlings. Under boron stress, proline mainly was accumulated in the leaves of cotton seedlings, and the content of proline in roots decreased significantly. In the case of boron deficiency and boron toxicity, the accumulation of proline in leaves was mainly through regulating the activities of key enzymes (OAT, P5CS synthetase, and ProDH degrading enzyme) in proline Glu and Orn pathways, resulting in the proline synthesis rate higher than its degradation rate. However, in roots, the proline content was decreased mainly by promoting the degradation of proline under boron deficiency stress. Under high boron stress, proline synthesis and decomposition were inhibited mainly by reducing the activities of OAT, P5CS synthetase and ProDH decomposing enzyme, but the inhibitory effect on proline synthesis was much greater than its degradation, which eventually led to the decrease of proline content in roots.

Key words: cotton, boron, proline, synthesis and degradation

图1

不同硼处理对棉花幼苗生长的影响 B0: 0 mg L-1 硼处理; B0.002: 0.002 mg L-1 硼处理; B0.2: 对照, 0.2 mg L-1 硼处理; B50: 50 mg L-1硼处理。"

表1

不同硼处理对棉花幼苗生长指标的影响"

处理
Treatment
根Root 茎Stem 叶Leaf 总鲜重
Total fresh weight
总干重
Total dry weight
鲜重
Fresh weight
干重
Dry weight
鲜重
Fresh weight
干重
Dry weight
鲜重
Fresh weight
干重
Dry weight
B0 0.37±0.16 b 0.04±0.03 b 0.84±0.15 b 0.10±0.02 b 2.68±0.74 b 0.25±0.05 b 3.89±0.97 b 0.40±0.09 b
B0.002 0.88±0.23 b 0.08±0.06 ab 2.07±0.11 b 0.23±0.02 b 4.87±1.33 ab 0.48±0.10 ab 7.81±1.21 ab 0.79±0.09 b
B0.2 1.75±0.75 a 0.14±0.04 a 3.86±1.49 a 0.52±0.20 a 7.92±3.50 a 0.88±0.37 a 13.53±5.70 a 1.54±0.60 a
B50 0.92±0.26 b 0.07±0.02 ab 2.33±0.44 b 0.24±0.06 b 4.79±0.89 ab 0.55±0.14 ab 8.03±1.23 ab 0.86±0.19 b

表2

不同硼处理对棉花幼苗根系生长的影响"

处理
Treatment
总根长
TRL (cm)
总表面积
TSA (cm2)
根总体积
TRV (cm3)
根平均直径
RAD (mm)
侧根数
Number of lateral roots
根尖数
Number of apical roots
B0 83.84±30.21 c 22.55±8.55 c 0.49±0.20 b 0.86±0.12 a 460.67±246.51 c 136.67±1.15 b
B0.002 387.27±51.10 b 80.10±12.08 b 1.32±0.25 b 0.66±0.04 a 2310.67±341.91 b 172.00±29.72 a
B0.2 731.58±50.40 a 156.91±28.27 a 2.77±1.14 a 0.69±0.16 a 4826.67±578.81 a 173.67±11.93 a
B50 435.50±57.30 b 90.68±14.10 b 1.51±0.28 b 0.66±0.03 a 2644.67±465.37 b 121.00±7.94 b

表3

不同硼浓度处理对棉花幼苗各部位硼含量及积累量的影响"

处理
Treatment
硼含量B content (mg kg-1) 硼积累量B accumulation (μg plant-1)
根Root 茎Stem 叶Leaf 根Root 茎Stem 叶Leaf
B0 109.09±10.40 b 8.81±5.00 b 26.62±7.83 c 4.56±3.11 b 0.87±0.46 b 6.60±1.71 b
B0.002 67.32±6.47 c 15.95±0.91 b 31.61±6.58 c 5.20±3.88 b 3.71±0.03 b 15.46±5.94 b
B0.2 75.28±7.91 c 23.62±1.68 b 98.78±20.87 b 10.68±2.74 ab 12.39±5.46 a 89.55±49.52 b
B50 172.89±2.01 a 72.46±16.12 a 723.10±25.79 a 12.08±2.87 a 16.82±1.05 a 399.82±111.84 a

表4

不同硼浓度处理对棉花幼苗叶片和根中脯氨酸含量的影响"

处理
Treatment

Leaf

Root
B0
B0.002 804.81±36.22 b 224.07±3.99 b
B0.2 742.96±19.11 c 306.27±6.92 a
B50 942.57±42.64 a 200.57±4.00 c

图2

不同硼浓度处理对棉花幼苗叶片和根中脯氨酸代谢酶活性的影响 柱上不同小写字母分别表示在根、叶片中处理间在0.05水平上差异显著。处理同表1。"

图3

低硼和高硼胁迫下棉花幼苗叶片和根的脯氨酸合成及代谢途径 Glutamate: 谷氨酸; Ornithine: 鸟氨酸; GSA: 谷氨酰半醛; P5C: 吡咯啉-5-羧酸; Proline: 脯氨酸; P5CS: Δ1-吡咯啉-5-羧酸合成酶; P5CR: Δ1-吡咯啉-5-羧酸还原酶; OAT: 鸟氨酸转氨酶; ProDH: 脯氨酸脱氢酶; P5CDH: 吡咯啉-5-羧酸脱氢酶。"

[1] 徐芳森, 王运华. 我国作物硼营养与硼肥施用的研究进展. 植物营养与肥料学报, 2017,23:1556-1564.
Xu F S, Wang Y H. Advances in studies on crop boron nutrition and application of boron fertilizers in China. J Plant Nutr Fert, 2017,23:1556-1564 (in Chinese with English abstract).
[2] Marschner C, Marschner H. Mineral nutrition of higher plants. J Plant Physiol, 1996,148:765-765.
doi: 10.1016/S0176-1617(96)80381-6
[3] 姜存仓, 王运华, 刘桂东, 夏颖, 彭抒昂, 钟八莲, 曾庆銮. 赣南脐橙叶片黄化及施肥效应研究. 植物营养与肥料学报, 2009,15:656-661.
Jiang C C, Wang Y H, Liu G D, Xia Y, Peng S A, Zhong B L, Zeng Q L. Effect of boron on the leaves etiolation and fruit fallen of Newhall Navel Orange. J Plant Nutr Fert, 2009,15:656-661 (in Chinese with English abstract).
[4] 李继福, 何俊峰, 陈佛文. 中国棉花生产格局与施肥研究现状: 基于CNKI数据计量分析. 中国棉花, 2019,46(4):17-24.
Li J F, He J F, Chen F W. Status of cotton planting and fertilization research in China: based on CNKI data analysis. China Cotton, 2019,46(4):17-24 (in Chinese with English abstract).
[5] 张学斌. 施硼对棉花生理生化和产量品质的影响. 西南大学硕士学位论文, 重庆, 2008.
Zhang X B. The Physiology Biochemistry and Output the Quality Effect of Cotton Spraying Different Boron. MS Thesis of Southwest University, Chongqing, China, 2008 (in Chinese with English abstract).
[6] 王运华, 刘武定, 皮美美, 王治荣. 我国主要棉区缺硼概况与施硼分区. 华中农业大学学报. 1989,6(增刊1):153-157.
Wang Y H, Liu W D, Pi M M, Wang Z R. B-deficiency in cotton and division of B-application in important producing cotton area of China. J Huazhong Agric Univ, 1989,6(S1):153-157 (in Chinese with English abstract).
[7] 李鸣凤. 硼氮互作下棉花生理代谢及叶柄环带形成差异研究. 华中农业大学博士学位论文, 湖北武汉, 2019.
Li M F. Study on the Difference of Cotton Physiological Metabolism and Petiole Ring Formation Under Interaction of Boron and Nitrogen. Ph.D. Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[8] Ahmad S, Akhtar L H, Iqbal N, Nasim M. Short communication cotton (Gossypium hirsutum L.) varieties responded differently to foliar applied boron in terms of quality and yield. Soil Environ, 2009,28:88-92.
[9] 马欣. 硼肥Etibor-48和Colemanite硼释放特性及其对作物产量和品质的影响. 华中农业大学硕士学位论文, 湖北武汉, 2011.
Ma X. Evaluation of Boron Release Characterization of Boron Fertilizers Etibor-48 and Colemanite and Effects of Them on Crops Yield and Quality. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract).
[10] 操宇琳, 田绍仁, 杨绍群. 棉花缺硼与硼肥施用技术. 棉花科学, 2011,33(6):58-61.
Cao Y L, Tian S R, Yang S Q. Boron deficiency of cotton and application technology of boron fertilizer. Cotton Sci, 2011,33(6):58-61 (in Chinese with English abstract).
[11] Yang S L, Chen K, Wang S S, Gong M. Osmoregulation as a key factor in drought hardening-induced drought tolerance in Jatropha curcas. Biol Plant, 2015,59:529-536.
doi: 10.1007/s10535-015-0509-y
[12] Jiang M Y, Guo S C, Zhang X M. Proline accumulation in rice seedlings exposed to hydroxyl radical stress in relation to antioxidation. Chin Sci Bull, 1997,42:855-859.
[13] Giberti S, Funck D, Forlani G. Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol, 2014,202:911-919.
doi: 10.1111/nph.2014.202.issue-3
[14] Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010,15:89-97.
doi: 10.1016/j.tplants.2009.11.009
[15] 王翠平, 严莉, 乔改霞, 李健. 脯氨酸通过活性氧信号抑制植物生长. 植物生理学报, 2017,53:1788-1794.
Wang C P, Yan L, Qiao G X, Li J. Proline inhibits plant growth by reactive oxygen species signaling. Plant Physiol J, 2017,53:1788-1794 (in Chinese with English abstract).
[16] 宋敏, 徐文竞, 彭向永, 孔繁华. 外源脯氨酸对镉胁迫下小麦幼苗生长的影响. 应用生态学报, 2013,24:129-134.
Song M, Xu W J, Peng X Y, Kong F H. Effects of exogenous proline on the growth of wheat seedlings under cadmium stress. Chin J Appl Ecol, 2013,24:129-134 (in Chinese with English abstract).
[17] 吴成龙, 周春霖, 尹金来, 刘兆普, 徐阳春, 沈其荣. 碱胁迫对不同品种菊芋幼苗生物量分配和可溶性渗透物质含量的影响. 中国农业科学, 2008,41:901-909.
Wu C L, Zhou C L, Yin J L, Liu Z P, Xu Y C, Shen Q R. Effects of alkaline stress on biomass allocation and the contents of soluble osmoticum in different organs of two Helianthus tuberosus L. genotypes. Sci Agric Sin, 2008,41:901-909 (in Chinese with English abstract).
[18] Wang H Y, Tang X L, Wang H L, Shao H B. Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front Plant Sci, 2015,6:792.
[19] Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y. Effects of free proline accumulation in petunias under drought stress. J Exp Bot, 2005,56:1975-1981.
pmid: 15928013
[20] Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. Plant J, 1993,4:215-223.
doi: 10.1046/j.1365-313X.1993.04020215.x
[21] 许祥明, 叶和春, 李国凤. 脯氨酸代谢与植物抗渗透胁迫的研究进展. 植物学通报, 2000,17:536-542.
Xu X M, Ye H C, Li G F. Progress in synthesis and metabolism of proline and its relationship with osmotolerance of plants. Chin Bull Bot, 2000,17:536-542 (in Chinese with English abstract).
[22] Liang X W, Zhang L, Natarajan S K, Becker D F. Proline mechanisms of stress survival. Antiox Redox Signal, 2013,19:998-1011.
doi: 10.1089/ars.2012.5074
[23] Iqbal N, Umar S, Khan N A, Khan M I R. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot, 2014,100:34-42.
doi: 10.1016/j.envexpbot.2013.12.006
[24] 余光辉. 水分胁迫下假俭草脯氨酸累积的ABA, Ca2+调节. 华南师范大学硕士学位论文, 广东广州, 2003.
Yu G H. The Regulation of ABA, Ca2+ on Proline Accumulation in Eremochloa ophiuroides under Water Stress. MS Thesis of South China Normal University, Guangzhou, Guangdong, China, 2003 (in Chinese with English abstract).
[25] Kishor P B K, Sreenivasulu N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ, 2014,37:300-311.
doi: 10.1111/pce.2014.37.issue-2
[26] Yang S L, Lan S S, Gong M. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. Plant Physiol, 2009,166:1694-1699.
doi: 10.1016/j.jplph.2009.04.006
[27] Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ, 1950,347:1-32.
[28] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 123-124.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 123-124(in Chinese).
[29] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. pp 278-279.
Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment, 2nd edn. Beijing: Higher Education Press, 2006. pp 278-279(in Chinese).
[30] Shan T M, Peng J, Zhang Y, Huang Y P, Wang X L, Zheng Y H. Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage. Posth Biol Technol, 2016,114:104-110.
doi: 10.1016/j.postharvbio.2015.12.005
[31] Rocha I M A D, Vitorello V A, Silva J S. Exogenous ornithine is an effective precursor and the ornithine-aminotransferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol, 2012,169:41-49.
doi: 10.1016/j.jplph.2011.08.001
[32] 耿明建, 朱建华, 吴礼树, 刘武定. 不同硼效率棉花品种根系参数和伤流液组分的差异. 土壤通报, 2006,37:744-747.
Geng M J, Zhu J H, Wu L S, Liu W D. Differences in root characters and composition of root bleeding sap between several cotton cultivars with different boron efficiency. Chin J Soil Sci, 2006,37:744-747 (in Chinese with English abstract).
[33] 刘磊超, 姜存仓, 刘桂东, 董肖昌, 吴秀文. 低硼胁迫对柑橘枳橙砧木生长及营养生理的影响. 华中农业大学学报, 2015,34(3):64-68.
Liu L C, Jiang C C, Liu G D, Dong X C, Wu X W. Effects of boron stress on seedling growth and nutrition physiology of navel orange root stock. J Huazhong Agric Univ, 2015,34(3):64-68 (in Chinese with English abstract).
[34] 桑雯. 硼毒下柑橘根叶蛋白质组学研究. 福建农林大学硕士学位论文, 福建福州, 2013.
Sang W. Proteomic Analysis of Citrus Roots and Leaves in Response to Boron Toxicity. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2013 (in Chinese with English abstract).
[35] Han S, Tang N, Jiang H X, Yang L T, Li Y, Chen L S. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci, 2008,176:143-153.
doi: 10.1016/j.plantsci.2008.10.004
[36] Ross O N, Gary S B, Jeffrey G P. Boron toxicity. Plant Soil, 1997,193:181-198.
doi: 10.1023/A:1004272227886
[37] Sheng O, Song S W, Peng S A, Deng X X. The effects of low boron on growth, gas exchange, boron concentration and distribution of ‘Newhall’ navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks. Sci Hortic, 2009,121:278-283.
doi: 10.1016/j.scienta.2009.02.009
[38] Shah A, Wu X W, Ullah A, Ullah A, Fahad S, Muhammad R, Yan L, Jiang C C. Deficiency and toxicity of boron: alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicol Environ Saf, 2017,145:575-582.
doi: 10.1016/j.ecoenv.2017.08.003
[39] Tanaka M, Fujiwara T. Physiological roles and transport mechanisms of boron: perspectives from plants. Eur J Appl Physiol, 2008,456:671-677.
[40] 张君, 危常州, 梁远航, 李美宁, 董鹏. 陆地棉对叶面施硼的吸收和分配. 棉花学报, 2012,24:331-335.
Zhang J, Wei C Z, Liang Y H, Li M N, Dong P. Absorption and distribution of foliar applied boron in upland cotton. Cotton Sci, 2012,24:331-335 (in Chinese with English abstract).
[41] Liu G D, Jiang C C, Wang Y H. Distribution of boron and its forms in young “Newhall” navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks in response to deficient and excessive boron. Soil Sci Plant Nutr, 2011,57:93-104.
doi: 10.1080/00380768.2010.551299
[42] Dell B, Huang L. Physiological response of plants to low boron. Plant Soil, 1997,193:103-120.
doi: 10.1023/A:1004264009230
[43] 刘磊超, 姜存仓, 董肖昌, 吴秀文, 刘桂东, 卢晓佩. 硼胁迫对枳橙砧木细根根尖成熟区和幼嫩叶片细胞结构的影响. 中国农业科学, 2015,48:4957-4964.
Liu L C, Jiang C C, Dong X C, Wu X W, Liu G D, Lu X P. Effects of boron deficiency on cellular structures of maturation zone from root tips and functional leaves from middle and upper plant in trifoliate orange rootstock. Sci Agric Sin, 2015,48:4957-4964 (in Chinese with English abstract).
[44] 卢晓佩. 不同硼敏感型柑橘砧木对硼胁迫的响应差异及机理. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Lu X P. Different Response and Mechanism of Different Citrus Rootstock under Boron Stress. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[45] 曾钰, 闫磊, 刘亚林, 曾紫君, 姜存仓. 外源脯氨酸对缺硼下棉花幼苗生长、生理特性以及脯氨酸代谢的影响. 棉花学报, 2020,32:258-268.
Zeng Y, Yan L, Liu Y L, Zeng Z J, Jiang C C. Effects of exogenous proline on the growth, physiological characteristics, and proline metabolism of cotton seedlings under boron deficiency stress. Cotton Sci, 2020,32:258-268 (in Chinese with English abstract).
[46] Riaz M, Yan L, Wu X W, Hussain S, Aziz O, Wang Y H, Imran M, Jiang C C. Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J Environ Manage, 2018,208:149-158.
doi: 10.1016/j.jenvman.2017.12.008
[47] 陈托兄, 张金林, 陆妮, 王锁民. 不同类型抗盐植物整株水平游离脯氨酸的分配. 草业学报, 2006,15(1):36-41.
Chen T X, Zhang J L, Lu N, Wang S M. The characteristics of free proline distribution in various types of salt-resistant plants. Acta Pratac Sin, 2006,15(1):36-41 (in Chinese with English abstract).
[48] Liu L J, Huang L, Lin X Y, Sun C L. Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings. Plant Cell Rep, 2020,39:567-575.
doi: 10.1007/s00299-020-02513-3
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 高璐, 许文亮. 脯氨酸羟化酶GhP4H2在棉花纤维发育中的功能研究[J]. 作物学报, 2021, 47(7): 1239-1247.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!