欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1603-1615.doi: 10.3724/SP.J.1006.2021.03050

• 耕作栽培·生理生化 • 上一篇    下一篇

丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响

张学林*(), 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华   

  1. 河南农业大学农学院/省部共建小麦玉米作物学国家重点实验室/河南粮食作物协同创新中心, 河南郑州 450002
  • 收稿日期:2020-08-24 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-03-01
  • 通讯作者: 张学林
  • 基金资助:
    河南省自然科学基金项目(182300410013);国家重点研发计划项目(2018YFD0200605);河南农业大学科技创新基金(30500712)

Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize

ZHANG Xue-Lin*(), LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua   

  1. Agronomy College, Henan Agricultural University/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, Henan, China
  • Received:2020-08-24 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-03-01
  • Contact: ZHANG Xue-Lin
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);National Key Research and Development Program of China(2018YFD0200605);Science and Technology Innovation Fund of Henan Agricultural University(30500712)

摘要:

明确丛枝菌根真菌(Arbuscular Mycorrhizae Fungi, AMF)在玉米籽粒产量和氮素吸收方面的作用, 能够为农田生物肥料配施、养分利用效率提高、作物抗逆能力增强和作物产量增加提供理论依据。2016和2017年2个玉米生育期, 采用分室(生长室和菌丝室)箱体装置, 设置氮肥用量(N180:180 kg hm-2; N360:360 kg hm-2)、小麦秸秆(无秸秆: S0; 有秸秆: S1)和丛枝菌根真菌(M0: 根和AMF不能从生长室进入菌丝室; M1: 只有AMF能从生长室进入菌丝室; M2: 根和AMF均能从生长室进入菌丝室)三因素试验, 测定玉米籽粒产量、植株生物量、植株氮素积累量和根系性状。结果表明, 氮肥用量、秸秆和丛枝菌根真菌均显著影响玉米籽粒产量及其氮素积累量。与N180相比, N360处理显著增加玉米产量及其氮素积累量; 有秸秆处理籽粒产量比无秸秆处理降低6%, 而土壤无机氮增加129%。N180条件下, M1和M2处理玉米产量均值分别比M0增加38%和82%; N360条件下分别增加16%和48%, 其中, 在N180条件下M1对籽粒的贡献量高于N360。秸秆存在与否, AMF均能增加玉米穗长、行粒数和根系总根长; 其中, 有秸秆条件下AMF提高根系生物量及其氮素积累量的能力显著高于无秸秆处理。氮肥用量和秸秆互作条件下, M1和M2处理的行粒数、穗粒数、根、茎、叶生物量及其氮素积累量、根系总根长均显著高于M0; 而土壤无机氮含量显著低于M0, 其中, 在N180和有秸秆条件下, AMF对这些性状的贡献量较大。相关分析和结构方程结果表明, 氮肥用量和AMF均显著提高玉米产量。本研究表明, 不同氮肥用量条件下、小麦秸秆存在与否, 丛枝菌根真菌均能够改善玉米根系特性, 增强氮素吸收能力, 改善穗部性状, 增加玉米籽粒产量。

关键词: 作物秸秆, 丛枝菌根真菌, 氮肥管理, 玉米产量, 养分吸收

Abstract:

Clarifying the role of arbuscular mycorrhizae fungi (AMF) in yield of maize grain and associated nitrogen (N) uptake can inform the application of organic fertilizer in farmland, thus, improving nutrient use efficiency, enhancing crop resistance to biotic or abiotic stress, and increasing overall crop yield. A 3-factor experiment was designed and carried out during the maize growing season in 2016 and 2017. The factors were as follows: (1) N fertilizer addition (180 kg hm-2 [N180] and 360 kg hm-2 [N360]), (2) wheat straw addition (without straw: S0 and with straw: S1), and (3) three mycorrhizal treatments, including a control (M0, roots and AMF could not enter the hyphal chamber from the growth chamber), an AMF treatment (M1, only AMF can enter the hyphal chamber from the growth chamber), and a root treatment (M2, both roots and AMF can enter the hyphal chamber from the growth chamber). Maize grain yield, plant biomass, N uptake, and root variables were measured. All three factors had a significant effect on maize yield and N uptake. N360 treatment of N fertilizer significantly increased maize yield and their N accumulation compared with N180 treatment. In the case of straw treatment, the grain yield reduced by 6% than that of the treatment without straw, whereas soil inorganic N increased by 129%. For the N180 treatment, mean maize yield of M1 and M2 treatments were 38% and 82% higher than M0, respectively; for the N360 treatment, these were 16% and 48%, respectively. The contribution of AMF to grain yield was higher for N180 than for N360. The AMF treatment increased maize ear length, grain number per row, and total root length independent of straw addition, but the ability of AMF to improve root biomass and N uptake was significantly higher with straw addition than without straw. M1 and M2 treatments significantly increased grain number per row, grain number per spike, plant biomass, N accumulation, and total root length relative to the M0, whereas inorganic soil N declined significantly. The contribution of AMF to maize yield was higher than M0 under conditions of both N180 and straw addition. Correlation analysis and structural equation revealed that N application and AMF significantly increased maize yield. The results showed that AMF could improve maize root properties, enhance N absorption capacity, improve ear traits, and increase maize grain yield under different N application rates and straw conditions.

Key words: crop residue, arbuscular mycorrhizal fungi, nitrogen fertilizer management, maize yield, nutrient absorption

表1

玉米籽粒产量、植株生物量、氮素积累量和根系特性的方差分析"

项目
Item
年份
Year
氮肥处理
Nitrogen (N)
秸秆处理
Straw (S)
菌根处理
Mycorrhizae (M)
N × S N × M S × M N × S × M
产量Yield (g plant-1) 2016 431.97*** 18.38*** 204.09*** 1.19 6.36** 10.93*** 4.62*
2017 287.90*** 21.60*** 430.60*** 0.001 20.70*** 32.80*** 6.80**
收获指数Harvest index (%) 2016 246.67*** 21.86*** 53.95*** 3.28 22.55*** 6.29** 2.84
2017 26.35*** 0.08 29.95*** 0.62 13.40*** 16.16*** 1.08
生物量Biomass (g plant-1)
根Root 2016 17.94*** 2.22 109.44*** 1.24 6.95** 7.08** 1.90
2017 38.34*** 9.87** 116.03*** 1.45 8.41*** 7.41** 1.80
茎Stem 2016 27.94*** 1.41 80.86*** 20.70*** 1.25 0.52 5.45*
2017 49.16*** 5.41* 232.12*** 3.86 4.17* 1.55 0.31
叶Leaf 2016 61.51*** 0.02 88.94*** 5.55* 1.86 4.33* 3.52*
2017 60.58*** 1.98 190.06*** 1.77 0.33 5.36** 1.39
氮素积累量N accumulation (mg plant-1)
籽粒Grain 2016 231.93*** 11.74** 56.63*** 1.31 0.70 2.95 0.24
2017 168.75*** 11.51*** 84.90*** 2.72 5.84** 13.36*** 7.68***
根Root 2016 5.77* 0.21 5.77** 1.77 2.01 0.04 0.19
2017 29.05*** 0.09 9.29*** 7.49** 1.705 0.421 1.621
茎Stem 2016 4.24* 1.47 0.76 10.92** 0.27 0.33 4.07
2017 23.27*** 4.19* 24.31*** 0.13 1.58 0.46 1.51
叶Leaf 2016 25.17*** 0.27 13.34*** 2.09 1.53 1.27 1.73
2017 21.50*** 0.33 12.07*** 0.22 1.39 1.22 0.52
根系特性 Root properties
总根长
Length (cm plant-1)
2016 75.33*** 15.22*** 91.16*** 96.89*** 0.75 9.21*** 2.99
2017 134.36*** 0.37 50.47*** 81.47*** 2.92 6.51** 2.31
根表面积
Surface area (cm2 plant-1)
2016 126.99*** 76.79*** 119.24*** 32.72*** 19.44*** 21.64*** 0.26
2017 231.10*** 70.50*** 128.69*** 37.15*** 9.89*** 53.68*** 5.14*
根直径
Diameter (mm)
2016 13.71*** 3.27 39.07*** 0.37 0.75 11.67*** 0.08
2017 59.44*** 11.43** 101.17** 8.40** 2.39 24.83*** 0.02
根体积
Volume (cm3 plant-1)
2016 108.79*** 126.57*** 285.66*** 3.20 27.09*** 38.78*** 4.73*
2017 92.89*** 12.01*** 125.09*** 0.06 5.75 18.30*** 1.78

图1

氮肥用量、秸秆和菌根真菌对玉米籽粒产量、氮素积累量和收获指数的影响 M0、M1、M2分别代表对照、菌丝室只有AMF菌丝、菌丝室有根和菌丝。N180S0、N180S1、N360S0、N360S1分别代表施氮量180 kg km-2条件下无秸秆、180 kg km-2条件下有秸秆、360 kg km-2条件下无秸秆、360 kg km-2条件下有秸秆处理。同一年度中, 同列数据后不同字母表示处理间P < 0.05水平差异显著性。"

表2

氮肥用量、秸秆和菌根真菌对玉米穗部性状和土壤无机氮含量的影响"

处理
Treatment
穗行数
Rows per ear
行粒数
Kernel number
per row
穗粒数
Grain number
per spike
百粒重
100-grain weight
(g)
土壤无机氮
Soil inorganic N
(mg kg-1)
2016 2017 2016 2017 2016 2017 2016 2017 2016 2017
N180S0M0 13 ab 13 20.38 cd 15 de 265.25 cd 193.25 d 21.09 20.024 b 24.57 j 25.48 f
N180S0M1 13 ab 13 19.75 cd 16.38 cde 255.75 cd 213 cd 21.04 21.04 ab 23.35 ij 24.84 f
N180S0M2 14 ab 14.5 25 ab 18 bcd 350 ab 261.75 abc 22.23 20.52 b 20.34 j 17.31 g
N180S1M0 13 ab 13.5 17.63 d 14.62 e 230 d 197.25 d 19.78 20.45 b 108.05 b 79.35 b
N180S1M1 12.5 b 13 19.75 cd 16.13 cde 247 cd 209.5 cd 22.25 20.97 ab 61.92 d 41.20 cd
N180S1M2 14.5 a 13.5 25 ab 19.13 abc 361.5 ab 257.25 abc 23.05 20.02 b 44.62 f 35.83 de
N360S0M0 14 ab 14 25.25 ab 17.13 cde 353.5 ab 239.75 bcd 23.37 19.79 b 54.99 e 41.39 cd
N360S0M1 13 ab 13 28.88 a 19.38 abc 376 a 252.75 abc 23.54 21.45 ab 36.88 g 34.05 e
N360S0M2 13.5 ab 13 27.38 a 20.5 ab 370.25 ab 266.75 ab 24.25 22.86 a 33.73 h 22.45 fg
N360S1M0 13.5 ab 13.75 22.38 bc 17.38 bcde 303.25 bc 239.63 bcd 20.67 21.39 ab 136.45 a 104.13 a
N360S1M1 13.5 ab 14 22.5 bc 16.13 cde 303 bc 225.75 bcd 22.61 23.09 a 66.11 c 43.61 c
N360S1M2 14.5 a 14 28.63 a 21.38 a 416.25 a 299.25 a 24.04 20.32 b 64.49 cd 40.58 cd
氮肥处理Nitrogen (N) 1.41 0.63 39.22*** 12.99*** 31.23*** 12.19*** 3.84 6.42* 877.83*** 89.78***
秸秆处理Straw (S) 0.35 0.63 5.99* 0.22 2.21 0.001 0.46 0.06 6029.79*** 745.02***
菌根处理Mycorrhizal (M) 5.56** 1.24 17.41*** 14.56*** 20.22*** 13.43** 2.79 3.31* 1636.23*** 349.68***
N × S 0.35 2.04 1.43 0.56 0.37 0.03 0.98 0.13 1.73 0.07
N × M 1.15 1.84 1.37 0.27 1.65 0.48 0.004 0.65 94.09*** 20.84***
S × M 1.15 0.33 2.75 1.88 3.65 0.86 0.96 4.37* 789.02*** 170.99***
N × S × M 0.62 2.35 2.57 0.88 1.34 0.95 0.04 2.28 13.71*** 4.33*

图2

氮肥用量、秸秆和菌根真菌对玉米根、茎、叶生物量的影响 处理同图1。同一年度中, 同列数据后不同字母表示处理间P < 0.05水平差异显著性。"

图3

氮肥用量、秸秆和菌根真菌对玉米根、茎、叶氮素积累量的影响 处理同图1。同一年度中, 同列数据后不同字母表示处理间P < 0.05水平差异显著性。"

图4

氮肥用量、秸秆和菌根真菌对玉米总根长、根表面积、根直径、根体积的影响 处理同图1。同一年度中, 同列数据后不同字母表示处理间P < 0.05水平差异显著性。"

表3

玉米籽粒产量、收获指数以及籽粒氮素积累量与玉米根系性状、穗部性状、生物量及其氮素积累量的皮尔逊相关系数"

性状
Trait
参数
Parameter
产量
Yield (g plant-1)
收获指数
Harvest index (%)
籽粒氮素积累量
Grain accumulation (mg plant-1)
2016 2017 2016 2017 2016 2017
根系
Root traits
总根长Length (cm plant-1) 0.69** 0.64** 0.62** 0.19 0.60** 0.62**
根表面积Surface area (cm2 plant-1) 0.84** 0.62** 0.82** 0.04 0.74** 0.56**
根直径Diameter (mm) 0.73** 0.66** 0.62** 0.08 0.66** 0.53**
根体积Volume (cm3 plant-1) 0.83** 0.67** 0.74** 0.05 0.72** 0.59**
穗部
Ear traits
穗长Ear length (cm) 0.92** 0.70** 0.86** 0.37* 0.86** 0.68**
穗粗Ear diameter (cm) 0.29* 0.68** 0.22 0.64** 0.17 0.63**
穗行数Rows per ear 0.47** 0.03 0.50** -0.14 0.45** -0.001
行粒数Kernel number per row 0.82** 0.61** 0.74** 0.18 0.77** 0.57**
穗粒数Grain number per spike 0.83** 0.56** 0.77** 0.12 0.77** 0.51**
百粒重100-grain weight (g) 0.16 0.42** 0.12 0.51** 0.15 0.50**
生物量
Biomass
(g plant-1)
根Root 0.78** 0.73** 0.63** 0.14 0.68** 0.59**
茎Stem 0.72** 0.83** 0.51** 0.17 0.67** 0.72**
叶Leaf 0.84** 0.87** 0.67** 0.26 0.79** 0.74**
氮素积累量
N accumulation
(mg plant-1)
根Root 0.53** 0.52** 0.46** 0.23 0.49** 0.55**
茎Stem 0.19 0.71** 0.09 0.19 0.25 0.69**
叶Leaf 0.65** 0.61** 0.55** 0.25 0.67** 0.65**

图5

氮肥用量、秸秆和菌根真菌直接或间接影响玉米籽粒产量的结构方程模型(SEM)分析 实线和虚线分别表示正路径和负路径, 数值表示路径系数; R2值表示相关系数。"

[1] Veresoglou S D, Chen B D, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem, 2012,46:53-62.
doi: 10.1016/j.soilbio.2011.11.018
[2] 金海如, 刘洁, 刘静, 黄晓伟. 丛枝菌根真菌氮吸收、运转和传递机理的总述. 中国科学: 生命科学, 2012,42:355-364.
Jin H R, Liu J, Liu J, Huang X W. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Sci Sin (Vitae), 2012,42:355-364 (in Chinese with English abstract).
[3] 张亮, 王晓娟, 王强, 王茜, 张云飞, 金樑. 同位素示踪技术在丛枝菌根真菌生态学研究中的应用. 生态学报, 2016,36:2787-2797.
Zhang L, Wang X J, Wang Q, Wang Q, Zhang Y F, Jin L. The role of the isotope tracer technique in ecological research of arbuscular mycorrhizal fungi. Acta Ecol Sin, 2016,36:2787-2797 (in Chinese with English abstract).
[4] Pellegrino E, Öpik M, Bonari E, Ercoli L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem, 2015,84:210-217.
doi: 10.1016/j.soilbio.2015.02.020
[5] Zhang S J, Lehmann A, Zheng W S, You Z Y, Rillig M C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol, 2019,222:543-555.
doi: 10.1111/nph.2019.222.issue-1
[6] 陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014,34:4807-4815.
Chen Y L, Chen B D, Liu L, Hu Y J, Xu T L, Zhang X. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecol Sin, 2014,34:4807-4815 (in Chinese with English abstract).
[7] Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ, 2005,28:1247-1254.
doi: 10.1111/pce.2005.28.issue-10
[8] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA, 2010,107:13754-13759.
doi: 10.1073/pnas.1005874107
[9] 李侠, 张俊伶. 丛枝菌根根外菌丝对不同形态氮素的吸收能力. 核农学报, 2007,21:195-200.
Li X, Zhang J L. Uptake of different forms of nitrogen by hyphae of arbuscular mycorrhizal fungi. J Nucl Agric Sci, 2007,21:195-200 (in Chinese with English abstract).
[10] 刘文科, 杜连凤. 不同类型土壤上接种丛枝菌根真菌对玉米氮素吸收的影响. 玉米科学, 2007,15(6):103-105.
Liu W K, Du L F. The effects of six arbuscular mycorrhizal fungi on N uptake of maize in three different type soils. Maize Sci, 2007,15(6):103-105 (in Chinese with English abstract).
[11] 冯固, 白灯莎, 杨茂秋, 李晓林, 张福锁, 李生秀. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响. 作物学报, 2000,26:743-750.
Feng G, Bai D S, Yang M Q, Li X L, Zhang F S, Li S X. Influence of inoculating arbuscular mycorrhizal fungi on growth and salinity tolerance parameters of maize plants. Acta Agron Sin, 2000,26:743-750 (in Chinese with English abstract).
[12] 郭静, 罗培宇, 杨劲峰, 李冬冬, 黄月玥, 韩晓日. 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响. 中国农业科学, 2018,51:4677-4689.
Guo J, Luo P Y, Yang J F, Li D D, Huang Y Y, Han X R. Influence of long-term fertilization on community structures and colonization of arbuscular mycorrhizal fungi in a brown soil. Sci Agric Sin, 2018,51:4677-4689 (in Chinese with English abstract).
[13] 秦子娴, 朱敏, 郭涛. 干旱胁迫下丛枝菌根真菌对玉米生理生化特性的影响. 植物营养与肥料学报, 2013,19:510-516.
Qin Z X, Zhu M, Guo T. Influence of mycorrhizal inoculation on physiological and biochemical characteristics of maize (Zea mays) under water stress. Plant Nutr Fert Sci, 2013,19:510-516 (in Chinese with English abstract).
[14] 朱先灿, 宋凤斌, 徐洪文. 低温胁迫下丛枝菌根真菌对玉米光合特性的影响. 应用生态学报, 2010,21:470-475.
Zhu X C, Song F B, Xu H W. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Chin J Appl Ecol, 2010,21:470-475 (in Chinese with English abstract).
[15] Toljander J F, Santos-Gonzáles J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol, 2008,65:323-338.
doi: 10.1111/j.1574-6941.2008.00512.x pmid: 18547325
[16] Bakhshandeh S, Corneoa P E, Mariotte P, Kertesza M A, Dijkstra F A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric Ecosys Environ, 2017,247:130-136.
doi: 10.1016/j.agee.2017.06.027
[17] Tian H, Drijber R A, Zhang J L, Li X L. Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agric Ecosys Environ, 2013,164:53-61.
doi: 10.1016/j.agee.2012.09.007
[18] Williams A, Borjesson G, Hedlund K. The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition. Soil Biol Biochem, 2013,67:41-46.
doi: 10.1016/j.soilbio.2013.08.008
[19] Duffková R, Fučík P, Jurkovská L, Janoušková M. Experimental evaluation of the potential of arbuscular mycorrhiza to modify nutrient leaching in three arable soils located on one slope. Appl Soil Ecol, 2019,143:116-125.
doi: 10.1016/j.apsoil.2019.06.001
[20] Wang X X, Wang X J, Sun Y, Cheng Y, Liu S T, Chen X P, Feng G, Kuyper T W. Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a n deficient soil. Front Microbiol, 2018,9:418.
doi: 10.3389/fmicb.2018.00418
[21] 毕于运, 高春雨, 王亚静, 李宝玉. 中国秸秆资源数量估算. 农业工程学报, 2009,25(12):211-217.
Bi Y Y, Gao C Y, Wang Y J, Li B Y. Estimation of straw resources in China. Trans CSAE, 2009,25(12):211-217 (in Chinese with English abstract).
[22] Soon Y K, Lupwayi N Z. Straw management in a cold semi-arid region: impact on soil quality and crop productivity. Field Crops Res, 2012,139:39-46.
doi: 10.1016/j.fcr.2012.10.010
[23] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019,52:1746-1760.
Zhang X L, Zhou Y N, Li X L, Hou X P, An T T, Wang Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Sci Agric Sin, 2019,52:1746-1760 (in Chinese with English abstract).
[24] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001,413:297-299.
pmid: 11565029
[25] 郭涛, 罗珍, 朱敏, 王晓峰. 丛枝菌根真菌对玉米秸秆降解的影响及其作用机制. 生态学报, 2014,34:4080-4087.
Guo T, Luo Z, Zhu M, Wang X F. Compare different effect of arbuscular mycorrhizal colonization on maize straw degradation. Acta Ecol Sin, 2014,34:4080-4087 (in Chinese with English abstract).
[26] Gui H, Hyde K, Xu J C, Mortimer P. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Sci Rep, 2017,7:42184.
doi: 10.1038/srep42184
[27] 王维华, 孙丹丹, 郑锦龙, 刘润进. AM真菌与作物秸秆对土壤养分和植物生长的影响. 青岛农业大学学报(自然科学版), 2018,35(2):83-89.
Wang W H, Sun D D, Zheng J L, Liu R J. Effects of arbuscular mycorrhizal fungi and plant straw on soil nutrients and plant growth. J Qingdao Agric Univ (Nat Sci Edn), 2018,35(2):83-89 (in Chinese with English abstract).
[28] Köhl L, Marcel G A, Van D H. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem, 2016,94:191-199.
doi: 10.1016/j.soilbio.2015.11.019
[29] 王强, 王茜, 董梅, 王晓娟, 张亮, 金樑. 分室培养装置在丛枝菌根真菌研究中的应用及其发展. 植物生态学报, 2014,38:1250-1260.
doi: 10.3724/SP.J.1258.2014.00120
Wang Q, Wang Q, Dong M, Wang X J, Zhang L, Jin L. Application and progress of split-compartment facility in studies of arbuscular mycorrhizal fungi. Chin J Plant Ecol, 2014,38:1250-1260 (in Chinese with English abstract).
[30] Frey B, Schüepp H. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol, 1993,124:221-230.
doi: 10.1111/nph.1993.124.issue-2
[31] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann Rev Plant Biol, 2011,62:227-250.
doi: 10.1146/annurev-arplant-042110-103846
[32] 祝英, 刘英霞, 巩晓芳, 陈应龙, 任爱天, 刘润进, 金樑, 熊友才. 3种丛枝菌根真菌与3种寄主植物的共生关系. 微生物学通报, 2016,43:527-533.
Zhu Y, Liu Y X, Gong X F, Chen Y L, Ren A T, Liu R J, Jin L, Xiong Y C. Symbiosis between three arbuscular mycorrhizal fungi and three host plants. Microbiol China, 2016,43:527-533 (in Chinese with English abstract).
[33] Walder F, Niemann H, Natarajan M, Lehmann M F, Boller T, Wiemken A. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol, 2012,159:789-797.
doi: 10.1104/pp.112.195727
[34] Miransari M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol, 2011,193:77-81.
doi: 10.1007/s00203-010-0657-6
[35] Cavagnaro T R, Barrios-Masias F H, Jackson L E. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant Soil, 2012,353:181-194.
doi: 10.1007/s11104-011-1021-6
[36] Campos-Soriano L, Segundo B S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal Behav, 2011,6:553-557.
pmid: 21422823
[37] Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun, 2010,48:1-11.
[38] 姜德峰, 蒋家慧, 李敏, 刘润进, 李晓林. AM菌对玉米某些生理特性和籽粒产量的影响. 中国农业科学, 1998,31(1):15-20.
Jiang D F, Jiang J H, Li M, Liu R J, Li X L. Effects of arbuscular mycorrhizal fungi on physiological characteristics and grain yield of maize. Sci Agric Sin, 1998,31(1):15-20 (in Chinese with English abstract).
[39] 黄京华, 刘青, 李晓辉, 曾任森, 骆世明. 丛枝菌根真菌诱导玉米根系形态变化及其机理. 玉米科学, 2013,21(3):131-135.
Huang J H, Liu Q, Li X H, Zeng R S, Luo S M. Mechanism of maize root morphology change induced by arbuscular mycorrhizal fungi. J Maize Sci, 2013,21(3):131-135 (in Chinese with English abstract).
[40] Liu R J, Li M, Meng X X, Liu X, Li X L. Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystema, 2000,19:91-96.
[41] Kaldorf M, Ludwig-Muller J. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant, 2000,109:58-67.
doi: 10.1034/j.1399-3054.2000.100109.x
[42] Craine J M, Morriw C, Fierer N. Microbial nitrogen limitation increases decomposition. Ecology, 2007,88:2105-2113.
doi: 10.1890/06-1847.1
[43] Hobbie S E. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology, 2008,89:2633-2644.
pmid: 18831184
[44] Whiteside M D, Treseder K K, Atsatt P R. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology, 2009,90:100-108.
pmid: 19294917
[45] 贾艳艳, 顾大路, 杨文飞, 吴传万, 孙爱侠, 诸俊, 王伟中, 杜小凤. 丛枝菌根真菌对还田麦秆分解及玉米生物量的影响. 江苏农业学报, 2019,35:612-617.
Jia Y Y, Gu D L, Yang W F, Wu C W, Sun A X, Zhu J, Wang W Z, Du X F. Effects of arbuscular mycorrhizal fungi colonization on wheat-straw decomposition and maize biomass. Jiangsu J Agric Sci, 2019,35:612-617 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展[J]. 作物学报, 2022, 48(1): 1-14.
[5] 赵杰, 李绍平, 程爽, 田晋钰, 邢志鹏, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162-1174.
[6] 王艳丽,吴鹏年,李培富,王西娜,朱旭. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响[J]. 作物学报, 2019, 45(8): 1230-1237.
[7] 程乙,刘鹏,刘玉文,庞尚水,董树亭,张吉旺,赵斌,任佰朝. 黄淮海区域现代夏玉米品种产量与养分吸收规律[J]. 作物学报, 2019, 45(11): 1699-1714.
[8] 王劲松,焦晓燕,丁玉川,董二伟,白文斌,王立革,武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(08): 1269-1278.
[9] 张凡,睢宁,余超然,刘瑞显,杨长琴,宋光雷,孟亚利,周治国. 小麦秸秆还田和施钾对棉花产量与养分吸收的效应[J]. 作物学报, 2014, 40(12): 2169-2175.
[10] 卢昆丽,尹燕枰,王振林*,李勇,彭佃亮,杨卫兵,崔正勇,杨东清,江文文. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制[J]. 作物学报, 2014, 40(09): 1686-1694.
[11] 林晶晶,李刚华,薛利红,张巫军,许慧阁,王绍华,杨林章,丁艳锋. 15N示踪的水稻氮肥利用率细分[J]. 作物学报, 2014, 40(08): 1424-1434.
[12] 王亚江,魏海燕*,颜希亭,葛梦婕,孟天瑶,张洪程,戴其根,霍中洋,许轲,费新茹. 光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响[J]. 作物学报, 2014, 40(07): 1235-1244.
[13] 王寅,鲁剑巍,李小坤,任涛,丛日环,占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果[J]. 作物学报, 2013, 39(08): 1491-1500.
[14] 于天一,逄焕成,唐海明,杨光立,李玉义,肖小平,汤文光,陈阜,任天志. 不同母质发育的土壤对双季稻产量及养分吸收特性的影响[J]. 作物学报, 2013, 39(05): 896-904.
[15] 李鸿伟,杨凯鹏,曹转勤,王志琴,杨建昌. 稻麦连作中超高产栽培小麦和水稻的养分吸收与积累特征[J]. 作物学报, 2013, 39(03): 464-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!