欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1476-1487.doi: 10.3724/SP.J.1006.2022.13017

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响

杨欢1(), 周颖1,2, 陈平1, 杜青1, 郑本川1, 蒲甜1, 温晶3, 杨文钰1,*(), 雍太文1,*()   

  1. 1四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
    2桃源县农业农村局, 湖南常德 415700
    3禹城市农业农村局, 山东德州 251200
  • 收稿日期:2021-03-01 接受日期:2021-09-09 出版日期:2022-06-12 网络出版日期:2021-10-19
  • 通讯作者: 杨文钰,雍太文
  • 作者简介:E-mail: 1028875499@qq.com
  • 基金资助:
    国家自然科学基金项目(31872856);国家重点研发计划项目(2016YFD030020205)

Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system

YANG Huan1(), ZHOU Ying1,2, CHEN Ping1, DU Qing1, ZHENG Ben-Chuan1, PU Tian1, WEN Jing3, YANG Wen-Yu1,*(), YONG Tai-Wen1,*()   

  1. 1College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
    2Taoyuan County Agriculture Bureau, Changde 415700, Hunan, China
    3Yucheng Municipal Agriculture Bureau, Dezhou 251200, Shandong, China
  • Received:2021-03-01 Accepted:2021-09-09 Published:2022-06-12 Published online:2021-10-19
  • Contact: YANG Wen-Yu,YONG Tai-Wen
  • Supported by:
    National Natural Science Foundation of China(31872856);National Key Research and Development Program of China(2016YFD030020205)

摘要:

为明确玉米大豆套作、玉米花生间作养分吸收利用对产量优势贡献的差异。本研究开展了2年大田试验, 通过比较间套作与相应单作成熟期植株氮磷钾养分吸收量和利用效率, 综合分析了玉米大豆套作、玉米花生间作中养分吸收和利用效率的变化。结果表明: 玉米大豆套作土地当量比(land equivalent ratio, LER)为1.16~1.72, 具有套作产量优势, 玉米花生间作LER为0.89~1.13, 无明显间作产量优势。玉米大豆套作体系中, 植株氮、磷、钾养分吸收总量比相应单作提高32.60%~54.22%、27.35%~34.64%和17.74%~24.42%, 氮素利用效率低于相应单作21.99%~42.07%。氮、磷、钾吸收效率对LER的贡献分别为0.34~0.62、0.31~0.46和0.22~0.32, 利用效率的贡献分别为-0.11~ -0.35、-0.03~ -0.31和-0.11~0.22。玉米花生间作体系中, 氮、磷、钾养分吸收总量分别高出相应单作-7.86%~31.58%、23.09%~46.52%和1.60%~55.48%, 氮素利用效率高出相应单作7.55~26.60。氮、磷、钾吸收效率对LER的贡献分别为0~0.22、0.05~0.27和-0.11~0.32, 利用效率的贡献分别为-0.25~0.19、-0.32~0.11和-0.47~0.32。因此, 玉米大豆套作优势在营养方面的基础主要来自于相对于单作养分吸收总量的增加, 而玉米花生间作无明显间作优势主要因为养分吸收对产量优势的贡献较小。

关键词: 玉米大豆套作, 玉米花生间作, 养分吸收量, 养分利用效率, 产量优势

Abstract:

To clarify the difference of nutrient uptake and utilization to yield advantage between maize-soybean relay intercropping and maize-peanut intercropping, we conducted a field experiment for two consecutive years. The results were obtained by comparing nitrogen (N), phosphorous (P), and potassium (K) absorption efficiency and utilization in the intercropping with sole cropping. The results showed that land equivalent ratio (LER) of maize-soybean relay intercropping was 1.16-1.72, which had the advantage of intercropping yield, but the LER of maize-peanut intercropping was 0.89-1.13, which had no obvious yield disadvantage. In maize-soybean relay intercropping system, the amount of N, P, and K uptake was higher than that of the corresponding sole cropping by 32.60%-54.22%, 27.35%-34.64, and 17.74%-24.42%, respectively, but the N utilization efficiency was lower by 21.99%-42.07%. The contributions of the N, P, and K uptake efficiencies to LER were 0.34-0.62, 0.31-0.46, and 0.22-0.32, and the utilization efficiencies contributions were -0.11 to -0.35, -0.03 to -0.31, and -0.11 to 0.22, respectively. In maize-peanut intercropping system, the amount of N, P, and K uptake was higher than that of the corresponding sole cropping by -7.86% to 31.58%, 23.09%-46.52%, and 1.60%-55.48%, respectively, and the N utilization efficiency was higher by 7.55-26.60. The contributions of the N, P and K uptake efficiencies to LER were 0-0.22, 0.05-0.27, and -0.11-0.32, respectively, and the utilization efficiencies contributions were -0.25-0.19, -0.32-0.11, and -0.47-0.32, respectively. In conclusion, yield advantage of maize-soybean relay intercropping was mainly from enhanced nutrient uptake efficiency, but there was no obvious yield advantage in maize-peanut intercropping mainly due to relatively less contribution of nutrient uptake to yield advantage.

Key words: maize-soybean relay intercropping, maize-peanut intercropping, nutrient uptake, nutrient conversion efficiency, yield advantage

表1

2017-2018年试验地气象数据"

作物
Crop
降雨量
Rainfall (mm)
日照时数
Sunshine hours (h)
积温
Accumulated temperature (℃)
2017 2018 2017 2018 2017 2018
玉米 Maize 435.3 744.8 608.6 396.7 3211.0 2879.1
大豆 Soybean 444.0 962.3 496.7 451.0 3456.0 3689.4
花生 Peanut 426.2 938.5 630.7 549.4 3657.0 3697.5

图1

种植模式图"

表2

施氮水平及施氮方式明细表"

种植模式
Pattern
施氮处理
Nitrogen
application
施氮水平
Nitrogen level
基肥
Base fertilizer
追肥 Top dressing
拔节期
Jointing stage
大喇叭口期
Booting stage
玉米单作 不施氮NN 0 0 0 0
Sole maize 常规施氮 CN 240 80 80 80
豆科单作 不施氮 NN 0 0 0 0
Sole legume 常规施氮CN 80 80 0 0
玉米-豆科带状间套作 不施氮 NN 0 0 0 0
Maize-legume strip intercropping 常规施氮CN 160 80 40 40

表3

间套作土地当量比、间套作和单作体系中作物籽粒产量及生物学产量"

指标
Index
施氮水平
Fertilizer
种植模式
Pattern
间套作
Intercrops
单作加权平均
Weighted means for
sole crops
土地当量比
Land equivalent ratio
2017 2018 2017 2018 2017 2018
籽粒产量
Grain yields
(kg hm-2)
不施氮
NN
玉米大豆套作
Maize-soybean relay intercropping
8936.04 a 9547.23 a 6363.89 b 6031.62 b 1.72 1.43
玉米花生间作
Maize-peanut intercropping
8355.32 a 9240.90 b 7405.88 a 6623.26 a 0.89 1.13
常规施氮CN 玉米大豆套作
Maize-soybean relay intercropping
9851.65 a 10,912.08 a 6689.24 b 7064.82 b 1.56 1.46
玉米花生间作
Maize-peanut intercropping
9437.94 a 10,504.46 b 7420.52 a 8008.82 a 1.02 1.10
生物学产量
Biological
yields
(kg hm-2)
不施氮
NN
玉米大豆套作
Maize-soybean relay intercropping
18,798.92 a 20,447.06 a 16,182.14 a 14,722.28 a 1.16 1.36
玉米花生间作
Maize-peanut intercropping
14,780.36 b 14,466.76 b 13,085.81 b 10,584.72 b 0.97 1.04
常规施氮CN 玉米大豆套作
Maize-soybean relay intercropping
21,802.33 a 24,043.56 a 17,344.39 a 18,478.95 a 1.25 1.28
玉米花生间作
Maize-peanut intercropping
16,425.94 b 17,761.39 b 13,235.39 b 13,254.94 b 1.06 1.04

表4

间套作和单作体系中作物的养分吸收量"

养分
Nutrient
施氮水平
Fertilizer
种植模式
Pattern
间套作
Intercrops (kg hm-2)
单作加权平均
Weighted means for sole crops (kg hm-2)
间套作养分吸收量的增减
Changes in nutrient uptake of intercrops relative to sole crops (%)
2017 2018 2017 2018 2017 2018

Nitrogen
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 401.60 a 366.70 a 294.14 a 237.78 a 36.53** 54.22**
玉米花生间作 Maize-peanut intercropping 206.60 b 131.47 b 222.50 b 99.92 b -7.15** 31.58**
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 471.74 a 424.48 a 355.76 a 304.27 a 32.60** 39.51**
玉米花生间作 Maize-peanut intercropping 251.31 b 177.08 b 272.74 b 154.37 b -7.86** 14.71**

Phosphorus
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 73.58 a 44.09 a 54.65 a 33.64 a 34.64** 31.04**
玉米花生间作 Maize-peanut intercropping 48.26 b 24.12 b 32.94 b 17.29 b 46.52** 39.44**
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 86.49 a 50.52 a 67.91 a 37.85 a 27.35** 33.45**
玉米花生间作 Maize-peanut intercropping 50.40 b 37.64 b 40.94 b 25.72 b 23.09** 46.31**

Potassium
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 398.86 a 259.68 a 324.28 a 220.55a 23.00** 17.74**
玉米花生间作 Maize-peanut intercropping 232.20 b 133.85 b 228.54 b 98.41 b 1.60 36.01**
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 479.31 a 310.84 a 385.24 a 261.58 a 24.42** 18.83**
玉米花生间作 Maize-peanut intercropping 317.55 b 200.08 b 285.04 b 128.68 b 11.40** 55.48**

表5

间套作和单作体系中作物的养分利用效率"

养分
Nutrient
施氮水平
Fertilizer
种植模式
Pattern
间套作
Intercrops
(kg kg-1)
单作加权平均
Weighted means for sole crops
(kg kg-1)
间套作养分利用效率的增减
Changes in nutrient efficiency by intercrops relative to sole crops
2017 2018 2017 2018 2017 2018

Nitrogen
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 22.25 b 26.04 b 32.66 b 45.03 b -31.73** -42.07**
玉米花生间作 Maize-peanut intercropping 40.45 a 70.37 a 37.65 a 63.37 a 7.55 11.01*
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 20.15 b 24.33 b 25.83 b 32.84 b -21.99** -25.92**
玉米花生间作 Maize-peanut intercropping 37.56 a 59.43 a 29.66 a 49.64 a 26.60** 19.68**

Phosphorus
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 121.45 b 216.61 b 132.27 b 254.39 b -7.88 -14.81**
玉米花生间作 Maize-peanut intercropping 173.15 a 383.20 a 214.58 a 363.59 a -19.07** 5.40**
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 108.52 b 194.34 b 111.56 b 188.38 b -2.70 3.20
玉米花生间作 Maize-peanut intercropping 187.28 a 279.17 a 171.14 a 304.89 a 9.48* -8.35*

Potassium
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 22.41 b 36.82 b 21.85 b 35.94 b 2.77 2.54
玉米花生间作 Maize-peanut intercropping 35.98 a 69.04 a 30.21 a 72.10 a 19.25** -4.21*
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 19.04 b 31.67 b 18.92 b 33.39 b 0.69 -5.14
玉米花生间作 Maize-peanut intercropping 29.72 a 52.52 a 24.48 a 65.15 a 21.43** -19.38**

表6

养分吸收和利用效率对间套作优势的贡献"

养分
Nutrient
施氮水平
Fertilizer
种植模式
Pattern
土地当量比
LER
吸收因子
Uptake factor
1+am+as(p)
利用因子
Utilization factor
ew+es(p)
交互因子
Interaction factor
amem+as(p)es(p)
2017 2018 2017 2018 2017 2018 2017 2018

Nitrogen
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 1.16 1.36 0.4 0.62 -0.35 -0.33 0.11 0.07
玉米花生间作 Maize-peanut intercropping 0.97 1.04 0.05 0.22 -0.04 -0.25 -0.04 0.07
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 1.25 1.28 0.34 0.35 -0.15 -0.11 0.06 0.04
玉米花生间作 Maize-peanut intercropping 1.06 1.04 0.00 0.07 0.19 -0.12 -0.13 0.09

Phosphorus
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 1.16 1.36 0.37 0.46 -0.31 -0.06 0.09 -0.05
玉米花生间作 Maize-peanut intercropping 0.97 1.04 0.16 0.24 -0.2 -0.22 0.00 0.01
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 1.25 1.28 0.35 0.31 -0.09 -0.03 -0.01 0.00
玉米花生间作 Maize-peanut intercropping 1.06 1.04 0.05 0.27 0.11 -0.32 -0.1 0.10

Potassium
不施氮NN 玉米大豆套作 Maize-soybean relay intercropping 1.16 1.36 0.23 0.22 -0.11 0.22 0.04 -0.08
玉米花生间作 Maize-peanut intercropping 0.97 1.04 -0.11 0.14 0.29 -0.27 -0.21 0.17
常规施氮CN 玉米大豆套作 Maize-soybean relay intercropping 1.25 1.28 0.30 0.32 -0.09 -0.02 0.04 -0.02
玉米花生间作 Maize-peanut intercropping 1.06 1.04 0.02 0.32 0.32 -0.47 -0.28 0.19
[1] 杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全. 中国农业科学, 2019, 52: 3748-3750.
Yang W Y, Yang F. Developing maize-soybean strip intercropping for demand security of national food. Sci Agric Sin, 2019, 52: 3748-3750 (in Chinese with English abstract).
[2] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Integr Agric, 2018, 17: 747-754.
doi: 10.1016/S2095-3119(17)61789-1
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响. 作物学报, 2021, 47: 1175-1187.
doi: 10.3724/SP.J.1006.2021.04148
Dang K, Gong X W, Lyu S M, Zhao G, Tian L X, Jin F, Yang P, Feng B L, Gao X L. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping. Acta Agron Sin, 2021, 47: 1175-1187 (in Chinese with English abstract).
[4] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47: 929-941.
doi: 10.3724/SP.J.1006.2021.01047
Wang Y F, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Response of photosynthetic performance of intercropped wheat to interaction intensity between above-and below-ground. Acta Agron Sin, 2021, 47: 929-941 (in Chinese with English abstract).
[5] Yang F, Liao D P, Wu X L, Gao R C, Fan Y F, Raza M A, Wang X C, Yong T W, Liu W G, Liu J, Du J B, Shu K, Yang W Y. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res, 2017, 203: 16-23.
doi: 10.1016/j.fcr.2016.12.007
[6] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[7] Bedoussac L, Journet E P, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensne E S, Pireur L, Justes E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: a review. Agron Sustain Dev, 2015, 35: 911-935.
doi: 10.1007/s13593-014-0277-7
[8] 雍太文, 陈平, 刘小明, 周丽, 宋春, 王小春, 杨峰, 刘卫国, 杨文钰. 减量施氮对玉米-大豆套作系统土壤氮素氨化硝化及固氮作用的影响. 作物学报, 2018, 44: 1485-1495.
Yong T W, Chen P, Liu X M, Zhou L, Song C, Wang X C, Yang F, Liu W G, Yang W Y. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems. Acta Agron Sin, 2018, 44: 1485-1495 (in Chinese with English abstract).
[9] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38: 965-973.
Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean. Sci Agric Sin, 2005, 38: 965-973 (in Chinese with English abstract).
[10] Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol Biochem, 2012, 46: 181-190.
doi: 10.1016/j.soilbio.2011.11.015
[11] Mei P P, Gui L G, Wang P, Huang J C, Long H Y, Christie P, Li L. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Res, 2012, 130: 19-27.
doi: 10.1016/j.fcr.2012.02.007
[12] Dissanayaka S, Maruyama H, Masuda G, Wasaki J. Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant Soil, 2015, 390: 223-236.
doi: 10.1007/s11104-015-2392-x
[13] Li X F, Wang C B, Zhang W P, Wang L H, Tian X L, Yang S C, Jiang W L, Ruijven J V, Li L. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant Soil, 2018, 422: 479-493.
doi: 10.1007/s11104-017-3487-3
[14] 李隆, 李晓林, 张福锁, 孙建好, 杨思存, 芦满济. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6: 140-146.
Li L, Li X L, Zhang F S, Sun J H, Yang S C, Lu M J. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in wheat/soybean intercropping. J Plant Nutr Fert, 2000, 6: 140-146 (in Chinese with English abstract).
[15] 党小燕, 刘建国, 帕尼古丽, 王江丽, 危常州, 李隆. 不同棉花间作模式中作物养分吸收和利用对间作优势的贡献. 中国生态农业学报, 2012, 20: 513-519.
Dang X Y, Liu J G, Paniguli, Wang J L, Wei C Z, Li L. Uptake and conversion efficiencies of NPK and corresponding contribution to yield advantage in cotton-based intercropping systems. Chin J Eco-Agric, 2012, 20: 513-519 (in Chinese with English abstract).
[16] 唐明明, 董楠, 包兴国, 卢秉林, 张炜平, 张美俊, 章芳芳, 李隆. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响. 中国农业大学学报, 2015, 20(5):48-56.
Tang M M, Dong N, Bao X G, Lu B L, Zhang W P, Zhang M J, Zhang F F, Li L. Effect of nutrient uptake and utilization on yield of intercropping systems in northwest China. J China Agric Univ, 2015, 20(5):48-56 (in Chinese with English abstract).
[17] Morris R A, Garrity D P. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Res, 1993, 34: 319-334.
doi: 10.1016/0378-4290(93)90120-C
[18] Trenbath B R, Francis C A. Resource Use by Intercrops. Multiple Cropping System. New York: Macmillan Press, 1986. pp 57-81.
[19] Waterworth J. Intercropping cotton and groundnut in low and high rainfall areas in Eastern Zambia. Exp Agric, 1994, 30: 461-465.
doi: 10.1017/S0014479700024716
[20] Hussain S, Iqbal N, Brestic M, Raza M A, Pang T, Langham D R, Safdar M E, Ahmed S, Wen B, Gao Y. Changes in morphology, chlorophyll fluorescence performance and rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci Total Environ, 2019, 658: 626-637.
doi: 10.1016/j.scitotenv.2018.12.182
[21] 任永福, 陈国鹏, 蒲甜, 陈诚, 曾瑾汐, 彭霄, 马艳玮, 杨文钰, 王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应. 作物学报, 2019, 45: 728-739.
doi: 10.3724/SP.J.1006.2019.83040
Ren Y F, Chen G P, Pu T, Chen C, Zeng J X, Peng X, Ma Y W, Yang W Y, Wang X C. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system. Acta Agron Sin, 2019, 45: 728-739 (in Chinese with English abstract).
[22] Fan Y, Wang Z, Liao D, Raza M A, Wang B, Zhang J, Chen J, Feng L, Wu X, Liu C. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize- soybean intercropping under different row configurations. Sci Rep, 2020, 10: 9504.
doi: 10.1038/s41598-020-66459-y
[23] 张晓娜, 陈平, 杜青, 周颖, 任建锐, 金福, 杨文钰, 雍太文. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响. 中国生态农业学报, 2019, 27: 1183-1194.
Zhang X N, Chen P, Du Q, Zhou Y, Ren J R, Jin F, Yang W Y, Yong T W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chin J Eco-Agric, 2019, 27: 1183-1194 (in Chinese with English abstract).
[24] 张晓娜, 陈平, 庞婷, 杜青, 付智丹, 周颖, 任建锐, 杨文钰, 雍太文. 玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响. 四川农业大学学报, 2017, 35: 484-490.
Zhang X N, Chen P, Pang T, Du Q, Fu Z D, Zhou Y, Ren J R, Yang W Y, Yong T W. The effects of dry matter accumulation, distribution and yield in the maize/soybean and maize/peanut intercropping system. J Sichuan Agric Univ, 2017, 35: 484-490 (in Chinese with English abstract).
[25] 张晓娜. 不同氮水平下玉米-大豆、玉米-花生带状复合种植茎叶器官对产量形成的响应机理研究. 四川农业大学硕士学位论文, 四川成都, 2019.
Zhang X N. Response Mechanism of Stem and Leaf Organs to Yield Formation in Maize-soybean and Maize-peanut Multiple Intercropping under Different Nitrogen Levels. MS Thesis of Sichuan Agriculture University, Chengdu, Sichuan, China, 2019 (in Chinese with English abstract).
[26] Li L, Sun J, Zhang F. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290.
doi: 10.1007/s00442-005-0256-4
[27] Chowdhury M K, Rosario E L. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize/mungbean intercropping. J Agric Sci, 1994, 122: 193-199.
doi: 10.1017/S0021859600087360
[28] 李隆, 杨思存, 孙建好, 李晓林, 张福锁. 春小麦大豆间作条件下作物养分吸收积累动态的研究. 植物营养与肥料学报, 1999, 5: 68-76.
Li L, Yang S C, Sun J H, Li X L, Zhang F S. Dynamic of nitrogen, phosphorus and potassium uptake by intercropping species in the spring wheat/soybean intercropping. Plant Nutr Fert Sci, 1999, 5: 68-76 (in Chinese with English abstract).
[29] Li Y Y, Yu C B, Xu C, Li C J, Li L. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant Soil, 2009, 323: 295-308.
doi: 10.1007/s11104-009-9938-8
[30] Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA, 2007, 104: 11192-11196.
doi: 10.1073/pnas.0704591104
[31] Li L, Tang C, Rengel Z, Zhang F. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant Soil, 2003, 248: 297-303.
doi: 10.1023/A:1022389707051
[32] 雍太文, 刘小明, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响. 应用生态学报, 2014, 25: 474-482.
Yong T W, Liu X M, Liu W Y, Su B Y, Song C, Yang F, Wang X C, Yang W Y. Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system. Chin J Appl Ecol, 2014, 25: 474-482 (in Chinese with English abstract).
[33] Willey R W. Intercropping—its importance and research needs. Part 1. Competition and yield advantage. Field Crop Abstr, 1979, 32: 1-10.
[1] 曾研华, 吴建富, 曾勇军, 范呈根, 谭雪明, 潘晓华, 石庆华. 机收稻草全量还田减施化肥对双季晚稻养分吸收利用及产量的影响[J]. 作物学报, 2018, 44(03): 454-462.
[2] 徐富贤, 熊洪, 张林, 郭晓艺, 朱永川, 周兴兵, 刘茂. 西南稻区不同地域和施氮水平对杂交中稻氮、磷、钾吸收累积的影响[J]. 作物学报, 2011, 37(05): 882-894.
[3] 黄明丽;邓西平;周生路;赵玉宗;Shinobu INANAGA. 不同水肥条件下二倍体、四倍体和六倍体小麦养分吸收、利用效率的研究[J]. 作物学报, 2007, 33(05): 708-716.
[4] 王秋杰;寇长林;王永歧;王兴仁;张福锁. 砂地小麦套作花生的产量优势及其与养分利用效率关系的研究[J]. 作物学报, 1999, 25(01): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!