欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1424-1434.doi: 10.3724/SP.J.1006.2014.01424

• 耕作栽培·生理生化 • 上一篇    下一篇

15N示踪的水稻氮肥利用率细分

林晶晶1,李刚华1,薛利红2,*,张巫军1,许慧阁1,王绍华1,杨林章2,丁艳锋1,*   

  1. 1 南京农业大学国家信息农业工程技术中心 / 农业部南方作物生理生态重点开放实验室, 江苏南京210095;2 江苏省农业科学院农业资源与环境研究所,江苏南京210014
  • 收稿日期:2014-01-17 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 通讯作者: 薛利红, E-mail: njxuelihong@gmail.com; 丁艳锋, E-mail: dingyf@njau.edu.cn, ?025-84395033
  • 基金资助:

    本研究由国家自然科学基金项目(41171235),江苏省农业科技自主创新资金项目(CX[13]3040)和环保部公益性行业科研专项项目申(201309035-7)资助。

Subdivision of Nitrogen Use Efficiency of Rice Based on 15N Tracer

LIN Jing-Jing1,LI Gang-Hua1,XUE Li-Hong2,*,ZHANG Wu-Jun1,XU Hui-Ge1,WANG Shao-Hua1,YANG Lin-Zhang2,DING Yan-Feng1,*   

  1. 1 Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China?
  • Received:2014-01-17 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03
  • Contact: 薛利红, E-mail: njxuelihong@gmail.com; 丁艳锋, E-mail: dingyf@njau.edu.cn, ?025-84395033

摘要:

以粳稻武运粳23和超级杂交籼稻Y两优2号为供试品种,应用15N示踪方法研究不同时期施肥对水稻不同阶段氮肥利用率的影响,以确定不同时期施肥的最佳阶段氮肥利用率。结果表明,基肥在基肥阶段(移栽后的8 d左右)的吸收利用较低,2012年水稻基肥氮(15N)吸收量不到5 kg hm-2,2013年最大为7.5 kg hm-2,回收利用率在1.5%~11.5%之间;基肥主要是在蘖肥阶段(分蘖肥与穗肥之间)被吸收,其回收利用率在6.6%~24.9%之间,平均为15.6%;穗肥阶段(穗肥后到成熟)基本不再吸收基肥。基肥氮的总体恢复利用效率不高,在9.1%~22.8%之间,品种及氮肥运筹对基肥氮的总体恢复利用效率影响不显著。蘖肥主要在蘖肥阶段发生作用,施穗肥后水稻基本不再吸收蘖肥。蘖肥的总体恢复吸收利用率和基肥相当,在17%~34%之间,Y两优2号高于武运粳23。穗肥的回收效率最高,在54%~82.1%之间,武运粳23低于Y两优2号。水稻在整个生育期的总体氮肥恢复效率随氮肥用量的增加而下降,变化在32%~64%之间。水稻一生中吸收积累的氮素中,基肥的贡献占4.13%~10.59% (平均6.92%),蘖肥占3.98%~11.75% (平均7.58%),穗肥占13.32%~37.56% (平均26.02%),土壤的贡献在45.71%~70.83% (平均59.91%)之间。基蘖肥用量越大,其损失也越大,总体氮肥利用率也越低。研究结果证明,在水稻氮肥管理中必须考虑水稻各阶段对不同时期施肥的吸收利用情况,从而提高水稻氮肥利用效率,保证产量的同时减少不必要的损失。

关键词: 水稻, 氮肥管理, 15N示踪法, 不同施肥阶段, 氮肥利用率

Abstract:

The nitrogen (N) uptake, and N use efficiencies (NUE) at different rice growth stages (i.e. during basal, tillering and panicle fertilizations) were studied using 15N isotope tracing. A two-year field experiment with two N rates and two distribution ratios was conducted using two different high-yielding rice cultivars Wuyunjing 23 (japonica) and Yliangyou 2 (hybrid indica). A sub-plot of 15N isotope tracing experiment with three duplications under the same treatment was also set up in the field. The results revealed that basal nitrogen absorbed by rice was only 1.5%–11.5% before tillering fertilization (eight days after transplanting), 6.6%–24.9% from tillering fertilization to panicle fertilization, and little after panicle fertilization. The overall recovery efficiency of basal N (NUEB) was low and ranged from 9.1% to 22.8%, not significantly affected by different cultivars and N treatments. Tillering fertilizer N was mainly absorbed from tillering fertilization to panicle fertilization, and no longer had effect after panicle fertilization. NUE of tillering N fertilizer (NUET) was 17%–34%, which is almost the same as that of basal fertilizer. NUET of Yliangyou 2 was higher than that of Wuyunjing 23. Compared with basal and tillering N fertilizers, NUE of panicle N fertilizer (NUEP) was the highest with a value of 54.0%–82.1%, and Wuyunjing 23 had lower NUE than Yliangyou 2. The whole NUE in the entire growth period of all N fertilizers decreased with the increase of N application rate, and varied from 32% to 64%. Among the total N uptake of rice, the contribution was 4.13%–10.59% (average 6.92%) for basal N fertilizer, 3.98%–11.75% (average 7.58%) for tillering fertilizer, 13.32%–37.56% (average 26.02%) for panicle fertilizer, and 45.71%–70.83% (average 59.91%) for the soil. The experiment also revealed that the more the basal and tillering fertilizers applied, the lower the total NUE. It is suggested that rice N management, the N absorption and utilization from fertilizer applied at different stages should be considered to improve the NUE of rice, and ensure the hig yield while avoid the N loss.

Key words: Rice, Nitrogen management;, 15N, nitrogen application at different stages, Nitrogen use efficiency

[1]彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095–1103



Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zhou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095–1103 (in Chinese with English abstract)



[2]李庆逵. 中国农业持续发展中的肥料问题. 南昌: 江西科学技术出版社, 1997. pp 38–48



Li Q K. Fertilizer Issues in the Sustainable Development of China Agriculture. Nanchang: Jiangxi Science and Technology Press, 1997. pp 38–48 (in Chinese)



[3]Zhang J, Zhang H C, Duan X M, Xu Z J, Yang B, Guo B W, Du B, Dai Q G, Xu K, Huo Z Y, Wei H Y. Effects of soil fertility and nitrogen application rates on super rice yield, quality, and nitrogen use efficiency. Acta Agron Sin, 2012, 37(11): 2020–2029



[4]刘立军, 徐伟, 桑大志, 刘翠莲, 周家麟, 杨建昌. 实地氮肥管理提高水稻氮肥利用效率. 作物学报, 2006, 32: 987–994



Liu L J, Xu W, Sa D Z, Liu C L, Zhou J L, Yang J C. Site-specific nitrogen management increases fertilize-nitrogen use efficiency in rice. Acta Agron Sin, 2006, 32: 987–994 ( in Chinese with English abstract)



[5]万靓军, 张洪程, 霍中洋, 林忠成, 戴其根, 许轲, 张军. 氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响. 作物学报, 2007, 33: 175–182



Wang L J, Zhang H C, Huo Z Y, Lin Z C, Dai Q G, Xu K, Zhang J. Effects of soil fertility and nitrogen application rates on super rice yield, quality, and nitrogen use efficiency. Acta Agron Sin, 2007, 33: 175–182 (in Chinese with English abstract)



[6]Ladha J K, Pathak H, Krupnik T J, Six J, van Kessel C. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv Agron, 2005, 87: 85–156 



[7]王绍华, 曹卫星, 丁艳锋, 刘胜环, 王强盛. 基本苗数和施氮量对水稻氮吸收与利用的影响. 南京农业大学学报, 2003, 26(4): 1–4



Wang S H, Cao W X, Ding Y F, Liu S H, Wang Q S. Effects of planting density and nitrogen application rate on absorption and utilization of nitrogen in rice. J Nanjing Agric Univ, 2003, 26(4): 1–4 (in Chinese with English abstract)



[8]黄见良, 水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究. 湖南农业大学博士学位论文, 2003



Huang J L. Studies on Nitrogen Uptake Characteristics, Nitrogen Use Effieieney, Real Time Nitrogen Management, and Site Specific Nutrient Management Of Irrigated Rice. PhD Dissertation of Hunan Agricultural University, 2003 (in Chinese with English abstract)



[9]Cassman K G, Peng S B, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res, 1998, 56: 7–39



[10]黄见良, 邹应斌, 彭少兵, Buresh R J. 水稻对氮素的吸收、分配及其在组织中的挥发损失. 植物营养与肥料学报, 2004, 10: 579–583



Huang J L, Zou Y B, Peng S B, Buresh R J. Nitrogen uptake, distribution by rice and its losses from plant tissues. Plant Nutr Fert Sci, 2004, 10 : 579–583 (in Chinese with English abstract)



[11]丁艳锋, 赵长华, 王强盛. 穗肥施用时期对水稻氮素利用及产量的影响. 南京农业大学学报, 2003, 26(4): 5–8



Ding Y F, Zhao C H, Wang Q S. Effect of application stage of panicle fertilizer on rice grain yield and utilization of nitrogen. J Nanjing Agric Univ, 2003, 26(4): 5–8 (in Chinese with English abstract)



[12]凌启鸿, 张洪程, 戴其根, 丁艳锋, 凌励, 苏祖芳, 徐茂, 阙金华, 王绍华. 水稻精确定量施氮研究. 中国农业科学, 2005, 38: 2457−2467



Ling Q H, Zhang H C, Dai Q G, Ding Y F, Ling L, Su Z F, Xu M, Que J H, Wang S H. Study on precise and quantitative N application in rice. Sci Agric Sin, 2005, 38: 2457−2467 (in Chinese with English abstract)



[13]Huang J L, He F, Cui K, Buresh RJ, Xu B, Gong W, Peng S B. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008, 105: 70–80



[14]王维金. 关于不同籼稻品种和施肥时期稻株对15N的吸收及其分配的研究. 作物学报, 1994, 20: 476–480



Wang W J. Studies on rice uptake and distribution of 15N fertilizer in different varieties of indica rice and at different growth stages. Acta Agron Sin, 1994, 20: 476–480 ( in Chinese with English abstract)



[15]赵广才, 张保明, 王崇义. 应用15N研究小麦各部位氮素分配利用及施肥效应. 作物学报, 1998, 24: 854–480



Zhao G C, Zhang B Y, Wang C Y. Studies on the effect of fertilization and distribution utilization of nitrogen in different parts of wheat by using 15N tracer technique. Acta Agron Sin, 1998, 24: 854–858 ( in Chinese with English abstract)



[16]赵广才, 何中虎, 田奇卓, 李克民, 刘利华, 李振华, 张文彪. 应用15N研究施氮比例对小麦氮素利用的效应. 作物学报, 2004, 30: 159–162



Zhao G C, He Z H, Tian Q Z, Li K M, Liu L H, Li Z H, Zhang W B. Effect of application rate of nitrogen on its utilization in wheat by using 15N tracer technique. Acta Agron Sin, 2004 , 30: 159–162 ( in Chinese with English abstract)



[17]鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. pp 558–564



Lu R K. Agricultural Chemical Analysis Method of Soil. Beijing: China Agricultural Science and Technology Press, 2000. pp 558–564 (in Chinese)



[18]石玉, 于振文, 李延奇, 王雪. 施氮量和底追肥比例对冬小麦产量及肥料氮去向的影响. 中国农业科学, 2007, 40: 54–62



Shi Y, Yu Z W, Li Y Q, Wang X. Effects of nitrogen fertilizer rate and ratio of base and topdressing on winter wheat yield and fate of fertilizer nitrogen. Sci Agric Sin, 2007, 40: 54–62 (in Chinese with English abstract)



[19]晏娟, 沈其荣, 尹斌, 万新军. 应用15N示踪技术研究水稻对氮肥的吸收和分配. 核农学报, 2009, 23: 487–491



Yan J, Sheng Q R, Yan B, Wang X J. Fertilizer-N uptake and distribution in rice plants using 15N tracer technique. Acta Agric Nucl Sin, 2009, 23: 487–491 (in Chinese with English abstract)



[20]Takahashi S, Yagi A. Losses of fertilizer-derived N from transplanted rice after heading. Plant Soil, 2002, 242: 245–250



[21]徐阳春, 吴小庆, 郭世伟, 沈其荣. 水稻生育后期地上部氨挥发与氮素利用效率的研究. 植物营养与肥料学报, 2008, 14(2): 207–212



Xu Y C, Wu X Q, Guo S W, Shen Q R. Nitrogen use efficiency and ammonia volatilization from rice shoot in late growth stages. Plant Nutr Fert Sci, 2008, 14(2): 207–212 (in Chinese with English abstract)



[22]汪华, 杨京平, 金洁, 孙军华. 不同氮素用量对高肥力稻田水稻-土壤-水体氮素变化及环境影响分析. 水土保持学报, 2006, 20(1): 50–54



Wang H, Yang J P, Jin J, Sun J H. N variation in rice-soil-water system under different N application level in high-yielding paddy field and its environment effect. J Soil Water Conserv, 2006, 20(1): 50–54 (in Chinese with English abstract)



[23]Wang X, Suo Y, Feng Y, Shohag M J I, Gao J, Zhang Q, Xie S, Lin X. Recovery of (15)N–labeled urea and soil nitrogen dynamics as affected by irrigation management and nitrogen application rate in a double rice cropping system. Plant Soil, 2011, 343: 195–208



[24]符建荣. 控释氮肥对水稻的增产效应及提高肥料利用率的研究. 植物营养与肥料学报, 2001, 7: 145–152



Fu R. Effects of controlled release ferlizer on rice yield and N recovery. Plant Nutr Fert Sci, 2001, 7: 145–152 (in Chinese with English abstract)



[25]Pan S G, Huang S Q, Zhai J, Wang J P, Cao C G, Cai M L, Zhan M, Tang X R. Effects of N management on yield and N uptake of rice in central China. Sci Agric Sin, 2012, 11: 1993–2000



[26]Wada G, Aragones R C, Ando H. Effect of slow release fertilizer(meister) on the nitrogen uptake and yield of the rice plant in the tropics. Jpn J Crop Sci, 1991, 60: 101–106



[27]周伟, 田玉华, 尹斌. 太湖地区水稻追肥的氨挥发损失和氮素平衡. 中国生态农业学报, 2011, 19(1): 32–36



Zhou W, Tian Y H, Yin B. Ammonia volatilization and nitrogen balance after topdressing fertilization in paddy fields of Taihu Lake region. Chin J Eco-agric, 2011, 19(1): 32–36 (in Chinese with English abstract)



[28]丁艳锋, 刘胜环, 王绍华, 王强盛, 黄丕生, 凌启鸿. 氮素基、蘖肥用量对水稻氮素吸收与利用的影响. 作物学报, 2004, 30(8): 739–744



Ding Y F, Liu S H, Wang S H, Wang Q S, Huang P S, Ling Q H. Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice Acta Agron Sin, 2004: 739–744 (in Chinese with English abstract)



[29]江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. 中国水稻科学, 2002, 16: 261–264



Jiang L G, Cao W X. Physiological mechanism and approaches for efficient nitrogen utilization in rice. Chin J Rice Sci,2002, 16: 261–264 ( in Chinese with English abstract)



[30]Norman R, Roberts T, Slaton N, Fulford A. Nitrogen uptake efficiency of a hybrid compared with a conventional, pure-line rice cultivar. Soil Sci Am J, 2013, 77: 1235–1240



[31]陈星, 李亚娟, 刘丽, 方素萍, 方萍, 林咸永. 灌溉模式和供氮水平对水稻氮素利用效率的影响. 植物营养与肥料学报, 2012, 18: 283–290



Chen X, Li Y J, Liu L, Fang S P, Lin X Y. Effects of water management patterns and nitrogen fertilizer levels on nitrogen use efficiency of rice. Plant Nutr Fert Sci, 2012, 18: 283–290 (in Chinese with English abstract)



[32]李亚娟, 水分状况与供氮水平对水稻氮素利用效率的影响及其机制研究. 浙江大学博士学位论文, 2012



Li Y J. Studies on Effects and Mechanisms of Water Conditions and Nitrogen Fertilizer Levels on Nitrogen Use Efficiency in a Rice Cropping System. PhD Dissertation of Zhejiang University, 2012 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!