欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 644-655.doi: 10.3724/SP.J.1006.2022.02089

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析

巫燕飞(), 胡琴, 周棋, 杜雪竹, 盛锋*()   

  1. 湖北大学生命科学学院/省部共建生物催化与酶工程国家重点实验室, 湖北武汉 430062
  • 收稿日期:2020-12-21 接受日期:2021-07-12 出版日期:2022-03-12 网络出版日期:2021-08-09
  • 通讯作者: 盛锋
  • 作者简介:E-mail: Byronwyf@163.com
  • 基金资助:
    湖北省技术创新专项重大项目(2018ABA080);湖北省技术创新专项重大项目(2020BBB052);湖北省自然科学基金重点项目(2019CFA027);湖北省自然科学基金项目(2020CFB261)

Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice

WU Yan-Fei(), HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng*()   

  1. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
  • Received:2020-12-21 Accepted:2021-07-12 Published:2022-03-12 Published online:2021-08-09
  • Contact: SHENG Feng
  • Supported by:
    Major Program of Technological Innovation of Hubei Province(2018ABA080);Major Program of Technological Innovation of Hubei Province(2020BBB052);Key Program of Natural Science Foundation of Hubei Province(2019CFA027);Natural Science Foundation of Hubei Province(2020CFB261)

摘要:

延伸因子复合体(Elongator, ELP)是一类在真核细胞转录中起延伸RNA聚合酶II作用的蛋白质复合物, 这类复合体在植物生长发育以及生物和非生物胁迫响应等方面均发挥着重要作用。本研究利用生物信息学的方法对水稻(Oryza sativa) ELP基因家族(OsELPs)成员进行鉴定, 并进一步对其理化性质、亚细胞定位、染色体定位、启动子顺式作用元件及在非生物胁迫下的表达模式进行分析。结果表明: OsELPs基因家族含有6个成员、随机分布在水稻5条染色体上, 这6个基因编码含250~1344个氨基酸残基的蛋白质, 其分子量介于27.97~148.99 kD, 等电点介于5.01~8.63。系统进化分析将来源于水稻(Oryza sativa)、拟南芥(Arabidopsis thaliana)、酵母(Saccharomyces cerevisiae)和人类(Homo sapiens)的ELPs蛋白分为4个亚组(Group I~Group IV), 其中第I亚组包含OsELP1, 第II亚族包含OsELP2和OsELP5, 第III亚组包含OsELP4, 而第IV亚组包含OsELP3和OsELP6。OsELPs的启动子区域中存在多种顺式作用元件, 主要响应光、植物激素、干旱、低温、防御和逆境等信号。在PEG、低温、高盐以及脱水等4种非生物胁迫下, 6个OsELPs基因均有不同程度的差异表达, 其中OsELP6在4种非生物胁迫下均显著诱导上调表达, 该基因可能介导水稻对多种非生物逆境的综合抗性。

关键词: 水稻(Oryza sativa), 延伸因子复合体, 生物信息学, 非生物逆境胁迫

Abstract:

Elongator complex (ELP) is a class of protein complex that elongates RNA polymerase II in eukaryotic transcription, which plays an important role in plant growth and development, and resistance to biotic and abiotic stresses. In this study, we identified the ELP family genes and explored the physical and chemical properties, subcellular location, chromosome location, promoter cis-acting elements prediction, and expression patterns under abiotic stresses in rice (Oryza sativa) ELP family genes by bioinformatics methods. A total of six OsELPs members were preliminarily identified, which randomly distributed on five chromosomes and encoded protein containing 250 to 1344 amino acid in rice. Their molecular weight and isoelectric point were 27.97-148.99 kD and 5.01-8.63, respectively. Phylogenetic analysis showed that the ELPs proteins from rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), yeast (Saccharomyces cerevisiae), and human (Homo sapiens) could be divided into four groups (Group I-Group IV). And subgroup I contained OsELP1, subgroup II contained OsELP2 and OsELP5, subgroup III contained OsELP4, subgroup IV contained OsELP3 and OsELP6. There were a variety of cis-acting elements in the promoter regions of OsELPs, which mainly responded to light, phytohormone, drought, low temperature, defense, and stress stimulant signals. The induced expression patterns confirmed that all OsELPs genes were differentially expressed with different degrees under various abiotic stresses including PEG, low temperature, salt, and dehydration. Among them, OsELP6 was significantly up-regulated under the four kinds of abiotic stresses, which may mediate the comprehensive resistance to various abiotic stresses in rice.

Key words: rice (Oryza sativa), Elongator complex, bioinformatics, abiotic stresses

表1

用于qRT-PCR分析的OsELPs基因和内参基因的引物列表"

引物名称
Primer name
序列
Sequence (5°-3°)
长度
Length (bp)
qELP1-F CATCTGTACTGATGGCAATTCG 22
qELP1-R ACGGGCTAAAGTAGTCAGTATG 22
qELP2-F GGAGCGTTCAAGATTCATCTTC 22
qELP2-R AATGTTCCAGAGCTCGATCATT 22
qELP3-F TATCAGAAATGGCACCTCCCTT 22
qELP3-R GCCTCTTCAACATTAGCAGAAG 22
qELP4-F CAGGACCTATGAAGGAACCC 20
qELP4-R CTATCCTCAAAGCCTCGTCA 20
qELP5-F GTGATTCTGATGATGAGCAACC 22
qELP5-R CAAGTACGATCAAGGCATTCTG 22
qELP6-F CGTAAGATGGGCTGTAACCTAT 22
qELP6-R TATCAGAAATGGCACCTCCCTT 22
qActin-F CTATCCTCAAAGCCTCGTCA 20
qActin-R TACCACCACTGAGAACGATGT 21

表2

水稻中的ELP基因家族的基本信息"

基因名称
Gene name
RAP-DB ID
Gene ID
基因座
LOC loucs
氨基酸数
AA size (aa)
分子量
Molecular weight
(kD)
等电点
Isoelectric point
亚细胞定位
Subcellular
localization
OsELP1 Os07g0563700 LOC_Os07g37640 1344 148.99 5.47 PMa, Nuclb/Mbb
OsELP2 Os08g0493900 LOC_Os08g38570 850 92.67 6.69 Extraa/PMa, Mbb
OsELP3 Os04g0484900 LOC_Os04g40840 574 63.78 8.63 M.t.ma, Nuclb
OsELP4 Os06g0639600 LOC_Os06g43280 378 27.46 7.96 Nucla, C.t.sb
OsELP5 Os03g0201700 LOC_Os03g10460 385 42.52 5.01 Nucla, Cytob
OsELP6 Os03g0284000 LOC_Os03g17560 250 27.97 6.23 Cytoa, Cytob

图1

水稻、拟南芥、人类、酵母ELP蛋白的系统发育树 在本研究中水稻ELP蛋白以黑色圆形显示, 拟南芥ELP蛋白以绿色正方形显示, 人类ELP蛋白以青色菱形显示, 酵母ELP蛋白以蓝色三角形显示。比例尺代表每个同义位点0.2个氨基酸替代。"

图2

水稻OsELPs基因结构"

图3

水稻OsELPs蛋白质保守结构域分析"

图4

预测水稻OsELPs启动子中顺式调控元件"

图5

PEG、低温、高盐处理下OsELPs基因qRT-PCR表达情况"

图6

脱水处理下OsELPs基因qRT-PCR表达情况"

[1] Wittschieben B, Otero G, Bizemont T D, Fellows J, Svejstrup J, Erdjument-Bromage H, Ohba R, Li Y, Allis D, Tempst P, Svejstrup J Q. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell, 1999, 4:123-128.
pmid: 10445034
[2] Otero G, Fellows J, Li Y, Bizemont T D, Svejstrup J Q. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell, 1999, 3:109-118.
pmid: 10024884
[3] Versées W, Groeve S D, Lijsebettens M V. Elongator, a conserved multitasking complex? Mol Microbiol, 2010, 76:1065-1069.
doi: 10.1111/j.1365-2958.2010.07162.x pmid: 20398217
[4] Dauden M I, Jaciuk M, Weis F, Lin T Y, Kleindienst C, Abbassi N E H, Khatter H, Krutyhołowa R, Breunig K D, Kosinski J, Müller C W, Glatt S. Molecular basis of tRNA recognition by the Elongator complex. Sci Adv, 2019, 5: eaaw2326.
doi: 10.1126/sciadv.aaw2326
[5] Jarosz M, Van Lijsebettens M, Woloszynska M. Plant Elongator-protein complex of diverse activities regulates growth, development, and immune responses. Int J Mol Sci, 2020, 21:6912.
doi: 10.3390/ijms21186912
[6] Abdel-Fattah W, Jablonowski D, Santo R D, Ring K L T, Stark M J R. Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genet, 2015, 11:e1004931.
doi: 10.1371/journal.pgen.1004931
[7] Sant R D, Bandau S, Star M J R. A conserved and essential basic region mediates tRNA binding to the Elp1 subunit of the Saccharomyces cerevisiae Elongator complex. Mol Microbiol, 2014, 92:1227-1242.
doi: 10.1111/mmi.2014.92.issue-6
[8] Dong C, Lin Z, Diao W, Li D, Chu X, Wang Z, Zhou H, Xie Z, Shen Y, Long J. The Elp2 subunit is essential for elongator complex assembly and functional regulation. Structure, 2015, 23:1078-1086.
doi: 10.1016/j.str.2015.03.018
[9] Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol J L, Van Montagu M, Inzé D, Van Lijsebettens M. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci USA, 2005, 102:7754-7759.
doi: 10.1073/pnas.0502600102
[10] Qi L, Zhang X, Zhai H, Liu J, Wu F, Li C, Chen Q. Elongator is required for root stem cell maintenance by regulating SHORTROOT transcription. Plant Physiol, 2019, 179:220-232.
doi: 10.1104/pp.18.00534
[11] Dalwadi U, Yip C K. Structural insights into the function of Elongator. Cell Mol Life Sci, 2018, 75:1613-1622.
doi: 10.1007/s00018-018-2747-6 pmid: 29332244
[12] Lin Z, Zhao W, Diao W, Xie X, Wang Z, Zhang J, Shen Y, Long J. Crystal structure of elongator subcomplex Elp4-6. J Biol Chem, 2012, 287:21501-21508.
doi: 10.1074/jbc.M112.341560
[13] Glatt S, Létoquart J, Faux C, Taylor N M, Séraphin B, Müller C W. The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struct Mol Biol, 2012, 19:314-320.
[14] Krogan N J, Greenblatt J F. Saccharomyces cerevisiae Saccharomyces cerevisiae. Mol Cell Biol, 2001, 21:8203-8212.
pmid: 11689709
[15] Zhou X, Hua D, Chen Z, Zhou Z, Gong Z. Arabidopsis Arabidopsis. Plant J, 2009, 60:79-90.
doi: 10.1111/tpj.2009.60.issue-1
[16] An C, Ding Y, Zhang X, Wang C, Mou Z. Arabidopsis Arabidopsis. Mol Plant Microbe Interact, 2016, 29:396-404.
doi: 10.1094/MPMI-01-16-0005-R
[17] Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti M B, Vandenbussche F, Van der Straeten D, Yamaguchi T, Tsukaya H, Witters E, De Jaeger G, Houben A, Van Lijsebettens M. Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA, 2010, 107:1678-1683.
doi: 10.1073/pnas.0913559107
[18] Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador D M, Mou Z. Arabidopsis elongator complex subunit 2 epigenetically regulates plant immune responses Arabidopsis elongator complex subunit 2 epigenetically regulates plant immune responses. Plant Cell, 2013, 25:762-776.
doi: 10.1105/tpc.113.109116
[19] Gould K S. Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech, 2004, 2004:314-320.
doi: 10.1155/S1110724304406147
[20] Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu J K, Gong Z. Arabidopsis thaliana Arabidopsis thaliana. Mol Cell Biol, 2006, 26:6902-6912.
doi: 10.1128/MCB.00433-06
[21] Huang B, Johansson M J, Byström A S. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA, 2005, 11:424-436.
pmid: 15769872
[22] Matsui K, Umemura Y, Ohme-Takagi M. Arabidopsis Arabidopsis. Plant J, 2008, 55:954-967
doi: 10.1111/tpj.2008.55.issue-6
[23] Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J M, Alboresi A, Weisshaar B, Lepiniec L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J, 2008, 55:940-953.
[24] Pereira J A, Yu F, Zhang Y, Jones J B, Mou Z. Arabidopsis Elongator subunit ELP3 and ELP4 confer resistance to bacterial speck in tomato Arabidopsis Elongator subunit ELP3 and ELP4 confer resistance to bacterial speck in tomato. Front Plant Sci, 2018, 9:1066.
doi: 10.3389/fpls.2018.01066
[25] 王开, 张增艳. 小麦TaELP4促进染色质组蛋白乙酰化正向调节免疫反应. 第十届全国小麦基因组学及分子育种大会摘要集. 中国作物学会, 2019.
Wang K, Zhang Z Y. Triticum aestivum TaELP4 promotes chromatin histone acetylation and positively regulates immune response. Summary of the 10th National Conference on Wheat Genomics and Molecular Breeding, Crop Science Society of China 2019 (in Chinese).
[26] 袁隆平. 发展杂交水稻保障粮食安全. 科学新闻, 2014, (12):32-33.
Yuan L P. Development of hybrid rice, ensure food security. Sci News, 2014, (12):32-33 (in Chinese).
[27] 王胜昌, 涂海甫, 胡丹, 吴奈, 岑祥, 熊立仲. 水稻抗非生物逆境功能基因的发掘. 生命科学, 2016, 28:1216-1229.
Wang S C, Tu H F, Hu D, Wu N, Cen X, Xiong L Z. The exploitation of rice functional genes for abiotic stress. Chin Bull Life Sci, 2016, 28:1216-1229 (in Chinese with English abstract).
[28] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25:4876-4882.
doi: 10.1093/nar/25.24.4876
[29] DeFraia C, Mou Z. The role of the Elongator complex in plants. Plant Sign Behav, 2011, 6:19-22.
doi: 10.4161/psb.6.1.14040
[30] 张卫娜, 范艳玲, 康益晨, 杨昕宇, 石铭福, 要凯, 赵章平, 张俊莲, 秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析. 作物学报, 2020, 4:680-689.
Zhang W N, Fan Y L, Kang Y C, Yang X Y, Shi M F, Yao K, Zhao Z P, Zhang J L, Qin S H. Genome wide identification and expression analysis of CRK gene family in response to fungal pathogen signals in potato. Acta Agron Sin, 2020, 46:680-689 (in Chinese with English abstract).
[31] 杨琳, 王宇, 杨剑飞, 李玉花. 花青素积累相关负调控因子的研究进展. 园艺学报, 2014, 41:1873-1884.
Yang L, Wang Y, Yang J F, Li Y H. Research advances on negative regulators of anthocyanin accumulation. Acta Hortic Sin, 2014, 41:1873-1884 (in Chinese with English abstract).
[32] 华静静, 陈晓静. 植物体中WD40蛋白的研究进展. 黑龙江农业科学, 2015, (5):153-156.
Hua J J, Chen X J. Progress of WD40 proteins in Plant. Heilongjiang Agric Sci, 2015, (5):153-156.
[33] Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Gong Z, Byström A S, Schaffrath R, Breunig K D. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol, 76:1082-1094.
doi: 10.1111/mmi.2010.76.issue-5
[34] Esberg A, Huang B, Johansson M J, Byström A S. Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell, 2006, 24:139-148.
doi: 10.1016/j.molcel.2006.07.031
[35] Laguesse S, Close P, Van Hees L, Chariot A, Malgrange B, Nguyen L. Loss of Elp3 impairs the acetylation and distribution of connexin-43 in the developing cerebral cortex. Front Cell Neurosci, 2017, 11:122.
doi: 10.3389/fncel.2017.00122 pmid: 28507509
[36] Fang X, Cui Y, Li Y, Qi Y. Arabidopsis Arabidopsis. Nat Plants, 2015, 1:15075.
doi: 10.1038/nplants.2015.75
[37] Woloszynska M, Le Gall S, Van Lijsebettens M. Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context. Biochim Biophys Acta, 2016, 1859:1025-1033.
doi: 10.1016/j.bbagrm.2016.06.008 pmid: 27354117
[38] 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, (4):16-20.
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotech Bull, 2011, (4):16-20 (in Chinese with English abstract).
[39] Baker S S, Wilhelm K S, Thomashow M F. Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24:701-713.
pmid: 8193295
[40] Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281:37636-37645.
pmid: 17015446
[41] Onishi M, Tachi H, Kojima T, Shiraiwa M, Takahara H. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.). Plant Physiol Biochem, 2006, 44:574-580.
doi: 10.1016/j.plaphy.2006.09.009
[42] Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993, 101:1119-1120.
pmid: 8310052
[43] White A J, Alison D M, Kate B, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot, 1994, 45:1885-1892.
doi: 10.1093/jxb/45.12.1885
[44] Glatt S, Létoquart J, Faux C, Taylor N M, Séraphin B, Müller C W. The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struc Mol Biol, 2012, 19:314-320.
[45] Leitner J, Retzer K, Malenica N, Bartkeviciute R, Lucyshyn D, Jäger G, Korbei B, Byström A, Luschnig C. Arabidopsis auxin responses depends on tRNA maturation Arabidopsis auxin responses depends on tRNA maturation. Cell Rep, 2015, 11:516-526.
doi: 10.1016/j.celrep.2015.03.054
[1] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[2] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[3] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[4] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[5] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[6] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[7] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[8] 张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J]. 作物学报, 2020, 46(5): 680-689.
[9] 姚珺玥,华营鹏,周婷,王涛,宋海星,官春云,张振华. 甘蓝型油菜AVP1、VHA-a2VHA-a3基因的鉴定及功能性研究[J]. 作物学报, 2019, 45(8): 1146-1157.
[10] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[11] 梁桂红,华营鹏,周婷,廖琼,宋海星,张振华. 甘蓝型油菜NRT1.5NRT1.8家族基因的生物信息学分析及其对氮-镉胁迫的响应[J]. 作物学报, 2019, 45(3): 365-380.
[12] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[13] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[14] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[15] 高堃,华营鹏,宋海星,官春云,张振华,周婷. 甘蓝型油菜PIN家族基因的鉴定与生物信息学分析[J]. 作物学报, 2018, 44(9): 1334-1346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .