欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1683-1696.doi: 10.3724/SP.J.1006.2022.14126

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯解偶联蛋白基因家族鉴定与表达分析

陈璐(), 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清()   

  1. 浙江农林大学食品与健康学院, 浙江杭州 311300
  • 收稿日期:2021-07-15 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2021-11-01
  • 通讯作者: 杨虎清
  • 作者简介:E-mail: 13097686588@yeah.net
  • 基金资助:
    国家自然科学基金项目(31871857);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-10-B19);浙江省自然科学基金项目(LQ20C200002)

Identification and expression analysis of uncoupling protein gene family in sweetpotato

CHEN Lu(), ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing()   

  1. School of Food and Health, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
  • Received:2021-07-15 Accepted:2021-10-19 Published:2022-07-12 Published online:2021-11-01
  • Contact: YANG Hu-Qing
  • Supported by:
    National Natural Science Foundation of China(31871857);China Agriculture Research System(CARS-10-B19);Natural Science Foundation of Zhejiang Province(LQ20C200002)

摘要:

本研究旨在鉴定和分析甘薯(Ipomonea batatas (L.) Lam)解偶联蛋白(uncoupling protein, UCPs)基因家族成员, 探究其在甘薯不同组织中的表达特异性及其对低温(4℃)、高盐(NaCl)和干旱(PEG-6000)等胁迫的响应规律。结果发现, 甘薯UCP (IbUCP)含有5个家族基因, 分别将其命名为IbUCP1 (GenBank登录号为MW753000)、IbUCP2 (GenBank登录号为MW753004)、IbUCP3 (GenBank登录号为MW753001)、IbUCP4 (GenBank登录号为MW753002)和IbUCP5 (GenBank登录号为MW753003)。预测IbUCP的理论等电点为8.53~9.86, 含有261~375个的氨基酸残基; IbUCP定位于线粒体; IbUCP为亲水蛋白, 又属于线粒体载体蛋白超家族的成员, 其二级结构主要包括α-螺旋和无规则卷曲, 这与三级结构预测结果相符; IbUCP不存在跨膜螺旋结构和信号肽; IbUCP家族成员分为5个, 与三裂叶薯和牵牛花有较近的亲缘关系, 具有一定的保守性; 启动子预测发现, IbUCPs基因具有基本的转录元件以及一些信号响应元件、转录因子识别结合元件和逆境等响应顺式作用元件。表达分析显示, IbUCPs基因家族成员具有组织特异性, 其中IbUCP4在茎中表达最高, 其余IbUCPs均在块根中最高; IbUCPs基因家族成员中响应低温胁迫的有IbUCP1IbUCP4IbUCP5; IbUCPs基因家族对高盐胁迫均有响应; 在干旱的胁迫下, IbUCP1IbUCP4IbUCP5均有响应, 分别在不同的时间达到峰值。多种胁迫可调控IbUCPs的表达, 本研究为甘薯UCP基因的功能挖掘及甘薯抗逆品种筛选提供了一定的理论依据。

关键词: 甘薯, 解偶联蛋白, 生物信息学, 表达分析, 胁迫

Abstract:

The objectives of this study are to identify and analyze the uncoupling protein (UCPs) gene family members in sweetpotato (Ipopoea batatas (L.) Lam) and to investigate its expression specificity in different tissues of sweetpotato and its response to low temperature (4℃), high salinity (NaCl) and drought (PEG-6000) stresses. The results showed that the UCP (IbUCP) gene family of sweetpotato included five genes, which were named IbUCP1 (GenBank accession number: MW753000), IbUCP2 (GenBank accession number: MW753004), IbUCP3 (GenBank accession number: MW753001), IbUCP4 (GenBank accession number: MW753002), and IbUCP5 (GenBank accession number: MW753003), respectively. IbUCP contains 261-375 amino acid residues with the theoretical isoelectric point from 8.53 to 9.86. IbUCP were mainly located in mitochondria. IbUCP was a hydrophilic protein belonging to the superfamily of mitochondrial. The secondary structure of IbUCP was mainly composed of α-helix and random coils, which was consistent with the prediction of tertiary structure. IbUCP did not contain transmembrane helix structure and signal peptide. IbUCP family members were divided into five branches, which were closely related to Ipomoea triloba and Ipomoea nil, and was conserved to a certain extent. Promoter prediction revealed that IbUCPs family genes not only has basic transcription elements, but also some signal response elements, transcription factor recognition binding elements, and stress response cis-acting elements. Expression analysis showed that the IbUCPs gene family were tissue-specific. The IbUCP4 expressed the highest in stem, and the other IbUCPs genes were found expressed the highest in tuberous root. IbUCP1, IbUCP4, and IbUCP5 responded to low temperature stress.All members of the IbUCPs gene family all responded to high salinity stress. Additionally, under drought stress, IbUCP1, IbUCP4, and IbUCP5 all responded and reached the peak at different time, respectively. Various stresses can regulate the expression of IbUCPs, and this study provides a theoretical basis for the function mining of UCP gene in sweetpotato and the selection of sweetpotato stress-resistant varieties.

Key words: sweetpotato (Ipomoea batatas (L.) Lam), uncoupling protein, bioinformatics, relative expression analysis, stress

表1

本研究所用引物"

引物用途
Primer function
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
qRT-PCR扩增
qRT-PCR amplification
IbUCP1-F GGAAGGGCGTTATACCTGGC
IbUCP1-R TGGGATTAGCCACAGCGATT
IbUCP2-F GGAAGGGCGTTATACCTGGC
IbUCP2-R TGGGATTAGCCACAGCGATT
IbUCP3-F AAACGGCTTTTCGGGGCTAT
IbUCP3-R GGAGAGAAAGTGGCCGATCA
IbUCP4-F ACGATGAGATCAAGGAGGCG
IbUCP4-R TATCACATCCACCGGGTTCG
IbUCP5-F CGCAACTACAAAAGCGTGGT
IbUCP5-R AGCCCGTCCTTCATGATTCC
内参基因
Internal reference genes
α-Tubulin-F CAACTACCAGCCACCAACTGT
α-Tubulin-R CAAGATCCTCACGAGCTTCAC

表2

甘薯UCP序列及理化性质分析"

基因名称 Gene name 编码氨基酸数量
Amino acids number
分子式
Formula
分子量
Molecular
weight
等电点
pI
不稳定指数
Instability index
脂溶指数
Aliphatic
index
总平均
亲水性
GRAVY
亚细胞定位
Subcellular
localization
IbUCP1 308 C1485H2370N406O419S11 32,968.28 9.48 29.16 95.32 0.096 线粒体Mitochondria
IbUCP2 375 C1860H2868N476O512S15 40,571.01 8.53 38.33 93.25 0.261 线粒体Mitochondria
IbUCP3 261 C1254H2016N356O363S9 28,176.51 9.62 42.00 96.05 0.017 线粒体Mitochondria
IbUCP4 291 C1347H2182N384O396S14 30,541.32 9.82 30.88 88.80 0.087 线粒体Mitochondria
IbUCP5 319 C1511H2452N420O426S20 33,959.85 9.86 26.78 89.00 0.104 线粒体Mitochondria

图1

甘薯UCP的亲疏水性分析"

表3

甘薯UCP二级结构预测"

蛋白名称
Protein name
α-螺旋
Alpha helix
β-转角
Beta turn
延伸链
Extended strand
无规则卷曲
Random coil
IbUCP1 49.35 6.82 13.96 29.87
IbUCP2 44.53 7.73 17.33 30.40
IbUCP3 46.46 8.81 13.03 31.80
IbUCP4 47.08 6.53 10.65 35.74
IbUCP5 46.08 7.84 12.54 35.54

图2

甘薯UCP的二级结构和三级立体结构"

图3

甘薯UCP的保守结构域 "

图4

甘薯UCP家族的保守蛋白基序"

图5

甘薯UCP的跨膜结构分析 "

图6

甘薯UCP的信号肽预测 "

图7

甘薯UCP与拟南芥UCP的氨基酸序列比对 "

图8

UCP家族的系统进化树 AtPUMP1、AtUCP2、AtUCP3、AtUCP4、AtUCP5: 拟南芥PUMP1 (NP_190979.1)、UCP2 (NP_974962.1)、UCP3 (NP_172866.1)、UCP4 (BAH 56967.1)、UCP5 (NP_179836.1); FvUCP4: 野草莓UCP4 (XP_004299717.1); SpUCP1、SpUCP2-like isoform X1、SpUCP2-like isoform X2、SpUCP3、SpUCP5: 潘那利番茄UCP1 (XP_015086211.1)、UCP2-like isoform X1 (XP_015086155.1)、UCP2-like isoform X2 (XP_015086156.1)、UCP3 (XP_015074974.1)、UCP5 (XP_015058445.1); HbUCP1-like、UCP2-like、UCP3、UCP5-like: 巴西橡胶树UCP1-like (XP_021664307.1)、UCP2-like (XP_021647687.1)、UCP3 (XP_021691868.1)、UCP5-like (XP_0216 35248.1); ZjUCP1、ZjUCP2 isoform X1、ZjUCP2 isoform X2、 ZjUCP2 isoform X3、ZjUCP3、ZjUCP5: 枣UCP1 (XP_015897075.1)、UCP2 isoform X1 (XP_015873942.1)、UCP2 isoform X2 (XP_024926760.1)、UCP2 isoform X3 (XP_024926761.1)、UCP3 (XP_015895 050.1)、UCP5 (XP_015890603.1); LeUCP、LeUCP2、LeUCP3、LeUCP5: 番茄 UCP (NP_001234584.1)、UCP2 (XP_004246961.1)、UCP3 (XP_004238805.1)、UCP5 (XP_0042 50140.1); TaUCP1a: 小麦UCP1a (BAB16384.1);OsUCP1、OsUCP2、OsUCP3、OsUCP5: 水稻UCP1 (XP_015616794.1)、UCP2 (XP_015622201.1)、UCP3 (XP_015636356.1)、UCP5 (XP_01565 0890.1); StUCP、StUCP3、StUCP5-like: 马铃薯UCP (CAA72107.1)、UCP3 (XP_006355129.2)、UCP5-like (XP_006360391.1); HaUCP、HaUCP1、HaUCP3、HaUCP5: 向日葵 UCP (XP_022001748.1)、UCP1 (XP_021988906.1)、UCP3 (XP_021997212.1)、UCP5 (XP_022009806.1); InUCP1、InUCP2-like、InUCP3、InUCP5、InUCP5-like: 牵牛花UCP1 (XP_019186835.1)、UCP2-like (XP_019167977.1)、UCP3 (XP_019165923.1)、UCP5 (XP_019153217.1)、UCP5-like (XP_019 18563 7.1); ItUCP1、ItUCP2-like isoform X1、ItUCP2-like isoform X1、ItUCP2-like isoform X2、 ItUCP2-like isoform X3、ItUCP2-like isoform X4、ItUCP3、ItUCP5: 三裂叶薯UCP1 (XP_03 1102145.1)、UCP2-like isoform X1 (XP_031110514.1)、UCP2-like isoform X2 (XP_031110 515.1)、UCP2-like isoform X3 (XP_031110516.1)、UCP2-like isoform X4 (XP_031110517.1)、UCP3 (XP_0311 15656.1)、UCP5 (XP_031109433.1); IbUCP1、IbUCP2、IbUCP3、IbUCP4、IbUCP5: 甘薯UCP1 (MW753000)、UCP2 (MW753004)、UCP3 (M W753001)、UCP4 (MW753002)、UCP5 (MW753003)。"

表4

IbUCPs启动子的顺式作用元件预测分析"

顺式元件
Cis-element
典型序列
Typical sequence
特性
Characteristic
基因
Gene
AE-box AGAAACAA, AGAAACTT 光响应元件的一部分
Part of a light responsive element
IbUCP1, IbUCP2, IbUCP5
G-box CAGCAC 光响应的顺式作用元件
Cis-acting regulatory element involved in light responsiveness
IbUCP1, IbUCP2, IbUCP3, IbUCP5
ARE AAACCA 厌氧诱导的顺式作用元件
Cis-acting regulatory element essential for the anaerobic induction
IbUCP1, IbUCP4, IbUCP5
AuxRR-core GGTCCAT 生长素响应有关的元件
Cis-acting regulatory element involved in auxin responsiveness
IbUCP3, IbUCP5
ERE AAATTTTA 乙烯响应
Ethylene responsive element
IbUCP1, IbUCP3, IbUCP4, IbUCP5
CGTCA-motif, TGACG-motif ACTGC, TGACG MeJA响应
MeJA-responsiveness
IbUCP5
TCA-element TTTTTTCTACC 水杨酸响应
Salicylic acid response element
IbUCP3
as-1 TGACG 水杨酸响应
Salicylic acid response element
IbUCP5
GARE-motif TATGTTG 赤霉素响应
Gibberellin-responsive element
IbUCP4, IbUCP5
ABRE AACCCGG, ACGTG 脱落酸响应
Cis-acting element involved in the abscisic acid responsiveness
IbUCP2, IbUCP3
MYB ACCAAC, TAACCA, CAACCA MYB 结合位点相关元件
Elements associated with MYB binding sites
IbUCP1, IbUCP2, IbUCP3, IbUCP4, IbUCP5
顺式元件
Cis-element
典型序列
Typical sequence
特性
Characteristic
基因
Gene
MRE AACCTAA MYB 结合位点相关元件
Elements associated with MYB binding sites
IbUCP1, IbUCP4, IbUCP5
MBS CAACTG MYB 结合位点
MYB binding site
IbUCP2, IbUCP3
W-box TTGACC WRKY转录因子结合位点
WRKY transcription factor binding site
IbUCP1, IbUCP4, IbUCP5
CAT-box GCCACT 分生组织相关的顺势调节元件
Cis-acting regulatory element related to meristem expression
IbUCP2, IbUCP5
circadian CTATAGAAAT 参与昼夜节律调控的顺式调控元件
Cis-acting regulatory element involved in circadian control
IbUCP3
TC-rich repeats GTTTTCTTA 参与防御和胁迫响应的顺式调控元件
Cis-acting element involved in defense and stress responsiveness
IbUCP1, IbUCP2
O2-site GGTGGAGTAG 参与玉米醇溶蛋白代谢调节的顺式作用调节元件
Cis-acting regulatory element involved in zein metabolism regulation
IbUCP1
GCN4_motif TGAGTCA 参与胚乳表达的顺式调控元件
Cis-regulatory element involved in endosperm expression
IbUCP1

图9

IbUCPs组织特异性表达分析 柱上不同小写字母表示在0.05水平差异显著。"

图10

胁迫处理后的甘薯块根和幼苗 A: 自左向右分别是甘薯块根低温处理0、1、2、3、7、14、21和28 d; B: 自左向右分别是甘薯幼苗低温处理0、1、3、6、12、24和48 h; C: 自左向右分别是甘薯幼苗高盐处理0、1、3、6、12、24和48 h; D: 自左向右别是甘薯幼苗干旱处理0、1、3、6、12、24和48 h。"

图11

IbUCPs基因家族响应非生物胁迫的表达分析 *、**和***表示同一基因不同处理间在0.05、0.01、0.001水平差异显著。"

[1] Pradhan D M P, Mukherjee A, George J, Chakrabarti S K, Vimala B, Naskar S K, Sahoo B K, Samal S. High starch, beta carotene and anthocyanin rich sweet potato: ascent to future food and nutrition security in coastal and backward areas. Int J Trop Agric, 2015, 10: 9-22.
[2] 徐飞, 袁澍, 梁厚果, 林宏辉. 交替氧化酶和解偶联蛋白在植物线粒体中的作用及其相互关系. 植物生理学通讯, 2009, 45(2): 105-110.
Xu F, Yuan S, Liang H G, Lin H H. The roles of alternative oxidase and uncoupling protein in plant mitochondria and their interrelationships. Plant Physiol Commun, 2009, 45(2): 105-110.(in Chinese with English abstract)
[3] 张海洋. 解偶联蛋白家族成员结构基础和功能机制的研究. 南京大学硕士学位论文, 江苏南京, 2015.
Zhang H Y. The Study on Structural Basis and Functinal Mechanismod Uncoupling Proteins. MS Thesis of Nanjing University, Nanjing, Jiangsu, China, 2015.(in Chinese with English abstract)
[4] Sweetlove L J, Heazlewood J L, Herald V, Holtzapffel R H, Millar A H. The impact of oxidative stress on Arabidopsis mitochondria. J Plant, 2010, 32: 891-904.
doi: 10.1046/j.1365-313X.2002.01474.x
[5] Alscher R G, Donahue J L, Cramer C L. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant, 1997, 100: 224-233.
doi: 10.1111/j.1399-3054.1997.tb04778.x
[6] Pastore D, Fratianni A, Di Pede S, Passarella S. Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria. FEBS Lett, 2000, 470: 88-92.
pmid: 10722851
[7] Ricquier D, Kader J C. Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun, 1976, 73: 577-583.
doi: 10.1016/0006-291X(76)90849-4
[8] Laloi M, Klein M, Riesmeier J W, Müller-Röber B, Fleury C, Bouillaud F, Ricquier D. A plant cold-induced uncoupling protein. Nature, 1997, 389: 135-136.
doi: 10.1038/38156
[9] Maia I G, Benedetti C E, Leite A, Turcinelli S R, Arruda P. AtPUMP: an Arabidopsis gene encoding a plant uncoupling mitochondrial protein. FEBS Lett, 1998, 429: 403-406.
pmid: 9662458
[10] Pastore D, Trono D, Laus M N, Di Fonzo N, Flagella Z. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot, 2007, 58: 195-210.
pmid: 17261694
[11] Taylor N L, Heazlewood J L, Day D A, Millar A H. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, 4: 1122-1133.
doi: 10.1074/mcp.M400210-MCP200
[12] 刘自梅. 番茄线粒体解偶联蛋白基因(LeUCP)沉默对番茄光合作用, 呼吸作用及抗逆性的影响. 浙江大学硕士学位论文, 浙江杭州, 2011.
Liu Z M. Effects of Mitochondrial Uncoupled Protein Gene Silencing on Photosynthesis, Respiration and Stress Resistance of Tomato. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2011.(in Chinese with English abstract)
[13] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods an Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. Mol Biol Evol, 2011, 28: 2731-2739.
doi: 10.1093/molbev/msr121
[14] 苏丽艳. 番茄SlETR6基因的克隆及非生物胁迫下的表达分析. 华北农学报, 2019, 34(1): 23-29.
Su L Y. Cloning and expression analysis of ethylene receptor gene SIETR6 in Solanum lycopersicum under abiotic stress. Acta Agric Boreali-Sin, 2019, 34(1): 23-29.(in Chinese with English abstract)
[15] 段奥其, 冯凯, 刘洁霞, 徐志胜, 熊爱生. 芹菜NAC转录因子基因AgNAC1的克隆及其对非生物胁迫的响应. 园艺学报, 2018, 45: 1125-1135.
Duan A Q, Feng K, Liu J X, Xu Z S, Xiong A S. Cloning and response to abiotic stress of NAC transcription gene AgNAC1 in Apium graveolens. Acta Hortic Sin, 2018, 45: 1125-1135 (in Chinese with English abstract)
[16] Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[17] Barreto P, Couñago R M, Arruda P. Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion, 2020, 53: 109-120.
doi: S1567-7249(19)30343-5 pmid: 32439620
[18] Borecky J, Nogueira F, Oliveira K, Maia I G, Vercesi A E, Arruda P. The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. J Exp Bot, 2006, 57: 849-864.
pmid: 16473895
[19] Hourton-Cabassa C, Matos A R, Zachowski A, Moreau F. The plant uncoupling protein homologues: a new family of energy- dissipating proteins in plant mitochondria. J Plant Biochem Physiol, 2004, 42: 283-290.
[20] Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J, 2000, 345: 161.
doi: 10.1042/bj3450161
[21] Costa A, Nantes I L, Ježek P, Leite A, Vercesi A E. Plant uncoupling mitochondrial protein activity in mitochondria isolated from tomatoes at different stages of ripening. J Bioenerg Biomembr, 1999, 31: 527-533.
pmid: 10653480
[22] Brandalise M, Maia I G, Boreck J, Vercesi A E, Arruda P. Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress. J Bioenerg Biomembr, 2003, 35: 203-209.
pmid: 13678271
[23] Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One, 2019, 14: e0210592.
doi: 10.1371/journal.pone.0210592
[24] Calegario F F, Cosso R G, Fagian M M, Almeida F V, Jardim W F, Jezek P, Arruda P, Vercesi A E. Stimulation of potato tuber respiration by cold stress is associated with an increased capacity of both plant uncoupling mitochondrial protein (PUMP) and alternative oxidase. J Bioenerg Biomembr, 2003, 35: 211-220.
pmid: 13678272
[25] Armstrong A F, Badger M R, Day D A, Barthet M M, Smith P M, Millar A H, Whelan J, Atkin O K. Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ, 2010, 31: 1156-1169.
doi: 10.1111/j.1365-3040.2008.01830.x
[26] Mizuno N, Sugie A, Kobayashi F, Takumi S. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. J Plant Biochem Physiol, 2008, 165: 462-467.
[27] Ozawa K, Murayama S, Ai K U, Handa H. Overexpression of wheat mitochondrial uncoupling protein in rice plants confers tolerances to oxidative stresses promoted by exogenous hydrogen peroxide and low temperature. Mol Plant Breed, 2006, 18: 51-56.
[28] Popov V N, Eprintsev A T, Maltseva E V. Activation of genes encoding mitochondrial proteins involved in alternative and uncoupled respiration of tomato plants treated with low temperature and reactive oxygen species. Russ J Plant Physiol, 2011, 58: 914-920.
doi: 10.1134/S1021443711040091
[29] Begcy K, Mariano E D, Mattiello L, Nunes A V, Mazzafera P, Maia I G, Menossi M. An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One, 2011, 6: e23776.
doi: 10.1371/journal.pone.0023776
[30] 石晓雯. 甘薯逆境胁迫和花青素合成相关microRNA及其靶基因的鉴定和分析. 山西农业大学硕士学位论文, 山西太谷, 2018.
Shi X W. Identification and Analysis of microRNA and Their Target Genes Related to Anthocyanin Synthesis under Stress in Sweet Potato.MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2018.(in Chinese with English abstract)
[31] 吴雨捷, 吴健, 王幼平, 孙勤富. WRKY转录因子在植物抗逆反应中的功能研究进展. 分子植物育种, 2020, 18: 7413-7422.
Wu Y J, Wu J, Wang Y P, Sun Q F. Advances in functional studies of WRKY transcription factors in plant adverse response. Mol Plant Breed, 2020, 18: 7413-7422.(in Chinese with English abstract)
[1] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[2] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[3] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[4] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[5] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[6] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[9] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[10] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[11] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[12] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[13] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .