欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1697-1708.doi: 10.3724/SP.J.1006.2022.14123

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析

柯丹霞(), 霍娅娅, 刘怡, 李锦颖, 刘晓雪   

  1. 信阳师范学院生命科学学院 / 大别山农业生物资源保护与利用研究院, 河南信阳 464000
  • 收稿日期:2021-07-14 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2021-11-02
  • 通讯作者: 柯丹霞
  • 基金资助:
    国家自然科学基金项目(U1904102);河南省高等学校青年骨干教师培养计划;信阳师范学院“南湖学者奖励计划”青年项目资助

Functional analysis of GmTGA26 gene under salt stress in soybean

KE Dan-Xia(), HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue   

  1. College of Life Sciences, Xinyang Normal University / Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang 464000, Henan, China
  • Received:2021-07-14 Accepted:2021-10-19 Published:2022-07-12 Published online:2021-11-02
  • Contact: KE Dan-Xia
  • Supported by:
    National Natural Science Foundation of China(U1904102);Training Plan for Young Backbone Teachers in Colleges and Universities in Henan Province;Nanhu Scholars Program for Young Scholars of Xinyang Normal University

摘要:

TGA转录因子是bZIP的一个亚家族, 在病原体和非生物胁迫反应中发挥重要作用。本研究在大豆中筛选并克隆得到1个TGA转录因子家族基因GmTGA26, 同源蛋白比对表明GmTGA26具有保守的亮氨酸拉链结构域, 与野生大豆同源性最高。基因表达特性分析表明, GmTGA26在大豆中受盐胁迫诱导表达。此外, GmTGA26编码核定位蛋白并且具有转录激活活性。通过发根农杆菌介导的大豆毛根转化, 得到过表达GmTGA26的“复合体”大豆植株, 在盐胁迫条件下, 与空载体对照相比, “复合体”大豆植株生长状态更好, 丙二醛含量和相对质膜透性明显降低(P < 0.05), 而叶绿素含量和根系活力则有显著的升高(P < 0.05)。qRT-PCR结果表明, 盐胁迫条件下在大豆毛状根中过表达GmTGA26可显著上调胁迫响应基因的表达。以上结果表明, 过表达GmTGA26显著增强了“复合体”大豆植株的耐盐能力。推测GmTGA26通过调控下游一系列胁迫响应基因从而参与调控大豆盐胁迫应激反应过程。

关键词: 大豆, TGA转录因子, 毛根转化, 耐盐性

Abstract:

TGA transcription factors are a subfamily of bZIP, which play important roles in pathogen and abiotic stress responses. A TGA transcription factor family gene GmTGA26 was screened and cloned from soybean in this study. Homologous protein comparison showed that GmTGA26 had a conserved leucine zipper domain and had the highest homology with wild soybean. The analysis of gene expression characteristics revealed that GmTGA26 gene was induced by salt stress in soybean. In addition, GmTGA26 gene encoded nuclear localization protein and had transcriptional activation activity. The “complex” soybean plants overexpressing GmTGA26 were obtained through Agrobacterium rhizogenes-mediated hairy root transformation of soybean. The growth state of “complex” soybean plants was better than the empty vector control under salt stress. Meanwhile, the MDA content and relative plasma membrane permeability decreased significantly (P < 0.05), while the chlorophyll content and root activity increased significantly (P < 0.05). The qRT-PCR results indicated that overexpression of GmTGA26 in soybean hairy roots under salt stress could significantly up-regulate the expression of stress response genes. The above results showed that overexpression of GmTGA26 significantly enhanced the salt tolerance of “complex” soybean plants. It is speculated that GmTGA26 participates in the regulation of soybean salt stress response by regulating a series of downstream stress response genes.

Key words: soybean, TGA transcription factor, hairy root transformation, saline tolerance

表1

基因表达分析和载体构建所使用的引物"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
GmTGA26 ATGGCTGACGCCAGTCCTA TCAGTCTCTTGGGCGGG
GmTGA26-OE CGGGATCCATGGCTGACG GGGGTACCTCAGTCTCTTGGGC
GUS GTCGCGCAAGACTGTAACCA CGGCGAAATTCCATACCTG
GmTGA26-qRT GGAGCAACAGTTAGTGGGTATCAC CTTCCATGCCCTGAGACAAAGC
ACT11-qRT GAGCTATGAATTGCCTGATGG CGTTTCATGAATTCCAGTAGC
GmDHN15-qRT TTTTGTTTTGTTGTATTGTGTAG GAAAAATCCTCCACCTGACGA
GmWD40-qRT TGCCAGTCTCGTTAGGCTTTTC CTTATTGAGTTGTTGTTTGGCAG
GmMYB48-qRT AACAACACTCTTCAGCCAGTTT GGGCAAAACAAACTTTCCTCAT
GmGST1-qRT CACAATGAGCAGCCCATAGCA CTTCAACATTCTTCTCACGCTCT
GmLEA-qRT GGTGGGTGAAACCGCACAAGA ATGGATGCCGCCACTCCGCCAG
GmNHX5-qRT GTCTGGGTTCAGTCTCGCAC ATCAGAAAGAGCAAGCCACCA
GmSOS1-qRT TTGTGCTGCATTTCTTCGAG CGTGCTTCTTCTCCTTCCAC

图1

GmTGA26与同源蛋白的序列比对及进化树分析 A: GmTGA26与其他植物中同源蛋白的保守BRLZ (碱性亮氨酸拉链区)结构域比对分析; B: GmTGA26及其同系物的系统发育树。比例尺代表遗传距离, 表示物种间的邻近关系。"

图2

不同非生物胁迫下GmTGA26基因的表达分析 *、**分别表示在0.05和0.01水平差异显著。"

图3

GmTGA26蛋白的亚细胞定位和转录活性分析 A: GmTGA26蛋白的亚细胞定位; 将重组质粒GmTGA26-GFP和NtTGA2.2-RFP共转化拟南芥原生质体, 35S::GFP和NtTGA2.2-RFP作为阳性对照; 标尺为10 µm。B: GmTGA26蛋白在酵母细胞中的转录活性分析。DDO: 二缺培养基(SD/ -Leu/-Trp); DDO/X/A: 含有125 ng mL-1 Aureobasidin A和40 μg mL-1 X-α-gal的二缺培养基; QDO: 四缺培养基(SD/-Ade/-His/ -Leu/-Trp); BD-53+AD-T: 阳性对照; BD-Lam+AD-T: 阴性对照。"

图4

转基因“复合体”大豆植株的阳性毛根鉴定 A: 阴性毛状根的GUS染色; B: 阳性毛状根的GUS染色; C: 阳性毛状根的PCR检测。标尺为200 μm; M: 1 kb DNA ladder; 1~7: GUS基因目的片段。"

图5

转基因“复合体”大豆植株在盐胁迫下的表型分析 A: 不同浓度盐处理1周后植株的生长状况, 比例尺为2 cm; B: qRT-PCR检测GmTGA26在毛状根中的相对表达水平, 以ACTIN11基因为内参; C~E: 不同盐浓度处理1周后植株的总根长、地上部以及根干重。EV: 空载体对照; OE: GmTGA26过表达植株。所有数值均以3个独立重复的平均值表示(n = 20); 误差线表示SD; *、**分别表示在0.05和0.01水平差异显著。"

图6

盐胁迫下转基因大豆的生理指标测定 EV: 空载体对照; OE: GmTGA26过表达植株。*、**分别表示在0.05和0.01水平差异显著。"

图7

qRT-PCR检测大豆毛状根中5个胁迫响应基因在正常条件以及100 mmol L-1 NaCl处理下的表达水平 EV: 空载体对照; OE: GmTGA26过表达植株。*、**分别表示在0.05和0.01水平差异显著。"

图8

qRT-PCR 检测大豆毛状根中2个盐胁迫响应基因在正常条件以及100 mmol L-1 NaCl处理下的表达水平 EV: 空载体对照; OE: GmTGA26过表达植株。*、**分别表示在0.05和0.01水平差异显著。"

[1] 唐宁, 王旭熙, 余娇娇. 世界大豆生产走势及我国大豆产业复兴策略. 南方农业, 2018, 12(31): 88-92.
Tang N, Wang X X, Yu J J. The trend of soybean production in the world and the revival strategy of soybean industry in China. South China Agric, 2018, 12(31): 88-92. (in Chinese with English abstract)
[2] 盖钧镒. 发展我国大豆遗传改良事业解决国内大豆供给问题. 中国工程科学, 2003, 5(5): 1-6.
Gai J Y. Developing soybean genetic improvement in China, solve the problem of domestic soybean supply. Eng Sci, 2003, 5(5): 1-6. (in Chinese with English abstract)
[3] 张威, 廖锡良, 喻德跃, 阚贵珍. 大豆耐盐性研究进展. 土壤与作物, 2018, 7: 284-292.
Zhang W, Liao X L, Yu D Y, Kan G Z. A review of salt tolerance in soybean (Glycine max (L.) Merill). Soils Crops, 2018, 7: 284-292. (in Chinese with English abstract)
[4] 唐晓飞, 董兴月, 魏崃, 薛永国, 刘丽君. 转大豆Na+/H+逆向转运蛋白GmNHX1基因植株的获得. 分子植物育种, 2016, 14: 904-909.
Tang X F, Dong X Y, Wei L, Xue Y G, Liu L J. Obtaining transgenic soybean plant with Na+/H+ antiporter (GmNHX1). Mol Plant Breed, 2016, 14: 904-904. (in Chinese with English abstract)
[5] Sun T J, Fan L, Yang J, Cao R Z, Zhang J, Wang D M. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na+ efflux rate and K+/Na+ ratio in Arabidopsis. BMC Plant Biol, 2019, 19: 469.
doi: 10.1186/s12870-019-2084-4
[6] 周国安. 大豆抗逆基因GmUBC2GmPKGmNHX2分离与功能研究. 中国农业科学院博士学位论文, 北京, 2009.
Zhou G A. Isolation and Function of Stress Resistance Genes GmUBC2, GmPK and GmNHX2 in Soybean. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2009. (in Chinese with English abstract)
[7] Zhou G A, Guan R X, Li Y H. Molecular characterization of GmNHX2, a Na+/H+ antiporter gene homolog from soybean and its heterologous expression to improve salt tolerance in Arabidopsis. Chin Sci Bull , 2009, 54: 3536-3545.
[8] Sun T J, Ma N, Wang C Q, Fan H F, Wang M X, Zhang J, Cao J F, Wang D M. A golgi-localized sodium/hydrogen exchanger positively regulates tolerance by maintaining higher K+/Na+ ratio in soybean. Front Plant Sci, 2021, 12: 1-15.
[9] Guan R X, Qu Y, Guo Y, Yu L L, Yin L, Jiang J H, Chen J G, Ren Y L, Liu G Y, Tian L, Jin L G, Liu Z X, Hong H L, Chang R Z, Gilliham M, Qiu L J. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 2014, 80: 937-950.
doi: 10.1111/tpj.12695
[10] Luo G Z, Wang H W, Huang J, Tian A G, Wang Y J, Zhang J S, Chen S Y. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 2005, 59: 809-820.
doi: 10.1007/s11103-005-1386-0
[11] Wei P P, Wang L C, Liu A L, Yu B J, Lam H M. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front Plant Sci, 2016, 7: 1082.
[12] Chen H T, Chen X, Gu H P, Wu B Y, Zhang H M, Yuan X X, Cui X Y. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul, 2014, 73: 299-308.
doi: 10.1007/s10725-014-9890-3
[13] 陈华涛, 陈新, 顾和平, 陈满峰, 张红梅, 袁星星, 崔晓艳. 大豆GmHKT6;2基因的克隆与表达特性分析. 华北农学报, 2012, 27(3): 1-5.
Chen H T, Chen X, Gu H P, Chen M F, Zhang H M, Yuan X X, Cui X Y. Cloning and expressing pattern analysis of GmHKT6;2 in soybean. Acta Agric Boreali-Sin, 2012, 27(3): 1-5. (in Chinese with English abstract)
[14] 王传琦, 孔稳稳, 李晶. 植物转录因子最新研究方法. 生物技术通讯, 2013, 24(1): 118-123.
Wang C Q, Kong W W, Li J. Current research method of transcription factors in plants. Lett Biotechnol, 2013, 24(1): 118-123. (in Chinese with English abstract)
[15] 王冰, 程宪国. 干旱、高盐及低温胁迫下植物生理及转录因子的应答调控. 植物营养与肥料学报, 2017, 23: 1565-1574.
Wang B, Cheng X G. Physiological responses and regulatory pathways of transcription factors in plants under drought, high-salt, and low temperature stress. J Plant Nutr Fert, 2017, 23: 1565-1574. (in Chinese with English abstract)
[16] Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran L P. In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Res, 2009, 16: 353-369.
doi: 10.1093/dnares/dsp023
[17] Wang F B, Ren X Q, Zhang F, Qi M Y, Zhao H Y, Chen X H, Ye Y X, Yang J Y, Li S G, Zhang Y, Niu Y, Zhou Q. A R2R3-type MYB transcription factor gene from soybean, Gm-MYB12, is involved in flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis. Plant Biotechnol Rep , 2019, 13: 219-233.
doi: 10.1007/s11816-019-00530-7
[18] Wang F, Chen H W, Li Q T, Wei W, Li W, Zhang W K, Ma B, Bi Y D, Lia Y C, Liu X L, Man W Q, Zhang J S, Chen S Y. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J, 2015, 83: 224-236.
doi: 10.1111/tpj.12879
[19] Li X W, Wang Y, Yan F, Li J W, Zhao Y, Zhao X, Zhai Y, Wang Q Y. Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis. Genet Mol Res, 2016, 15: doi: 10. 4238/gmr.15026573.
[20] Du Y T, Zhao M J, Wang C T, Gao Y, Wang Y Z, Liu Y W, Chen M, Chen J, Zhou Y B, Xu Z S, Ma Y Z. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol, 2018, 18: 320.
doi: 10.1186/s12870-018-1551-7
[21] Zhang W X, Wang N, Yang J T, Guo H, Liu Z H, Zheng X J, Li S, Xiang F N. The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean. Plant Sci, 2020, 291: 110326.
doi: 10.1016/j.plantsci.2019.110326
[22] Zhao M J, Yin L J, Liu Y, Ma J, Zheng J Z, Lan J H, Fu J D, Chen M, Xu Z S, Ma Y Z. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biol, 2019, 19: 506.
doi: 10.1186/s12870-019-2066-6
[23] Zhao M J, Yin L J, Ma J, Zheng J C. The roles of GmERF135 in improving salt tolerance and decreasing ABA sensitivity in soybean. Front Plant Sci, 2019, 10: 940.
doi: 10.3389/fpls.2019.00940
[24] Xu Z L, Raza Q, Xu L, He X L, Huang Y Z, Yi J Z, Zhang D Y, Shao H B, Ma H Z, Ali Z. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis. Front Plant Sci, 2018, 9: 809.
doi: 10.3389/fpls.2018.00809
[25] Shi W Y, Du Y T, Ma J, Min D H, Jin L G, Chen J, Cheng M, Zhou Y B, Ma Y Z, Xu Z S, Zhang X H. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci, 2018, 19: 4087.
doi: 10.3390/ijms19124087
[26] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lie G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J, 2011, 68: 302-313.
doi: 10.1111/j.1365-313X.2011.04687.x
[27] Li M, Hu Z, Jiang Q Y, Sun X J, Guo Y, Qi J C, Zhang H. GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean. J Integr Agric, 2018, 17: 530-538.
doi: 10.1016/S2095-3119(17)61721-0
[28] Singh K, Foley R C, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430-436.
doi: 10.1016/S1369-5266(02)00289-3
[29] Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F.bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106-111.
pmid: 11906833
[30] Amir H M, Lee Y, Cho J I, Ahn C H, Lee S K, Jeon J S, Kang H, Lee C H, An G, Park P B. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol, 2010, 72: 557-566.
doi: 10.1007/s11103-009-9592-9
[31] Henriquez-Valencia C, Moreno A A, Sandoval-Ibañez O, Mitina I, Blanco-Herrera F, Cifuentes-Esquivel N, Orellana A. bZIP17 and bZIP60 regulate the expression of BiP3 and other salt stress responsive genes in an UPR-independent manner in Arabidopsis thaliana. J Cell Biochem, 2015, 116: 1638-1645.
doi: 10.1002/jcb.25121 pmid: 25704669
[32] Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228: 225-240.
doi: 10.1007/s00425-008-0731-3
[33] Gibalová A, Renák D, Matczuk K, Dupl’áková N, Cháb D, Twell D, Honys D. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol, 2009, 70: 581-601.
doi: 10.1007/s11103-009-9493-y pmid: 19449183
[34] Assunção A G, Herrero E, Lin Y F, Huettel B, Talukdar S, Smaczniak C, Immink R G, Van Eldik M, Fiers M, Schat H, Aarts M G. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA , 2010, 107: 10296-10301.
doi: 10.1073/pnas.1004788107
[35] Yang O, Popova O, Süthoff U, Lüking I, Dietz K J, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 2009, 436: 45-55.
doi: 10.1016/j.gene.2009.02.010
[36] Chern M S. The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. Plant Synthetic, 1996, 8: 305-321.
[37] Burman N, Bhatnagar A, Khurana J P. OsbZIP48, a HY5 transcription factor ortholog, exerts pleiotropic effects in light- regulated development. Plant Physiol, 2017, 176: 1262-1285.
doi: 10.1104/pp.17.00478
[38] Estiati A, Astuti D, Widyajayantie D, Nugroho S. Overexpression of RF2a in transgenic rice plants cultivar IR64 enhances tolerance to rice tungro virus. J Crop Sci Biotechnol, 2018, 21: 291-299.
doi: 10.1007/s12892-018-0058-0
[39] Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis.Plant Cell Physiol, 2004, 45: 309-317.
[40] 田义, 张彩霞, 康国栋, 李武兴, 张利益, 丛佩华. 植物TGA转录因子研究进展. 中国农业科学, 2016, 49: 632-642.
Tian Y, Zhang C X, Kang G D, Li W X, Zhang L Y, Cong P H. Progress on TGA transcription factors in plant. Sci Agric Sin, 2016, 49: 632-642. (in Chinese with English abstract)
[41] Butterbrodt T, Thurow C, Gatz C. Chromatin immunoprecipitation analysis of the tobacco PR-1a and the truncated CaMV 35S promoter reveals differences in salicylic acid-dependent TGA factor binding and histone acetylation. Plant Mol Biol , 2006, 61: 665-674.
pmid: 16897482
[42] Kesarwani M, Yoo J, Dong X. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis . Plant Physiol, 2007, 144: 336-346.
[43] Canales J, Contreras-López O, Álvarez J M, Gutiérrez R A. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana .Plant J, 2017, 92: 305-316.
[44] Noshi M, Mori D, Tanabe N, Maruta T. Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flag22 . Plant Sci , 2016, 252: 12-21.
[45] Gatz C. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant-Microbe Interact, 2013, 26: 151-159.
doi: 10.1094/MPMI-04-12-0078-IA
[46] Li S, Lauri A, Ziemann M, Busch A, Bhave A, Zachgo S. Nuclearactivity of ROXY1, a glutaredoxin interacting with TGA factors is required for petal development in Arabidopsis thaliana. Plant Cell, 2009, 21: 429-441.
doi: 10.1105/tpc.108.064477
[47] Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller M J, Berger S. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell, 2008, 20: 768-785.
doi: 10.1105/tpc.107.054809 pmid: 18334669
[48] Li N, Muthreich M, Huang L, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana . New Phytol, 2018, 221: 1906-1918.
doi: 10.1111/nph.15496
[49] Li B, Liu Y, Cui X Y, Fu J D, Zhou Y B, Zheng W J, Lan J H, Jin L G, Chen M, Ma Y Z, Xu Z S, Min D H. Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance. Front Plant Sci, 2019, 10: 549.
doi: 10.3389/fpls.2019.00549
[50] 李红丽.大豆转录因子GmTGA基因的克隆及抗逆功能分析. 吉林农业大学硕士学位论文, 吉林长春, 2019.
Li H L. Cloning and Stress Resistance Analysis of Transcription Factor GmTGA in Glycine max. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2019. (in Chinese with English abstract)
[51] Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolor K, Gatz C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J, 2005, 44: 100-113.
doi: 10.1111/j.1365-313X.2005.02513.x
[52] Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes- mediated transformation of soybean to study root biology. Nat Prot, 2007, 2: 948-952.
doi: 10.1038/nprot.2007.141
[53] Ke D, Li X, Han Y, Cheng L, Yuan H, Wang L. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus. Plant Physiol Biochem, 2016, 108: 488-498.
doi: 10.1016/j.plaphy.2016.08.015
[54] 柯丹霞, 李祥永, 王磊, 程琳, 刘永辉, 李小艳, 王慧芳. 大豆GmHAT5的克隆及其转基因百脉根的抗盐分析. 中国农业科学, 2017, 50: 1559-1570.
Ke D X, Li X Y, Wang L, Cheng L, Liu Y H, Li X Y, Wang H F. Isolation of GmHAT5 from Glycine max and analysis of saline tolerance for transgenic Lotus japonicus. Sci Agric Sin, 2017, 50: 1559-1570. (in Chinese with English abstract)
[55] Gao S Q, Chen M, Xu Z S, Zhao C P, Li L, Xu H J, Tang Y M, Zhao X, Ma Y Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol, 2011, 75: 537-553.
doi: 10.1007/s11103-011-9738-4
[56] Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. J Plant Physiol, 2015, 173: 19-27.
doi: 10.1016/j.jplph.2014.09.001
[57] Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli G B, Pezzotti M, Cheng Z M. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine(Vitis vinifera). BMC Genomics, 2014, 15: 281.
doi: 10.1186/1471-2164-15-281
[58] Dong Q, Xu Q, Kong J, Peng X, Zhou W, Chen L, Wu J, Xiang Y, Jiang H, Cheng B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci, 2019, 283: 407-415.
doi: 10.1016/j.plantsci.2019.03.001
[59] Kesarwani M, Yoo J, Dong X.Genetic interactions of TGA transcription factors in the regulation of pathogenesis related genes and disease resistance in Arabidopsis. Plant Physiol, 2007, 144: 336-346.
pmid: 17369431
[60] Alvarez J M, Riveras E, Vidal E A, Gras D E, Contreras-López O, Tamayo K P, Aceituno F, Gómez I, Ruffel S, Lejay L, Jordana X, Gutiérrez R A. Systems approach identifies TGA1 and TGA4transcription factor as important regulatory components of the nitrate response of Arabidopsis thaliana. Plant J, 2014, 80: 12618.
[61] Du X, Du B, Chen X, Zhang S, Zhang Z, Qu S. Overexpression of the MhTGA2 gene from crab apple (Malus hupehensis) confers increased tolerance to salt stress in transgenic apple (Malus domestica). J Agric Sci, 2014, 152: 634-641.
doi: 10.1017/S0021859613000130
[62] Zhong L, Chen D D, Min D H, Li W W, Xu Z S, Zhou Y B, Li L C, Cheng M, Ma Y Z. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun , 2015, 457: 433-439.
doi: 10.1016/j.bbrc.2015.01.009
[63] Canales J, Contreras-López O, Álvarez J M, Gutiérrez R A. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana . Plant J , 2017, 92: 305-316.
doi: 10.1111/tpj.13656
[64] Espín F M I, Peraza-Echeverria S, Fuentes G, Santamaría J M. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya. Plant Physiol Biochem, 2012, 54: 113-122.
doi: 10.1016/j.plaphy.2012.02.011
[65] Zhang Y L, Tessaro M J, Lassner M W, Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 2003, 15: 2647-2653.
doi: 10.1105/tpc.014894
[66] Mueller S, Hibert B, Dueckershoff K, Roitsch T, Krischke M, Mueller M J, Susanne B. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell, 2008, 20: 768-785.
[67] Stotz H U, Mueller S, Zoeller M, Mueller M J, Berger S. TGA transcription factors and jasmonate-independent col1 signalling regulate specific plant responses to reactive oxylipins. J Exp Bot, 2013, 64: 963-975.
doi: 10.1093/jxb/ers389
[68] Murmu J, Bush M J, DeLong C, Li S, Xu M, Khan M, Khan M, Malcolmson C, Fobert P R, Zachgo S, Hepworth S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and redundantly required for anther development. Plant Physiol, 2010, 154: 1492-1504.
doi: 10.1104/pp.110.159111
[69] Noshi M, Mori D, Tanabe N, Maruta T, Shigeoka S. Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flag22. Plant Sci, 2016, 252: 12-21.
doi: 10.1016/j.plantsci.2016.06.019
[70] Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol, 2008, 146: 333-350.
doi: 10.1104/pp.107.112821 pmid: 18065552
[71] Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP suppresses the production of diterpenoid phytoalexin in rice cells. J Plant Physiol, 2015, 173: 19-27.
doi: 10.1016/j.jplph.2014.09.001
[72] Guo X, Zhang L, Wang X, Zhang M, Xi Y, Wang A, Zhu J. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PLoS One, 2019, 14: e0225090.
doi: 10.1371/journal.pone.0225090
[73] Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep, 2011, 38: 4823-4832.
doi: 10.1007/s11033-010-0625-x
[74] Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105
[75] Qi J, Song C P, Wang B, Zhou J, Kangasjärvi J, Zhu J K, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol, 2018, 60: 805-826.
doi: 10.1111/jipb.12654
[76] Magwanga R O, Lu P, Kirungu J N, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet, 2018, 19: 1-31.
doi: 10.1186/s12863-017-0594-3
[77] Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047-1060.
doi: 10.1038/cr.2008.280
[78] Mishra A K, Muthamilarasan M, Khan Y, Parida S K, Prasad M. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One, 2014, 9: e86852.
doi: 10.1371/journal.pone.0086852
[79] Yang Y, Yu T F, Ma J, Chen J, Zhou Y B, Chen M, Ma Y Z, Wei W L, Xu Z S. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int J Mol Sci, 2020, 21: 670.
doi: 10.3390/ijms21020670
[1] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[2] 怀园园, 张晟瑞, 武婷婷, AZAM Muhammad, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[9] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[10] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[14] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[15] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .