作物学报 ›› 2022, Vol. 48 ›› Issue (3): 590-596.doi: 10.3724/SP.J.1006.2022.14016
ZHOU Yue(), ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin*()
摘要:
大豆紫色酸性磷酸酶基因GmPAP14受低磷诱导表达, 其超表达显著提高植物有机磷利用效率, 为进一步探究其调控机制, 本研究以GmPAP14 cDNA序列检索大豆参考基因组, 获取基因上游启动子序列, 设计引物克隆了中黄15 GmPAP14启动子序列。利用PLACE与PlantCARE预测启动子调控元件发现, 该序列中含有增强子调控元件、组织特异表达元件, 根特异表达元件、转录因子PHR1结合的PIBS元件等。构建了GmPAP14启动子3个5°端缺失片段融合GUS的植物表达载体PGmPAP14-2568-GUS、PGmPAP14-2238-GUS、PGmPAP14-1635-GUS, 并通过Floral dip法获得转基因拟南芥。利用GUS染色和活性测定分析GmPAP14启动子不同片段表达活性发现, 正常磷条件下各片段转基因拟南芥均在根尖表达, 低磷条件下GUS染色可扩展到成熟区和根毛, 另外转PGmPAP14-2238-GUS植株的GUS活性最高。这些结果为后续的基因调控研究奠定重要基础。
[1] |
Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol, 2011, 62:185-206.
doi: 10.1146/arplant.2011.62.issue-1 |
[2] |
Wang L S, Li Z, Qian W Q, Guo W L, Gao X, Huang L L, Wang H, Zhu H F, Wu J W, Wang D W, Liu D. Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol, 2011, 157:1283-1299.
doi: 10.1104/pp.111.183723 |
[3] |
Robinson W D, Carson I, Ying S, Ellis K, Plaxton W C. Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. New Phytol, 2012, 196:1024-1029.
doi: 10.1111/nph.12006 pmid: 23072540 |
[4] |
Deng S R, Lu L H, Li J Y, Du Z Z, Liu T T, Li W J, Xu F S, Shi L, Shou H X, Wang C. Purple acid phosphatase 10c encodes a major acid phosphatase and regulates the plant growth under phosphate deficient condition in rice. J Exp Bot, 2020, 71:4321-4332.
doi: 10.1093/jxb/eraa179 |
[5] |
Robinson W D, Park J, Tran H T, Del Vecchio H A, Ying S, Zins J L, Patel K, McKnight T D, Plaxton W C. Arabidopsis thaliana Arabidopsis thaliana. J Exp Bot, 2012, 63:6531-6542.
doi: 10.1093/jxb/ers309 pmid: 23125358 |
[6] |
Lu L H, Qiu W M, Gao W W, Tyerman S D, Shou H X, Wang C. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ, 2016, 39:2247-2259.
doi: 10.1111/pce.v39.10 |
[7] |
Kong Y B, Li X H, Wang B, Li W L, Du H, Zhang C Y. GmPAP14 predominantly enhances external phytate utilization in plants GmPAP14 predominantly enhances external phytate utilization in plants. Front Plant Sci, 2018, 9:292.
doi: 10.3389/fpls.2018.00292 |
[8] | 晁毛妮, 胡海燕, 王润豪, 陈煜, 付丽娜, 刘庆庆, 王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析. 作物学报, 2020, 46:40-51. |
Chao M N, Hu H Y, Wang R H, Chen Y, Fu L N, Liu Q Q, Wang Q L. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton(Gossypium hirsutum L.). Acta Agron Sin, 2020, 46:40-51 (in Chinese with English abstract). | |
[9] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析. 作物学报, 2020, 46:1628-1638. |
Li N N, Liu Y, Zhang H J, Wang L, Hao X Y, Zhang W F, Wang Y C, Xiong F, Yang Y J, Wang X C. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant(Camellia sinensis). Acta Agron Sin, 2020, 46:1628-1638 (in Chinese with English abstract). | |
[10] |
Pang J, Ryan M H, Lambers H, Siddique K H. Phosphorus acquisition and utilization in crop legumes under global change. Curr Opin Plant Biol, 2018, 45:248-254.
doi: 10.1016/j.pbi.2018.05.012 |
[11] |
Li D P, Zhu H F, Liu K F, Liu X, Leggewie G, Udvardi M, Wang D W. Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation. J Biol Chem, 2002, 277:27772-27781.
doi: 10.1074/jbc.M204183200 |
[12] |
Hur Y J, Jin B R, Nam J, Chung Y S, Lee J H, Choi H K, Yun D J, Yi G, Kim Y H, Kim D H. OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Biotechnol Lett, 2010, 32:163-170.
doi: 10.1007/s10529-009-0131-1 |
[13] |
Wang X R, Wang Y X, Tian J, Lim B L, Yan X L, Liao H. AtPAP15 enhances phosphorus efficiency in soybean AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol, 2009, 151:233-240.
doi: 10.1104/pp.109.138891 |
[14] |
Bozzo G G, Raghothama K G, Plaxton W C. Lycopersicon esculentum) cell cultures Lycopersicon esculentum) cell cultures. Eur J Biochem, 2002, 269:6278-6287.
pmid: 12473124 |
[15] |
Mehra P, Pandey B K, Giri J. Improvement of phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol J, 2017, 15:1054-1067.
doi: 10.1111/pbi.2017.15.issue-8 |
[16] |
Zhang Y, Wang X Y, Lu S, Liu D. Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation. J Exp Bot, 2014, 65:6577-6588.
doi: 10.1093/jxb/eru377 pmid: 25246445 |
[17] |
Zhang W Y, Gruszewski H A, Chevone B I, Nessler C L. Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol, 2008, 146:431-440.
doi: 10.1104/pp.107.109934 |
[18] |
Kaida R, Hayashi T, Kaneko T S. Purple acid phosphatase in the walls of tobacco cells. Phytochemistry, 2008, 69:2546-2551.
doi: 10.1016/j.phytochem.2008.07.008 pmid: 18762304 |
[19] |
Kaida R, Satoh Y, Bulone V, Yamada Y, Kaku T, Hayashi T, Kaneko T S. Activation of β-glucan synthases by wall-bound purple acid phosphatase in tobacco cells. Plant Physiol, 2009, 150:1822-1830.
doi: 10.1104/pp.109.139287 pmid: 19493971 |
[20] |
Zhu H F, Qian W Q, Lu X Z, Li D Q, Liu X, Liu K F, Wang D W. Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol, 2005, 59:581-594.
doi: 10.1007/s11103-005-0183-0 |
[21] |
Gutierrez-Alanis D, Ojeda-Rivera J O, Yong-Villalobos L, Cardenas-Torres L, Herrera-Estrella L. Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trends Plant Sci, 2018, 23:721-730.
doi: 10.1016/j.tplants.2018.04.006 |
[22] |
Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev, 2001, 15:2122-2133.
pmid: 11511543 |
[23] |
Lambers H, Hayes P E, Laliberte E, Oliveira R S, Turner B L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci, 2015, 20:83-90.
doi: 10.1016/j.tplants.2014.10.007 pmid: 25466977 |
[24] | Zhang Q, Wang C, Tian J, Li K, Shou H. Identification of rice purple acid phosphatases related to phosphate starvation signaling. Plant Biol, 2011, 13:7-15. |
[25] |
Liu F, Wang Z Y, Ren H Y, Shen C J, Li Y, Ling H Q, Wu C Y, Lian X M, Wu P. OsPT2 and phosphate homeostasis in shoots of rice OsPT2 and phosphate homeostasis in shoots of rice. Plant J, 2010, 62:508-517.
doi: 10.1111/tpj.2010.62.issue-3 |
[26] |
Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants, 2019, 5:401-413.
doi: 10.1038/s41477-019-0384-1 |
[1] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[2] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[3] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[4] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[7] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[10] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[11] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[12] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[13] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[14] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[15] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
|