欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 590-596.doi: 10.3724/SP.J.1006.2022.14016

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析

周悦(), 赵志华, 张宏宁, 孔佑宾*()   

  1. 河北农业大学农学院/教育部华北作物种质资源研究与利用重点实验室, 河北保定 071001
  • 收稿日期:2021-01-26 接受日期:2021-06-16 出版日期:2022-03-12 网络出版日期:2021-07-24
  • 通讯作者: 孔佑宾
  • 作者简介:E-mail: 1584868048@qq.com
  • 基金资助:
    河北省自然科学基金项目(C2018204090);现代农业科技奖励性后补助资金项目(17927670H)

Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean

ZHOU Yue(), ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin*()   

  1. North China Key Laboratory for Germplasm Resources of Education Ministry/College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2021-01-26 Accepted:2021-06-16 Published:2022-03-12 Published online:2021-07-24
  • Contact: KONG You-Bin
  • Supported by:
    Natural Science Foundation of Hebei Province(C2018204090);Modern Agricultural Science and Technology Award Post-subsidy Fund Project(17927670H)

摘要:

大豆紫色酸性磷酸酶基因GmPAP14受低磷诱导表达, 其超表达显著提高植物有机磷利用效率, 为进一步探究其调控机制, 本研究以GmPAP14 cDNA序列检索大豆参考基因组, 获取基因上游启动子序列, 设计引物克隆了中黄15 GmPAP14启动子序列。利用PLACE与PlantCARE预测启动子调控元件发现, 该序列中含有增强子调控元件、组织特异表达元件, 根特异表达元件、转录因子PHR1结合的PIBS元件等。构建了GmPAP14启动子3个5°端缺失片段融合GUS的植物表达载体PGmPAP14-2568-GUS、PGmPAP14-2238-GUS、PGmPAP14-1635-GUS, 并通过Floral dip法获得转基因拟南芥。利用GUS染色和活性测定分析GmPAP14启动子不同片段表达活性发现, 正常磷条件下各片段转基因拟南芥均在根尖表达, 低磷条件下GUS染色可扩展到成熟区和根毛, 另外转PGmPAP14-2238-GUS植株的GUS活性最高。这些结果为后续的基因调控研究奠定重要基础。

关键词: 大豆, GmPAP14, 启动子, 诱导表达, 低磷

Abstract:

The expression of GmPAP14 was induced under low phosphorus condition, and its overexpression could significantly improve the utilization efficiency of organic phosphorus in Arabidopsis. In order to further explore its regulatory mechanism, the promoter sequence of GmPAP14 was cloned according to the sequence of soybean reference genome. The regulatory elements of GmPAP14 promoter were predicted by the database PLACE and PlantCARE, which showed that it contained enhancer regulatory elements, tissue-specific expression elements, root-specific expression elements, and P1BS elements (transcription factor PHR1 binding sites). PGmPAP14-2568-GUS, PGmPAP14-2238-GUS, and PGmPAP14-1635-GUS were constructed and transferred into Arabidopsis thaliana via Floral dip method. The expressional activities of three fragments of GmPAP14 promoter were analyzed through GUS staining and activity measurement. The results revealed that GmPAP14 promoter was mainly expressed in root tip under Pi condition, and GUS staining was extended to the elongation area, mature area, and root hair after low phosphorus treatment. Additionally, Arabidopsis plants with PGmPAP14-2238-GUS had the highest activity among them. These results lay an important foundation for the further study of gene regulation.

Key words: soybean, GmPAP14, promoter, induced expression, low phosphorus

表1

本研究所用引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Function
PGmPAP14-F/R F: AGTCGAAGATGGGGATGT
R: TTTGCTCAAAACCCGTG
GmPAP14启动子克隆
Cloning of GmPAP14 promoter
PGmPAP14-2568-F/R F: AAGCTTAGTCGAAGATGGGGATGT
R: GGATCCTTTGCTCAAAACCCGTG
PGmPAP14-2568克隆
Cloning of PGmPAP14-2568
PGmPAP14-2238-F/R F: AAGCTTTAACAACACAAGTTGTGAATTTC
R: GGATCCTTTGCTCAAAACCCGTG
PGmPAP14-2238克隆
Cloning of PGmPAP14-2238
PGmPAP14-1635-F/R F: AAGCTTCTGAGGAAAGACTACAGTATAC
R: GGATCCTTTGCTCAAAACCCGTG
PGmPAP14-1635克隆
Cloning of PGmPAP14-1635
PGmPAP14-Gus-F/R F: GGATCACTAGAATCACGGGTTTTG
R: ACACTTTTCCCGGCAATAACATAC
转基因植株检测
Detection of transgenic plants

图1

GmPAP14启动子克隆 M: DNA分子量标准DL2000; 1: GmPAP14启动子扩增产物。"

表2

GmPAP14启动子顺式调控元件分析"

调控元件
Regulation element
功能注释
Functional annotation
数目
Number
W box 诱导应答元件 Induced response element 2
P1BS PHR1转录因子结合位点 PHR1-binding site 1
RHERPATEXPA7 根尖特异表达元件 Root hair-specific cis-elemen 2
OSE1ROOTNODULE 组织特异元件 Organ-specific element 5
OSE2ROOTNODULE 组织特异元件 Organ-specific element 8
ROOTMOTIFTAPOX1 组织特异元件 Organ-specific element 20
A/T rich element 增强子元件 Enhancer element 1
ABRELATERD1 脱落酸响应元件 Cis-acting element involved in the abscisic acid responsiveness 1
GAREAT 赤霉素响应元件 GA-responsive element 2
TGACG-motif 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in MeJA response 2
CAAT-box 启动子和增强子区的一般顺式作用元件
Common cis-acting element in promoter and enhancer regions
40
TATA-box 转录起始位点-30核心启动子元件Core promoter element around -30 of transcription start 26

图2

GmPAP14启动子5°端缺失片段扩增 A: 5°缺失片段扩增。B: 5°缺失片段示意图。M: DNA分子量标准DL5000; 1: 含酶切位点Hind III/BamH I PGmPAP14-2568扩增; 2: 含酶切位点Hind III/BamH I PGmPAP14-2238扩增; 3: 含酶切位点Hind III/BamH I PGmPAP14-1635扩增。B: 5°缺失片段示意图。"

图3

转GmPAP14启动子T3拟南芥PCR检测 M: DNA分子量标准DL2000; 1: 水对照; 2: 野生型对照; 3: 质粒对照; 4~6: 转PGmPAP14-2568-GUS拟南芥; 7~9: 转PGmPAP14-2238-GUS拟南芥; 10~12: 转PGmPAP14-1635-GUS拟南芥。"

图4

转PGmPAP14-GUS拟南芥不同组织化学染色 A: 根; B: 叶片; C: 茎; D: 花。"

图5

不同磷条件下转GmPAP14启动子5°端缺失片段拟南芥GUS染色分析 PGmPAP14-2568-GUS、PGmPAP14-2238-GUS、PGmPAP14-1635-GUS分别代表转5°缺失拟南芥; +Pi: 磷酸二氢钾; +Po: 植酸磷。"

图6

不同磷条件下转GmPAP14启动子5°端缺失片段拟南芥GUS活性测定 PGmPAP14-2568-GUS、PGmPAP14-2238-GUS、PGmPAP14-1635-GUS分别代表转5°缺失拟南芥; +Pi: 磷酸二氢钾; +Po: 植酸磷。不同小写字母代表在0.05水平差异显著。"

[1] Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol, 2011, 62:185-206.
doi: 10.1146/arplant.2011.62.issue-1
[2] Wang L S, Li Z, Qian W Q, Guo W L, Gao X, Huang L L, Wang H, Zhu H F, Wu J W, Wang D W, Liu D. Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol, 2011, 157:1283-1299.
doi: 10.1104/pp.111.183723
[3] Robinson W D, Carson I, Ying S, Ellis K, Plaxton W C. Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. New Phytol, 2012, 196:1024-1029.
doi: 10.1111/nph.12006 pmid: 23072540
[4] Deng S R, Lu L H, Li J Y, Du Z Z, Liu T T, Li W J, Xu F S, Shi L, Shou H X, Wang C. Purple acid phosphatase 10c encodes a major acid phosphatase and regulates the plant growth under phosphate deficient condition in rice. J Exp Bot, 2020, 71:4321-4332.
doi: 10.1093/jxb/eraa179
[5] Robinson W D, Park J, Tran H T, Del Vecchio H A, Ying S, Zins J L, Patel K, McKnight T D, Plaxton W C. Arabidopsis thaliana Arabidopsis thaliana. J Exp Bot, 2012, 63:6531-6542.
doi: 10.1093/jxb/ers309 pmid: 23125358
[6] Lu L H, Qiu W M, Gao W W, Tyerman S D, Shou H X, Wang C. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ, 2016, 39:2247-2259.
doi: 10.1111/pce.v39.10
[7] Kong Y B, Li X H, Wang B, Li W L, Du H, Zhang C Y. GmPAP14 predominantly enhances external phytate utilization in plants GmPAP14 predominantly enhances external phytate utilization in plants. Front Plant Sci, 2018, 9:292.
doi: 10.3389/fpls.2018.00292
[8] 晁毛妮, 胡海燕, 王润豪, 陈煜, 付丽娜, 刘庆庆, 王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析. 作物学报, 2020, 46:40-51.
Chao M N, Hu H Y, Wang R H, Chen Y, Fu L N, Liu Q Q, Wang Q L. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton(Gossypium hirsutum L.). Acta Agron Sin, 2020, 46:40-51 (in Chinese with English abstract).
[9] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析. 作物学报, 2020, 46:1628-1638.
Li N N, Liu Y, Zhang H J, Wang L, Hao X Y, Zhang W F, Wang Y C, Xiong F, Yang Y J, Wang X C. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant(Camellia sinensis). Acta Agron Sin, 2020, 46:1628-1638 (in Chinese with English abstract).
[10] Pang J, Ryan M H, Lambers H, Siddique K H. Phosphorus acquisition and utilization in crop legumes under global change. Curr Opin Plant Biol, 2018, 45:248-254.
doi: 10.1016/j.pbi.2018.05.012
[11] Li D P, Zhu H F, Liu K F, Liu X, Leggewie G, Udvardi M, Wang D W. Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation. J Biol Chem, 2002, 277:27772-27781.
doi: 10.1074/jbc.M204183200
[12] Hur Y J, Jin B R, Nam J, Chung Y S, Lee J H, Choi H K, Yun D J, Yi G, Kim Y H, Kim D H. OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Biotechnol Lett, 2010, 32:163-170.
doi: 10.1007/s10529-009-0131-1
[13] Wang X R, Wang Y X, Tian J, Lim B L, Yan X L, Liao H. AtPAP15 enhances phosphorus efficiency in soybean AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol, 2009, 151:233-240.
doi: 10.1104/pp.109.138891
[14] Bozzo G G, Raghothama K G, Plaxton W C. Lycopersicon esculentum) cell cultures Lycopersicon esculentum) cell cultures. Eur J Biochem, 2002, 269:6278-6287.
pmid: 12473124
[15] Mehra P, Pandey B K, Giri J. Improvement of phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol J, 2017, 15:1054-1067.
doi: 10.1111/pbi.2017.15.issue-8
[16] Zhang Y, Wang X Y, Lu S, Liu D. Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation. J Exp Bot, 2014, 65:6577-6588.
doi: 10.1093/jxb/eru377 pmid: 25246445
[17] Zhang W Y, Gruszewski H A, Chevone B I, Nessler C L. Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol, 2008, 146:431-440.
doi: 10.1104/pp.107.109934
[18] Kaida R, Hayashi T, Kaneko T S. Purple acid phosphatase in the walls of tobacco cells. Phytochemistry, 2008, 69:2546-2551.
doi: 10.1016/j.phytochem.2008.07.008 pmid: 18762304
[19] Kaida R, Satoh Y, Bulone V, Yamada Y, Kaku T, Hayashi T, Kaneko T S. Activation of β-glucan synthases by wall-bound purple acid phosphatase in tobacco cells. Plant Physiol, 2009, 150:1822-1830.
doi: 10.1104/pp.109.139287 pmid: 19493971
[20] Zhu H F, Qian W Q, Lu X Z, Li D Q, Liu X, Liu K F, Wang D W. Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol, 2005, 59:581-594.
doi: 10.1007/s11103-005-0183-0
[21] Gutierrez-Alanis D, Ojeda-Rivera J O, Yong-Villalobos L, Cardenas-Torres L, Herrera-Estrella L. Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trends Plant Sci, 2018, 23:721-730.
doi: 10.1016/j.tplants.2018.04.006
[22] Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev, 2001, 15:2122-2133.
pmid: 11511543
[23] Lambers H, Hayes P E, Laliberte E, Oliveira R S, Turner B L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci, 2015, 20:83-90.
doi: 10.1016/j.tplants.2014.10.007 pmid: 25466977
[24] Zhang Q, Wang C, Tian J, Li K, Shou H. Identification of rice purple acid phosphatases related to phosphate starvation signaling. Plant Biol, 2011, 13:7-15.
[25] Liu F, Wang Z Y, Ren H Y, Shen C J, Li Y, Ling H Q, Wu C Y, Lian X M, Wu P. OsPT2 and phosphate homeostasis in shoots of rice OsPT2 and phosphate homeostasis in shoots of rice. Plant J, 2010, 62:508-517.
doi: 10.1111/tpj.2010.62.issue-3
[26] Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants, 2019, 5:401-413.
doi: 10.1038/s41477-019-0384-1
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[11] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[12] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[13] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!