欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 565-571.doi: 10.3724/SP.J.1006.2022.14011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用Ln位点进行分子设计提高大豆单荚粒数

杜浩1(), 程玉汉2, 李泰1, 侯智红1, 黎永力1, 南海洋1, 董利东1, 刘宝辉1, 程群1,*()   

  1. 1广州大学生命科学学院, 广东广州 510006
    2北京市通州区潞城镇北京中农富通园艺有限公司, 北京 100083
  • 收稿日期:2021-01-19 接受日期:2021-06-16 出版日期:2022-03-12 网络出版日期:2021-07-13
  • 通讯作者: 程群
  • 作者简介:E-mail: duhao990303@163.com
  • 基金资助:
    国家自然科学基金项目(32001508);国家自然科学基金项目(31930083);国家自然科学基金项目(31801384)

Improving seed number per pod of soybean by molecular breeding based on Ln locus

DU Hao1(), CHENG Yu-Han2, LI Tai1, HOU Zhi-Hong1, LI Yong-Li1, NAN Hai-Yang1, DONG Li-Dong1, LIU Bao-Hui1, CHENG Qun1,*()   

  1. 1School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
    2Beijing International Urban Agricultural Science and Technology Park, Zhong-Nong-Fu-Tong, Beijng 100083, China
  • Received:2021-01-19 Accepted:2021-06-16 Published:2022-03-12 Published online:2021-07-13
  • Contact: CHENG Qun
  • Supported by:
    National Natural Science Foundation of China(32001508);National Natural Science Foundation of China(31930083);National Natural Science Foundation of China(31801384)

摘要:

分子设计育种是将分子遗传学与传统育种相结合, 并培育成具有优良性状的新品种的重要方法之一, 尽管该方法很大程度上能够缩短育种进程, 但在实际育种过程中却应用较少。在大豆的育种过程中, 提高产量是主要的育种目标之一, 其中, 每荚粒数是决定大豆单株产量的关键性状之一。在大豆中, 每荚粒数与叶片形状呈正相关, 由一对等位基因Ln/ln控制, 宽叶的大豆品种一般为Ln, 窄叶的大豆品种一般为突变型ln, 且ln伴随着更多的四粒荚。尽管Ln对于大豆单产的提高, 具有潜在的重要作用, 但将该位点应用于分子设计育种中, 报道较少。本研究通过分析483份来自不同纬度大豆品种的Ln基因型发现, 高纬度地区大豆品种一般为ln, 而低纬度地区大豆品种一般为Ln。通过调查来自不同纬度的8个大豆品种的叶型和一粒荚至四粒荚个数发现, 低纬度大豆品种均为圆叶品种, 且几乎没有四粒荚。为将ln应用于低纬度地区大豆育种中, 成功开发了Ln的分子标记, 并通过连续回交的方法, 将ln代换到圆叶型品种Willams 82和华夏3号中, 获得了四粒荚较多的大豆新材料。本研究利用大豆分子设计育种的手段, 提高了大豆单株产量, 为加快大豆高产育种进程提供了重要的理论及实践基础。

关键词: 大豆, Ln, 产量, 单荚粒数, 分子设计

Abstract:

Molecular design breeding is one of the important methods to combine molecular genetics with conventional breeding, and to breed a series soybean variety with excellent traits. Although this method can shorten the breeding process to a large extent, it is rarely used in the artificial breeding process. Increasing production is one of the most important goals in the process of soybean breeding. Soybean is a typical short-day bean plant, which provides more than a quarter of plant protein for human and animals in the world. In the process of soybean breeding, increasing the yield is one of the main breeding objectives, among which the number of seeds per pod is one of the key traits to determine the yield per plant. In soybean, the number of seeds per pod was positively correlated with leaf shape, which was controlled by an allele Ln/ln. The broad leaflet (Ln) usually linked with no 4-seed pod, and narrow leaflet (ln) associated with 4-seed pod. Although Ln was potentially important for soybean yield, whether this locus could be used in molecular breeding had not been reported. In this study, we found that the narrow leaflet variety was always in high latitude, and the broad leaflet variety in low latitude. To improve soybean yield in low latitude, we developed the molecular marker of Ln. ln was substituted into broad leaflet varieties Willams 82 and Huaxia 3 by backcrossing. Our data provide an important theoretical and practical basis for molecular design breeding to improve soybean yield.

Key words: soybean, Ln, yield, the number of seeds per pod, molecular design

图1

Ln不同等位变异的地理分布 A: Ln不同等位变异在中国的地理分布图; B: 在不同地区, Ln不同等位变异的分布频率。HR代表黄淮海地区, NR代表北部地区, SR代表南部地区, NE代表东北地区。"

图2

不同大豆品种的叶片表型观察与统计 A: DN50、SN14、HH43、SN88的叶片表型, 黄线代表C中调查长宽比所测量的叶片宽度, 红线代表调查长宽比所测量的叶片长度; B: HX3、HX5、BR21和W82的叶片表型, 标尺为1 cm; C: 不同叶片的长宽比统计。"

表1

一粒荚至五粒荚数目统计"

品种名称
Cultivar
一粒荚个数
1-seed pod number
二粒荚个数
2-seed pod number
三粒荚个数
3-seed pod number
四粒荚个数
4-seed pod number
五粒荚个数
5-seed pod number
DN50 6±0.33 12±0.25 23±0.19 25±0.08 0
SN14 9±0.23 15±0.24 20±0.26 25±0.16 0
HH43 11±0.33 15±0.19 28±0.32 29±0.45 1±0.94
SN88 5±0.14 14±0.27 23±0.35 26±0.12 0
HX3 16±0.12 60±0.44 35±0.28 0 0
HX5 22±0.34 54±0.41 34±0.42 0 0
BR21 24±0.12 43±0.25 59±0.34 0 0
W82 18±0.32 39±0.32 61±0.83 2±0.88 0

图3

Ln分子标记的电泳图 A: Ln分子标记检测结果。M: DL2000 marker; 1: Ln的酶切产物; 2: ln的酶切产物; 3: Ln杂合的酶切产物。B: 不同品种Ln的基因型检测。1~4: HX3、HX5、BR21和W82; 5~8: DN50、SN14、HH43和SN88; 9: W82与HH43的杂交果检测; 10: HX3与HH43的杂交果检测。"

图4

ln突变体表型观察 A: W82和W82-ln叶片表型观察; B: W82和W82-ln叶片长宽比; C: HX3和HX3-ln叶片表型观察; D: HX3和HX3-ln叶片长宽比; E: W82和W82-ln的一粒荚至五粒荚表型观察和HX3和HX3-ln的一粒荚至五粒荚表型观察, *代表品种中主要的荚粒数类型; F: W82和W82-ln总荚数表型观察; G: W82和W82-ln四粒荚数表型观察; H: W82和W82-ln 单株产量表型统计; I: HX3和HX3-ln 总荚数表型观察; J: HX3和HX3-ln 四粒荚数表型观察; K: HX3和HX3-ln 单株产量表型统计。**代表在P < 0.01差异显著。"

[1] Ashraf M, Foolad R. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed, 2013, 132:10-20.
doi: 10.1111/pbr.2013.132.issue-1
[2] Sharma S, Sharma A. Molecular markers based plant breeding. Adv Res, 2018, 16:2348.
[3] Hartung R C, Specht J E, Williams J H. Modification of soybean plant architecture by genes for stem growth habit and maturity. Crop Sci, 1981, 21:51-62.
doi: 10.2135/cropsci1981.0011183X002100010015x
[4] 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 大豆分子设计育种成果与展望. 中国科学院院刊, 2018, 33:915-922.
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018, 33:915-922 (in Chinese with English abstract).
[5] Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S J, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19:562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439
[6] Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Fang C, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62:1868-1879.
doi: 10.1111/jipb.v62.12
[7] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112:1164-1171.
doi: 10.1007/s00122-006-0218-1
[8] Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, Zhang L, Wang Z J, Yang Y Q, Yu D Y, Liu X L, Yang Q Y, Lin X Y, Tang Y, Zhao X H, Yang X Q, Tian C E, Xie Q G, Li X, Yuan X H, Tian Z X, Liu B H, Weller J L, Kong F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52:428-436.
doi: 10.1038/s41588-020-0604-7
[9] Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154:1220-1231.
doi: 10.1104/pp.110.160796
[10] Li Z B, Cheng Q, Gan Z R, Hou Z H, Zhang Y H, Li Y L, Li H Y, Nan H Y, Yang C, Chen L N, Lu S J, Shi W Q, Chen L Y, Wang Y P, Fang C, Kong L P, Su T, Li S C, Kou K, Wang L S, Kong F J, Liu B H, Dong L D. Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. Crop J, 2021, 9:767-776.
doi: 10.1016/j.cj.2020.09.005
[11] Li M W, Liu W, Lam H M, Gendron J M. PRR3 genes during soybean domestication PRR3 genes during soybean domestication. Plant Cell Physiol, 2019, 60:407-420.
doi: 10.1093/pcp/pcy215
[12] Cheng Q, Gan Z R, Wang Y P, Lu S J, Hou Z H, Li H Y, Xiang H T, Liu B H, Kong F J, Dong L D. J contributes to salt stress tolerance by up-regulating salt-responsive genes J contributes to salt stress tolerance by up-regulating salt-responsive genes. Front Plant Sci, 2020, 11:272.
doi: 10.3389/fpls.2020.00272 pmid: 32256507
[13] Hymowitz T. On the domestication of the soybean. Econ Bot, 1970, 24:408-421.
doi: 10.1007/BF02860745
[14] Lee G A, Crawford G W, Liu L, Sasaki Y, Chen X. Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS One, 2011, 6:e26720.
doi: 10.1371/journal.pone.0026720
[15] Fang C, Li W Y, Li G Q, Wang Z, Zhou Z K, Ma Y M, Shen Y I, Li C C, Wu Y H, Zhu B G, Yang W C, Tian Z X. Ln gene through combined approach of map-based cloning and association study in soybean Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics, 2013, 40:93-96.
doi: 10.1016/j.jgg.2013.01.002
[16] Jeong N, Moon J J, Kim H S, Kim C G, Jeong S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet, 2011, 122:865-874.
doi: 10.1007/s00122-010-1492-5
[17] Jeong N, Suh S J, Kim M H, Lee S, Moon J K, Kim H S, Jeong S C. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell, 2012, 24:4807-4818.
doi: 10.1105/tpc.112.104968
[18] Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A, Ishimoto M. Ln gene in induced soybean mutants Ln gene in induced soybean mutants. Breed Sci, 2017, 67:363-369.
doi: 10.1270/jsbbs.16201
[19] Ohno C K, Reddy G V, Heisler M G, Meyerowitz E M. Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development, 2004, 131:1111-1122.
doi: 10.1242/dev.00991
[20] Neumaier N, James A T. Exploiting the long-juvenile trait to improve adaptation of soybeans to the tropics. Food Legume Newsl, 1993, 8:12-14.
[21] Spehar C R. Impact of strategic genes in soybean on agricultural development in the Brazilian tropical savannah. Field Crops Res, 1995, 41:141-146.
doi: 10.1016/0378-4290(95)00007-D
[22] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, Pan Y, Zhou G A, Ren H X, Du W G, Yan H R, Wang Y P, Han D Z, Shen Y T, Liu S L, Liu T F, Zhang J X, Qin H, Yuan J, Yuan X H, Kong F J, Liu B H, Li J Y, Zhang Z W, Wang G D, Zhu B G, Tian Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18:161-175.
doi: 10.1186/s13059-017-1289-9
[23] Wu F Q, Kang X H, Wang M L, Haider W, Price W B, Hajek B, Hanzawa Y. GmCOL1 feed-forward loop and its roles in photoperiodic flowering of soybean GmCOL1 feed-forward loop and its roles in photoperiodic flowering of soybean. Front Plant Sci, 2019, 10:1221.
doi: 10.3389/fpls.2019.01221
[24] Zhao X H, Cao D, Huang Z J, Wang J L, Lu S J, Xu Y, Liu B H, Kong F J, Yuan X H. Dual functions of GmTOE4a in the regulation of photoperiod-mediated flowering and plant morphology in soybean. Plant Mol Biol, 2015, 88:343-355.
doi: 10.1007/s11103-015-0322-1
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!