欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1463-1475.doi: 10.3724/SP.J.1006.2022.12027

• 耕作栽培·生理生化 • 上一篇    下一篇

耐盐性不同水稻品种对盐胁迫的响应差异及其机制

颜佳倩1,2(), 顾逸彪1,2, 薛张逸1,2, 周天阳1,2, 葛芊芊1,2, 张耗1,2, 刘立军1,2, 王志琴1,2, 顾骏飞1,2,*(), 杨建昌1,2, 周振玲3, 徐大勇3   

  1. 1扬州大学江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室, 江苏扬州 225009
    2扬州大学江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    3连云港市农业科学院 / 江苏省现代作物生产协同创新中心, 江苏连云港 222006
  • 收稿日期:2021-04-15 接受日期:2021-09-09 出版日期:2022-06-12 网络出版日期:2021-10-18
  • 通讯作者: 顾骏飞
  • 作者简介:E-mail: 952800394@qq.com
  • 基金资助:
    国家自然科学基金项目(31872853);国家重点研发计划项目(2017YFD0200107);江苏省农业科技自主创新资金项目(cx183007);江苏省自然科学基金项目(BK20181455)

Different responses of rice cultivars to salt stress and the underlying mechanisms

YAN Jia-Qian1,2(), GU Yi-Biao1,2, XUE Zhang-Yi1,2, ZHOU Tian-Yang1,2, GE Qian-Qian1,2, ZHANG Hao1,2, LIU Li-Jun1,2, WANG Zhi-Qin1,2, GU Jun-Fei1,2,*(), YANG Jian-Chang1,2, ZHOU Zhen-Ling3, XU Da-Yong3   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Lianyungang Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center of Modern Crop Production, Lianyungang 222006, Jiangsu, China
  • Received:2021-04-15 Accepted:2021-09-09 Published:2022-06-12 Published online:2021-10-18
  • Contact: GU Jun-Fei
  • Supported by:
    National Natural Science Foundation of China(31872853);National Key Research and Development Program of China(2017YFD0200107);Jiangsu Agriculture Science and Technology Innovation Fund(cx183007);Natural Science Foundation of Jiangsu Province(BK20181455)

摘要:

旨在阐明耐盐性不同水稻的产量对盐胁迫的响应及其生理特性。本研究以5个耐盐水稻品种和两个盐敏感水稻品种为材料, 设置了5个不同盐浓度处理(0、1、2、2.5和3 g kg-1)。结果表明, 相较于盐敏感水稻, 耐盐水稻能够耐受更高浓度的盐胁迫(2.5 g kg-1), 且产量受盐胁迫减产幅度较小。耐盐水稻品种具有较高的产量, 得益于其较高的总颖花量和结实率。与盐敏感品种相比, 耐盐水稻品种叶片, 在分蘖中期、穗分化期、抽穗期, 具有较高的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性, 较高的果糖、海藻糖、山梨醇、脯氨酸等有机渗透调节物质含量, 较高的K+/Na+值; 分蘖至拔节以及抽穗至成熟期具有较高的作物生长速率; 抽穗期具有较高的光合速率。上述结果表明, 不同耐盐性水稻产量差异, 主要来源于分蘖期、穗分化期与抽穗期的耐盐生理差异, 这些生育时期是决定水稻穗数、穗粒数、结实率的关键时期。耐盐水稻在这些关键生育时期的良好生理表现是这些水稻品种获得高产的基础。该研究结果对水稻耐盐生理机制研究与水稻耐盐育种有借鉴意义。

关键词: 水稻, 盐胁迫, 产量, 渗透调节, 光合速率

Abstract:

The objective of this study is to elucidate the responses of physiological traits and yield with different salt stress to salt-tolerant and salt-susceptible rice cultivars. Five salt-tolerant rice cultivars and two salt-susceptible rice cultivars were grown in pots with five different salt concentration levels including 0, 1, 2, 2.5, and 3 g kg-1 of per pot for two years. Results showed that the yields of salt-tolerant cultivars were less reduced than that of salt-susceptible cultivars, and salt-tolerant cultivars was able to tolerate higher salt concentration of 2.5 g kg-1. Salt-tolerant varieties produced higher grain yield mainly due to the greater total spikelets per area and higher filled grain percentage under salt stress. Salt-tolerant rice cultivars also had higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher contents of osmotic substances such as fructose, trehalose, and sorbitol, and higher K+/Na+ ratio from mid-tillering to heading. The crop growth rate from tillering to jointing and from heading to maturity, and photosynthetic rate at heading stage were higher in salt-tolerant cultivars than in salt-susceptible cultivars. The above results revealed that the differences in grain yields between salt-tolerant and salt-susceptible rice varieties were mainly due to the performances of physiological traits at mid-tillering, panicle initiation, and heading stages. These growth stages were the key stages that determined the number of panicles, spikelets per panicle, and the percentage of filled grains. The better physiological traits in the salt-tolerant rice varieties during key stages were the basis for higher grain yield. The results of this study could be helpful for the physiological researches and the breeding of salt-tolerant rice.

Key words: rice, salt stress, grain yield, osmotic regulation, photosynthetic rate

表1

主要生育时期盆栽中耕作层土壤(0-20 cm)盐含量及土壤电导率(2020)"

生育时期
Growth stage
处理
Treatment
土壤盐度
Soil salinity (g kg-1)
电导率
Conductivity (μS cm-1)
分蘖中期 Mid-tillering 0.1% 1.01±0.03 485.66±3.49
0.2% 2.02±0.07 609.33±5.77
0.25% 2.53±0.07 671.99±8.33
穗分化期 Panicle initiation 0.1% 0.99±0.04 482.60±4.47
0.2% 1.98±0.07 604.89±8.40
0.25% 2.52±0.06 670.22±6.80
抽穗期 Heading time 0.1% 0.98±0.03 481.34±3.86
0.2% 1.95±0.04 600.29±4.79
0.25% 2.42±0.07 658.92±8.04

表2

盐胁迫对不同水稻品种产量及构成因素的影响(2019)"

品种
Variety
处理
Treatment
每盆穗数
No. of
panicles pot-1
每穗粒数
Spikelets
per panicle
总颖花数
Total number of spikelets
结实率
Filled grains (%)
千粒重
1000-grain weight (g)
产量
Yield
(g pot-1)
减产率
Yield reduction rate (%)
连鉴5号
Lianjian 5
0 22.3 a 168 a 3.73×103 a 82.9 a 23.5 a 72.6 a
0.1% 21.8 a 153 b 3.32×103 b 80.2 a 23.2 a 61.8 b 14.9 a
0.2% 17.0 b 139 c 2.35×103 c 79.1 a 22.6 b 42.1 c 42.1 b
0.3%
连鉴6号
Lianjian 6
0 19.3 a 155 a 2.98×103 a 82.9 a 27.9 a 68.6 a
0.1% 18.3 ab 136 b 2.47×103 b 80.3 ab 26.7 a 53.1 b 22.6 a
0.2% 16.5 b 121 c 1.99 ×103 c 77.7 b 24.2 b 37.3 c 45.7 b
0.3%
连鉴7号
Lianjian 7
0 21.0 a 124 a 2.59×103 a 81.2 a 28.5 a 60.1 a
0.1% 20.0 a 112 b 2.23×103 b 81.0 a 27.5 a 49.7 b 17.2 a
0.2% 16.3 b 103 c 1.67×103 c 81.0 a 25.9 b 35.1 c 41.5 b
0.3%
盐稻16Z28
Yandao 16Z28
0 20.0 a 132 a 2.64×103 a 84.0 a 26.6 a 59.1 a
0.1% 16.8 b 123 a 2.05×103 b 82.5 a 25.7 b 43.4 b 26.5 a
0.2% 14.8 c 107 b 1.58×103 c 82.5 a 22.9 c 29.7 c 49.7 b
0.3%
连粳7号
Lianjing 7
0 23.5 a 154 a 3.62×103 a 79.7 a 25.8 a 74.5 a
0.1% 20.8 b 134 b 2.78×103 b 66.1 b 25.1 ab 47.3 b 36.5 a
0.2% 15.0 c 122 b 1.83×103 c 56.2 c 24.9 b 25.6 c 65.7 b
0.3%
武运粳30
Wuyunjing 30
0 22.8 a 151 a 3.43×103 a 76.3 a 27.3 a 72.4 a
0.1% 16.5 b 130 b 2.15×103 b 61.9 b 26.5 ab 35.6 b 50.9 a
0.2% 14.0 c 112 c 1.57×103 c 51.0 c 25.5 b 20.5 c 71.7 b
0.3%

表3

盐胁迫对不同水稻品种产量及构成因素的影响(2020)"

品种
Variety
处理
Treatment
每盆穗数
No. of
panicles pot-1
每穗粒数
Spikelets
per panicle
总颖花数
Total number of spikelets
结实率
Filled grains (%)
千粒重
1000-grain weight (g)
产量
Yield
(g pot-1)
减产率
Yield reduction rate (%)
连鉴5号
Lianjian 5
0 21.3 a 170 a 3.63×103 a 70.2 a 24.5 a 62.4 a
0.1% 20.7 a 142 b 2.94×103 b 69.5 a 24.5 a 49.8 b 20.0 a
0.2% 20.3 a 119 c 2.42×103 c 69.5 a 24.3 a 40.9 c 34.5 b
0.25% 15.3 b 109 d 1.78×103 d 67.7 a 23.2 b 27.9 d 55.3 c
连鉴6号
Lianjian 6
0 19.3 a 176 a 3.40×103 a 64.7 a 26.1 a 57.2 a
0.1% 18.7 a 141 b 2.62×103 b 62.9 a 27.2 a 44.8 b 21.7 a
0.2% 15.7 b 133 bc 2.09×103 c 62.8 a 27.2 b 35.7 c 37.7 b
0.25% 14.7 b 128 c 1.87×103 c 62.2 a 25.5 b 29.6 d 48.1 c
品种
Variety
处理
Treatment
每盆穗数
No. of
panicles pot-1
每穗粒数
Spikelets
per panicle
总颖花数
Total number of spikelets
结实率
Filled grains (%)
千粒重
1000-grain weight (g)
产量
Yield
(g pot-1)
减产率
Yield reduction rate (%)
连鉴7号
Lianjian 7
0 18.3 a 164 a 3.01×103 a 71.0 a 27.4 a 58.6 a
0.1% 16.7 b 157 a 2.61×103 b 69.4 b 26.8 b 48.7 b 16.7 a
0.2% 15.0 c 130 b 1.95×103 c 69.1 b 26.6 b 36.3 c 37.9 b
0.25% 13.7 c 117 c 1.60×103 d 67.5 c 26.6 b 28.7 d 50.8 c
连鉴9号 0 18.7 a 147 a 2.74×103 a 86.5 a 24.2 a 57.3 a
Lianjian 9 0.1% 18.3 a 145 a 2.66×103 a 81.6 b 24.1 a 52.4 b 8.5 a
0.2% 16.3 b 127 b 2.07×103 b 75.4 c 22.8 b 35.6 c 37.9 b
0.25% 16.3 b 100 c 1.64×103 c 70.1 d 22.6 b 25.8 d 54.9 c
连粳7号 0 21.0 a 175 a 3.65×103 a 73.8 a 27.3 a 73.6 a
Lianjing 7 0.1% 17.7 b 164 a 2.90×103 b 60.3 b 27.2 b 47.6 b 35.3 a
0.2% 11.7 c 105 b 1.23×103 c 57.5 b 27.1 b 19.1 c 74.1 b
0.25%
武运粳30号 0 20.7 a 191 a 3.93×103 a 79.1 a 27.2 a 84.5 a
Wuyunjing 30 0.1% 15.7 b 143 b 2.23×103 b 54.9 b 27.0 a 33.0 b 60.9 a
0.2% 12.7 c 122 c 1.55×103 c 48.5 c 26.7 b 20.0 c 76.3 b
0.25%

表4

盐胁迫对不同水稻品种各生育期的干物质重及作物生长速率(CGR)的影响(2019)"

品种
Variety
处理
Treatment
干物质重Biomass (g pot-1) 作物生长速率CGR (g pot-1 d-1)
分蘖中期
Mid-tillering
(T)
拔节期Jointing
(J)
抽穗期Heading
(H)
成熟期Maturity
(M)
分蘖-拔节
T-J
拔节-抽穗
J-M
抽穗-成熟
H-M
连鉴5号
Lianjian 5
0 15.3 a 60.6 a 100 a 166 a 1.74 a 2.65 a 1.45 a
0.1% 14.7 b 53.1 b 79.6 b 136 b 1.48 b 1.77 b 1.26 b
0.2% 11.3 c 45.4 c 66.9 c 109 c 1.31 c 1.44 c 0.94 c
0.3% 10.9 c 38.0 d 51.1 d 1.04 d 0.88 d
连鉴6号
Lianjian 6
0 22.7 a 71.1 a 103 a 154 a 1.86 a 2.10 a 1.14 a
0.1% 17.8 b 60.1 b 87.9 b 129 b 1.63 b 1.85 b 0.91 b
0.2% 13.9 c 50.7 c 73.2 c 104 c 1.42 c 1.50 c 0.67 c
0.3% 11.9 d 40.2 d 61.0 d 1.09 d 1.38 d
连鉴7号
Lianjian 7
0 23.8 a 73.8 a 114 a 161 a 1.93 a 2.70 a 1.05 a
0.1% 14.8 b 60.4 b 90.0 b 135 b 1.76 b 1.97 b 1.00 b
0.2% 11.6 c 52.4 c 77.8 c 119 c 1.57 c 1.70 c 0.92 c
0.3% 10.8 d 44.3 d 66.7 d 1.29 d 1.49 d
盐稻16Z28
Yandao 16Z28
0 21.6 a 68.9 a 113 a 153 a 1.82 a 2.92 a 0.89 a
0.1% 16.5 b 58.5 b 81.2 b 114 b 1.62 b 1.51 b 0.74 b
0.2% 11.0 c 48.2 c 63.7 c 88.1 c 1.43 c 1.03 c 0.54 c
0.3% 9.4 d 41.5 d 56.1 d 1.23 d 0.98 d
连粳7号
Lianjing 7
0 16.4 a 65.8 a 116 a 179 a 1.90 a 3.33 a 1.41 a
0.1% 12.4 b 24.7 b 73.1 b 98.8 b 0.47 b 3.23 b 0.57 b
0.2% 6.54 c 20.5 c 43.5 c 65.6 c 0.54 c 1.53 c 0.49 c
0.3% 3.64 d 15.4 d 0.45 d
武运粳30
Wuyunjing 30
0 13.8 a 57.4 a 115 a 161 a 1.68 a 3.87 a 1.02 a
0.1% 7.11 b 26.6 b 76.7 b 112 b 0.75 b 3.34 b 0.77 b
0.2% 5.27 c 22.6 c 37.4 c 59.0 c 0.67 c 0.99 c 0.48 c
0.3% 3.70 d 13.3 d 0.37 d

表5

盐胁迫对不同水稻品种各生育期的干物质重及作物生长速率(CGR)的影响(2020)"

品种
Variety
处理
Treatment
干物质重Biomass (g pot-1) 作物生长速率CGR (g pot-1 d-1)
分蘖中期
Mid-tillering
(T)
拔节期Jointing
(J)
抽穗期Heading
(H)
成熟期Maturity
(M)
分蘖-拔节
T-J
拔节-抽穗
J-M
抽穗-成熟
H-M
连鉴5号
Lianjian 5
0 16.2 a 56.6 a 97.5 a 142 a 1.55 a 2.72 a 0.98 a
0.1% 12.0 a 45.5 b 82.8 b 125 b 1.29 b 2.49 ab 0.94 a
0.2% 11.4 a 39.2 c 72.4 c 105 c 1.07 c 2.22 b 0.73 a
0.25% 6.23 b 30.2 d 50.5 d 82.1 d 0.92 c 1.35 c 0.70 a
连鉴6号
Lianjian 6
0 18.8 a 59.0 a 98.8 a 138 a 1.55 a 2.66 a 0.87 a
0.1% 14.3 b 47.8 b 85.9 b 123 b 1.29 ab 2.54 a 0.83 a
0.2% 12.0 b 39.6 c 69.0 c 104 c 1.06 b 1.95 b 0.77 ab
0.25% 11.0 b 26.4 d 53.9 d 84.1 d 0.60 c 1.83 b 0.67 a
连鉴7号
Lianjian 7
0 11.8 a 62.7 a 103 a 151 a 1.96 a 2.70 a 1.06 a
0.1% 10.5 ab 42.4 b 78.8 b 125 b 1.23 b 2.43 a 1.03 ab
0.2% 9.23 b 35.2 c 69.9 b 116 c 1.00 c 2.32 ab 1.01 ab
0.25% 6.07 c 22.6 d 48.9 c 80.8 d 0.63 d 1.76 b 0.71 b
品种
Variety
处理
Treatment
干物质重Biomass (g pot-1) 作物生长速率CGR (g pot-1 d-1)
分蘖中期
Mid-tillering
(T)
拔节期Jointing
(J)
抽穗期Heading
(H)
成熟期Maturity
(M)
分蘖-拔节
T-J
拔节-抽穗
J-M
抽穗-成熟
H-M
连鉴9号
Lianjian 9
0 13.5 a 64.9 a 104 a 147 a 1.98 a 2.60 a 0.96 a
0.1% 12.3 b 56.1 a 88.5 b 126 b 1.69 a 2.16 a 0.83 b
0.2% 11.1 c 42.9 b 75.2 c 111 c 1.23 b 2.15 a 0.80 b
0.25% 8.60 d 28.9 c 56.8 d 91.5 d 0.78 c 1.86 a 0.77 b
连粳7号
Lianjing 7
0 16.9 a 63.9 a 122 a 181 a 1.81 a 3.86 a 1.32 a
0.1% 11.8 b 27.6 b 72.8 b 96.4 b 0.61 b 3.01 b 0.53 ab
0.2% 6.72 c 20.7 b 36.4 c 57.8 c 0.54 b 1.04 c 0.47 b
0.25% 3.81 d 11.6 c 0.30 b
武运粳30
Wuyunjing 30
0 14.5 a 54.3 a 117 a 161 a 1.53 a 4.19 a 0.96 a
0.1% 7.36 b 29.9 b 74.5 b 113 b 0.87 b 2.97 a 0.86 ab
0.2% 5.16 c 21.1 b 34.8 c 53.5 c 0.61 bc 0.91 b 0.42 b
0.25% 3.31 c 11.3 c 0.31 c

图1

盐胁迫对水稻主要生育时期叶片超氧化物歧化酶SOD (A, B, C)、过氧化物酶POD (D, E, F)、过氧化氢酶CAT (G, H, I)活性的影响 不同小写字母表示同一处理下不同品种间差异达显著水平(P = 0.05)。J5: 连鉴5号; J6: 连鉴6号; J7: 连鉴7号; J9: 连鉴9号; L7: 连粳7号; W30: 武运粳30; MT: 分蘖中期; PI: 穗分化期; HD: 抽穗期。"

图2

盐胁迫对水稻主要生育时期叶片果糖(A, B, C)、海藻糖(D, E, F)、山梨醇(G, H, I)、脯氨酸(J, K, L)含量的影响 不同小写字母表示同一处理不同品种间差异达显著水平(P = 0.05)。J5: 连鉴5号; J6: 连鉴6号; J7: 连鉴7号; J9: 连鉴9号; L7: 连粳7号; W30: 武运粳30; MT: 分蘖中期; PI: 穗分化期; HD: 抽穗期。"

图3

盐胁迫对水稻主要生育时期叶片K+含量(A, B, C)、Na+含量(D, E, F)及K+/Na+值(G, H, I)的影响 不同小写字母表示同一处理不同品种间差异达显著水平(P = 0.05)。J5: 连鉴5号; J6: 连鉴6号; J7: 连鉴7号; J9: 连鉴9号; L7: 连粳7号; W30: 武运粳30; MT: 分蘖中期; PI: 穗分化期; HD: 抽穗期。"

图4

盐胁迫对水稻抽穗期剑叶光合速率(A)、气孔导度(B)、蒸腾速率(C)及胞间二氧化碳浓度(D)的影响 不同小写字母表示同一处理不同品种间差异达显著水平(P = 0.05)。J5: 连鉴5号; J6: 连鉴6号; J7: 连鉴7号; J9: 连鉴9号; L7: 连粳7号; W30: 武运粳30。"

表6

盐胁迫下水稻渗透调节物质含量、抗氧化酶活性及K+、Na+含量与产量及构成因素的相关性分析"

生理指标
Physiological index
产量
Yield
结实率
Filled grains
总颖花量
Total number of spikelets
超氧化物歧化酶(SOD)活性SOD activity 0.917* 0.918** 0.681
过氧化物酶(POD)活性POD activity 0.869* 0.862* 0.651
过氧化氢酶(CAT)活性CAT activity 0.891* 0.843* 0.651
果糖含量Fructose content 0.786* 0.927* 0.563
海藻糖含量Trehalose content 0.822* 0.827* 0.473
山梨醇含量Sorbitol content 0.991** 0.925* 0.806
脯氨酸含量Proline content 0.863* 0.930* 0.485
K+含量K+ content 0.690 0.707 0.645
Na+含量Na+ content -0.826* -0.807 -0.597
[1] 刘凯, 朱静雯, 宛柏杰, 代金英, 唐红生, 孙明法. 水稻耐盐性分子遗传研究进展. 植物遗传资源学报, 2021, 22: 881-889.
Liu K, Zhu J W, Wan B J, Dai J Y, Tang H S, Sun M F. Research progress on molecular genetics of rice salt tolerance. J Plant Genet Resour, 2021, 22: 881-889 (in Chinese with English abstract).
[2] 王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019, 25(1):1-6.
Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C F, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice. China Rice, 2019, 25(1):1-6 (in Chinese with English abstract).
[3] 李微. 盐胁迫对水稻种子萌发及幼苗生长的影响. 中国农业科学院硕士学位论文, 辽宁沈阳 2011.
Li W. Effect of Salt Stress on Seed Germination and Seeding Growth of Rice. MS Thesis of Chinese Academy of Agricultural Sciences, Shenyang, Liaoning, China, 2011 (in Chinese with English abstract).
[4] 代金英, 张桂云, 胡蕾, 孙红芹, 万林生, 韩配配, 倪正斌. 耐盐水稻产量与主要农艺性状的灰色关联度分析. 大麦与谷类科学, 2020, 37(6):9-13.
Dai J Y, Zhang G Y, Hu L, Sun H Q, Wan L S, Han P P, Ni Z B. Grey correlation analysis of the relationship between the yield and main agronomic characters of salt-tolerant rice varieties. Barl Cereal Sci, 2020, 37(6):9-13 (in Chinese with English abstract).
[5] 陈惠哲, Ladatko N, 朱德峰 林贤青 张玉屏 孙宗修 盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究. 植物生态学报, 2007, 31: 937-945.
doi: 10.17521/cjpe.2007.0119
Chen H Z, Ladatko N, Zhu D F, Lin X Q, Zhang Y P, Sun Z X. Absorption and distribution of Na+ and K+ in rice seedling under salt stress. Chin J Plant Ecol, 2007, 31: 937-945 (in Chinese with English abstract).
[6] 梁正伟, 杨福, 王志春, 陈渊. 盐碱胁迫对水稻主要生育性状的影响. 生态环境, 2004, 13: 43-46.
Liang Z W, Yang F, Wang Z C, Chen Y. Effect of the main growth characteristics of rice under saline-alkali stress. Ecol Environ, 2004, 13: 43-46 (in Chinese with English abstract).
[7] 郑英杰. 盐胁迫对水稻的影响及水稻耐盐育种研究. 北方水稻, 2013, 43(5):71-74.
Zheng Y J. Effect of salt stress on rice and research on salt tolerant breeding. North Rice, 2013, 43(5):71-74 (in Chinese with English abstract).
[8] 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理. 浙江农业学报, 2020, 32: 1141-1148.
Shi J, Liu D Y, Zhang F H. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress. Acta Agric Zhejiangensis, 2020, 32: 1141-1148 (in Chinese with English abstract).
[9] Yu D, Boughton B A, Hill C B, Feussner I, Rupasinghe T. Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Front Plant Sci, 2020, 11: 1.
doi: 10.3389/fpls.2020.00001
[10] Szabados L, Savouré A, Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[11] Abdallah M M S, Abdelgawad Z A, El-Bassiouny H M S. Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South Afr J Bot, 2016, 103: 275-282.
doi: 10.1016/j.sajb.2015.09.019
[12] Cha-um A S, Charoenpanich S, Kirdmanee R C. Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant, 2009, 31: 477-486.
doi: 10.1007/s11738-008-0256-1
[13] 杨光, 李玲玉, 黄明丽, 杨凡昌, 张凤魁, 徐荣臣, 颜冬云. 山梨醇对植株抗逆性作用的研究进展. 土壤, 2018, 50: 446-454.
Yang G, Li L Y, Huang M L, Yang F C, Zhang F K, Xu R C, Yan D Y. Progresses in study on sorbitol effect on plants resistance. Soils, 2018, 50: 446-454 (in Chinese with English abstract).
[14] 许阳东, 朱宽宇, 章星传, 王志琴, 杨建昌. 绿色超级稻品种的农艺与生理性状分析. 作物学报, 2019, 45: 70-80.
doi: 10.3724/SP.J.1006.2019.82036
Xu Y D, Zhu K Y, Zhang X C, Wang Z Q, Yang J C. Analysis in agronomic and physiological traits of green super rice. Acta Agron Sin, 2019, 45: 70-80 (in Chinese with English abstract).
[15] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 221-224.
Gao J F. Experimental Guide of Plant Physiology. Beijing: Higher Education Press, 2006. pp 221-224(in Chinese).
[16] 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000. pp 164-168.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 164-168(in Chinese).
[17] 汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 303-304.
Tang Z C. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. pp 303-304(in Chinese).
[18] 许更文. 灌溉方式与施氮量对水稻产量影响的互作效应及其生理基础. 扬州大学硕士学位论文, 江苏扬州, 2017.
Xu G W. Interaction Between Irrigation Regimes and Nitrogen Rates on Grain Yield of Rice and Its Physiological Basis. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2017 (in Chinese with English abstract).
[19] 申勇, 谢昊, 潘竹栋, 朱宽宇, 王志琴, 杨建昌. 不同氮效率粳稻品种的冠层特征. 作物杂志, 2021, (1):90-97.
Shen Y, Xie H, Pan Z D, Zhu K Y, Wang Z Q, Yang J J. Canopy characteristics of the rice varieties differing in nitrogen use efficiency. Crops, 2021, (1):90-97 (in Chinese with English abstract).
[20] 谷娇娇. 盐胁迫对水稻氮代谢及产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Gu J J. Effects of Salt Stress on Nitrogen Metabolism and Yield of Rice. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[21] 栾金华. 盐胁迫对粳稻农艺性状的影响及耐盐品种筛选. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Luan J H. Effects of Salt Stress on Agronomic Characters of Japonica Rice and Selection of Salt Tolerant Varieties. MS Thesis of Shen Yang Agricultural University, Shenyang, Liaoning, China, 2020 (in Chinese with English abstract).
[22] 荆培培. 水稻品种耐盐性及其生理特征的研究. 扬州大学硕士学位论文, 江苏扬州, 2018.
Jing P P. Studies on Salt Tolerance of Rice Verities and Its Related Physiological Traits. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2018 (in Chinese with English abstract).
[23] Xie Z Y, Wang C C, Zhu S B, Wang W S, Xu J L, Zhao X Q. Characterizing the metabolites related to rice salt tolerance with introgression lines exhibiting contrasting performances in response to saline conditions. Plant Growth Regul, 2020, 92: 157-176.
doi: 10.1007/s10725-020-00627-y
[24] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol, 1998, 49: 249-279.
[25] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315-322.
Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effect of high light, water and salt stress on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315-322 (in Chinese with English abstract).
[26] 麻莹. 盐碱混合胁迫下抗碱盐生植物碱地肤的渗透调节及其离子平衡特点. 东北师范大学硕士学位论文, 吉林长春, 2007.
Ma Y. Solute Accumulation and Ion Balance Traits in Shoots of an Alkali-tolerant Halophyte Kochia Sieversiana under Salt-alkaline Mixed Stress. MS Thesis of Northeast Normal University, Changchun, Jilin, China, 2007 (in Chinese with English abstract).
[27] Nounjan N, Nghia P T, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol, 2012, 169: 596-604.
doi: 10.1016/j.jplph.2012.01.004
[28] Cha-Um S, Charoenpanich A, Roytrakul S, Kirdmanee C. Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant, 2009, 31: 477-486.
doi: 10.1007/s11738-008-0256-1
[29] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展. 分子植物育种, 2020, 18: 2741-2746.
Qi Q, Ma S R, Xu W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance. Mol Plant Breed, 2020, 18: 2741-2746 (in Chinese with English abstract).
[30] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 45: 437-448.
doi: 10.2135/cropsci2005.0437
[31] Harley P C, Loreto F, Di Marco G, Sharkey T D. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol, 1992, 98: 1429-1436.
doi: 10.1104/pp.98.4.1429 pmid: 16668811
[32] Castro-Dıez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 2000, 124: 476-486.
doi: 10.1007/PL00008873 pmid: 28308386
[33] Xiong D, Yu T, Zhang T, Li Y, Peng S, Huang J. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J Exp Bot, 2015, 66: 741-748.
doi: 10.1093/jxb/eru434
[34] Xiong D, Wang D, Liu X, Peng S, Huang J, Li Y. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Ann Bot, 2016, 117: 963-971.
doi: 10.1093/aob/mcw022
[35] Gu J F, Zhou Z X, Li Z K, Chen Y, Wang Z Q, Zhang H, Yang J C. Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Front Plant Sci, 2017, 8: 1082.
doi: 10.3389/fpls.2017.01082
[36] 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23: 333-341.
Chen C, Gong H Q, Zhang J Z, Gao H J. Correlation between root morphology and nitrogen uptake of rice. J Plant Nutr Fert, 2017, 23: 333-341 (in Chinese with English abstract).
[37] Zhu K Y, Zhou Q, Shen Y, Yan J Q, Xu Y J, Wang Z Q, Yang J C. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. Crop Sci, 2020, 60: 1556-1568.
doi: 10.1002/csc2.v60.3
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[8] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[13] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[14] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[15] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!