欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1451-1462.doi: 10.3724/SP.J.1006.2022.14051

• 耕作栽培·生理生化 • 上一篇    下一篇

大田作物在不同盐碱地的饲料价值评价

王旺年1,4(), 葛均筑2, 杨海昌3, 阴法庭3, 黄太利5, 蒯婕1, 王晶1, 汪波1,*(), 周广生1, 傅廷栋1   

  1. 1华中农业大学植物科学技术学院, 湖北武汉 430070
    2天津农学院农学与资源环境学院, 天津 300384
    3石河子大学农学院, 新疆石河子 832003
    4玉林市农业科学院/广西农业科学院玉林分院, 广西玉林 537000
    5大冶市畜牧兽医局, 湖北大冶 435100
  • 收稿日期:2021-03-31 接受日期:2021-10-19 出版日期:2022-06-12 网络出版日期:2021-11-25
  • 通讯作者: 汪波
  • 作者简介:E-mail: 1215646369@qq.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900);新疆生产建设兵团重大科技项目(2018AA005-1);新疆生产建设兵团科技合作计划项目(2020BC001);宁夏回族自治区重点研发计划项目(2018BBF02003)

Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil

WANG Wang-Nian1,4(), GE Jun-Zhu2, YANG Hai-Chang3, YIN Fa-Ting3, HUANG Tai-Li5, KUAI Jie1, WANG Jing1, WANG Bo1,*(), ZHOU Guang-Sheng1, FU Ting-Dong1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2College of Agriculture and Resource Environment, Tianjin Agricultural College, Tianjin 300384, China
    3Agricultural College of Shihezi University, Shihezi 832003, Xinjiang, China
    4Yulin Academy of Agricultural Sciences / Yulin Branch of Guangxi Academy of Agricultural Sciences, Yulin 537000, Guangxi, China
    5Daye Animal Husbandry and Veterinary Bureau, Daye 435100, Hubei, China
  • Received:2021-03-31 Accepted:2021-10-19 Published:2022-06-12 Published online:2021-11-25
  • Contact: WANG Bo
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Key Science and Technology Project in the Xinjiang Production and Construction Corps(2018AA005-1);Science and Technology Cooperation Project of the Xinjiang Production and Construction Corps(2020BC001);Key Research and Development Program in Ningxia Hui Autonomous Region(2018BBF02003)

摘要:

我国盐碱地分布广、面积大。在盐碱地选种有饲料价值的作物, 实现种养循环, 对推动我国草食畜牧业的发展及盐碱地改良具有重要意义。本研究分别在天津滨海盐碱地(NaCl型)和新疆西北内陆盐碱地(Na2SO4-NaHCO3型)选取盐碱度差异大的地块, 种植具有饲料价值的玉米、高粱、小麦、谷子、大豆、油菜等大田作物, 测定生物学产量、植株粗蛋白含量、钠离子、钾离子含量等指标。结果表明, 在NaCl型和Na2SO4-NaHCO3型盐碱地, 当其含盐量分别低于1.82 g kg-1和2.00 g kg-1时, 各作物生物学及蛋白质产量均与常规耕地接近, 可作为饲料生产基地加以利用; 当Na2SO4-NaHCO3型盐碱地含盐量达2.49 g kg-1时, 油菜生物学及蛋白质产量均显著高于其他作物, 因此可种植油菜作饲料开发利用; 当NaCl型和Na2SO4-NaHCO3型盐碱地含盐量分别达3.63 g kg-1和4.42 g kg-1时, 各作物生物学及蛋白质产量均低于常规耕地的51.72%, 利用价值低, 建议改良后利用。在两试验点的不同地块, 油菜对土壤Na+的富集量均显著高于其他作物(P<0.05), 同时也显著降低了土壤全盐量和Na+含量。本试验中, 在含盐量分别为1.82、2.00、2.49 g kg-1的地块中, 油菜富集Na+效果最为明显, 油菜对土壤Na+的富集量分别为39.45、102.24、57.19 kg hm-2, 分别占0~20 cm耕层土壤Na+的13.02%、15.99%、8.94%, 盐碱地改良效果显著。上述结果为利用我国盐碱地进行草食饲料原料生产, 促进草食畜牧业发展及盐碱地改良提供了参考。

关键词: 饲料作物, 生物学产量, 粗蛋白产量, 土壤盐含量, Na+含量

Abstract:

Saline-alkali land widely distributes with large area in China. It is of great significance to select forage crops and realize planting and breeding cycle in saline-alkali land to promote the development of herbivorous animal husbandry and the improvement of saline-alkali land in China. In this study, the plots with high salinity difference were selected from the coastal saline-alkali land in Tianjin (NaCl type) and the inland saline-alkali land in northwest Xinjiang (Na2SO4-NaHCO3 type), respectively, and six field crops such as corn, sorghum, wheat, millet, soybean, and rapeseed with feed value were planted to determine the biomass, crude protein content, sodium and potassium ion content, and other indicators. The results were as follows. When the salt content was less than 1.82 g kg-1 and 2.00 g kg-1 in saline-alkali land NaCl type and Na2SO4-NaHCO3 type, respectively. The biomass and crude protein yield of the crops were close to those of conventional cultivated land, suggesting that saline-alkali land in low salt content could be used as forage production base. When the salt content reached 2.49 g kg-1 in the Na2SO4-NaHCO3 type saline-alkali soil, the biomass and crude protein yield of rapeseed were significantly higher than other crops. Thus, in the Na2SO4-NaHCO3 type saline-alkali soil with salt content lower than 2.49 g kg-1, rapeseed could be planted for fodder development and utilization. When the salt content in saline-alkali land of NaCl type and Na2SO4-NaHCO3 type reached 3.63 g kg-1 and 4.42 g kg-1, respectively. The biomass and crude protein yield of each crop was lower than 51.72% of that in conventional cultivated land, which made the utilization value of the cultivated land low. Therefore, it was recommended to use these saline-alkali land of NaCl type and Na2SO4-NaHCO3 with high content salt and alkali after improvement. In the different plots of the two experimental sites, the enrichment of Na+ in soil by rapeseed was significantly higher than the other crops at P < 0.05, and it also significantly reduced the total soil salt and Na + content. In this experiment, in plots with salinity of 1.82, 2.00, and 2.49 g kg-1, rapeseed had the most obvious Na+ enrichment effect. The enrichment of rapeseed on soil Na+ was 39.45, 102.24, and 57.19 kg hm-2 respectively, accounting for 13.02%, 15.99%, and 8.94% of the Na+ in the 0-20 cm cultivated layer soil, respectively. The improvement effect of rapeseed on saline-alkali land was significant. The above results provide a reference for the utilization of the saline-alkali land in China for the production of herbivorous feed raw materials, the promotion of the development of herbivorous animal husbandry, and the improvement of saline-alkali land.

Key words: forage crops, biomass, crude protein yield, soil salt content, Na+ content

表1

供试土壤主要离子的含量"

地块Plot Na+ K+ Ca2+ Mg2+ $CO_{3}^{2-}$ $HCO_{3}^{-}$ Cl- $SO_{3}^{2-}$
X1 0.10 0.01 0.17 0.12 0.01 0.10 0.17 0.06
X2 0.22 0.03 0.36 0.09 0.02 0.27 0.07 0.33
X3 0.61 0.13 1.04 0.04 0.07 0.85 0.20 0.90
X4 0.11 0.02 0.24 0.13 0.01 0.17 0.20 0.11
X5 0.41 0.03 0.79 0.02 0.05 0.58 0.18 0.57
T1 0.22 0.02 0.32 0.14 0.01 0.22 0.45 0.15
T2 0.58 0.02 0.52 0.13 0.00 0.16 1.69 0.52

表2

供试土壤的主要指标参数"

地块
Plot
pH 容重
Bulk density
(g cm-3)
碱解氮
Alkaline N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
含盐量
Salt content
(g kg-1)
X1 7.78±0.21 1.44±0.02 89.36±13.29 19.74±6.91 142.62±18.14 13.66±3.25 2.34±0.28 1.39±0.23
X2 8.25±0.23 1.39±0.02 45.87±5.15 9.88±2.57 186.81±39.21 7.58±1.03 1.20±0.11 2.49±0.28
X3 8.41±0.09 1.50±0.02 20.16±2.92 11.02±2.20 139.71±13.08 8.32±1.20 0.53±0.06 6.20±1.22
X4 7.87±0.13 1.40±0.02 45.77±3.89 11.16±1.26 101.98±3.27 21.59±0.50 1.26±0.03 1.82±0.14
X5 8.12±0.48 1.47±0.01 20.28±1.84 16.32±1.07 159.28±10.09 10.51±1.03 0.54±0.05 4.46±0.44
T1 7.82±0.10 1.55±0.03 30.89±2.03 13.25±0.66 60.00±3.23 10.51±0.52 0.79±0.05 2.00±0.26
T2 8.36±0.05 1.49±0.01 33.19±1.91 7.11±1.42 47.00±7.78 11.67±1.53 0.77±0.05 3.63±0.76

图1

不同含盐量地块作物粗蛋白含量差异 柱上不同小写字母表示同一试验点同一含盐量地块不同作物粗蛋白含量在0.05水平差异显著, **表示在0.01水平差异显著。新疆试验点X1、X2、X3、X4、X5地块的土壤含盐量分别为1.39、2.49、6.20、1.82和4.46 g kg-1, 天津试验点T1、T2地块的土壤含盐量分别为2.00 g kg-1和3.63 g kg-1。"

图2

不同含盐量地块作物生物学产量、粗蛋白产量差异 柱上不同小写字母表示同一试验点同一含盐量地块不同作物产量潜力在0.05水平差异显著,**表示在0.01水平差异显著。新疆试验点X1、X2、X3、X4、X5地块的土壤含盐量分别为1.39、2.49、6.20、1.82、4.46 g kg-1,天津试验点T1、T2地块的土壤含盐量分别为2.00 g kg-1、3.63 g kg-1。"

表3

作物生物学产量和粗蛋白产量生产潜力"

产量
Yield
试验点
Place
土壤盐分
Soil salinity
(g kg-1)
作物产量潜力 Crop yield potential (%)
谷子
Millet
小麦
Wheat
油菜
Rapeseed
高粱
Sorghum
玉米
Maize
大豆
Soybean
生物学产量 新疆 1.39 47.36 b 32.34 c 51.46 b 73.70 b 100.00 a
Biomass yield Xinjiang 1.82 50.10 a 36.20 bc 51.99 b 86.78 a 87.93 b 45.40 a
2.49 27.50 d 43.77 a 61.89 a 41.15 c 52.53 d
4.46 20.40 e 37.04 b 21.89 d 37.45 c 24.88 e 15.89 d
6.20 7.38 f 20.58 d 12.99 e 8.11 e 8.30 f
天津 2.00 35.42 c 34.57 bc 43.24 c 68.62 b 68.65 c 36.69 b
Tianjin 3.63 8.69 f 19.23 d 20.97 d 20.00 d 11.17 f 19.80 c
粗蛋白产量 新疆 1.39 55.87 b 48.84 b 100.00 c 96.61 a 99.23 a
Protein yield Xinjiang 1.82 78.15 a 46.71 b 116.76 b 98.18 a 59.98 c 103.10 a
2.49 36.53 d 61.36 a 128.18 a 61.89 b 50.23 d
4.46 31.73 e 38.10 c 37.46 d 51.72 c 20.52 e 31.52 c
6.20 12.14 f 24.32 d 19.45 e 11.66 d 6.98 f
天津 2.00 47.62 c 56.68 a 104.08 c 94.01 a 78.49 b 68.19 b
Tianjin 3.63 8.62 g 28.56 d 22.05 e 15.19 d 10.96 f 34.26 c

图3

不同含盐量地块作物地上部分Na+、K+含量和K+/Na+ 柱上不同小写字母表示同一试验点同一含盐量地块不同作物地上部离子含量在0.05水平差异显著, Ns表示差异不显著, **表示在0.01水平差异显著。新疆试验点X1、X2、X3、X4、X5地块的土壤含盐量分别为1.39、2.49、6.20、1.82和4.46 g kg-1, 天津试验点T1、T2地块的土壤含盐量分别为2.00 g kg-1和3.63 g kg-1。"

表4

作物对土壤Na+的吸收"

2018年
作物及土壤
Crops and soil
in 2018
钠离子吸收量
Na+ absorption mass (kg hm-2)
2019年
作物及土壤
Crops and soil
in 2019
钠离子吸收量
Na+ absorption mass (kg hm-2)
X1 X2 X3 X4 X5 T1 T2
谷子Millet 3.07 d 2.67 c 1.32 d 谷子Millet 4.97 bc 2.65 b 21.94 b 3.48 d
小麦Wheat 4.04 c 5.99 b 7.86 c 小麦Wheat 3.10 c 2.50 b 14.32 c 7.54 b
油菜Rapeseed 23.34 a 57.19 a 22.01 a 油菜Rapeseed 39.45 a 22.88 a 102.24 a 19.13 a
高粱Sorghum 5.69 b 3.89 bc 1.31 d 高粱Sorghum 7.29 b 3.12 b 9.92 d 2.65 d
玉米Maize 6.21 b 3.39 bc 9.70 b 玉米Maize 8.59 b 2.88 b 8.85 d 2.79 d
大豆Soybean 1.45 c 3.40 b 8.87 d 6.13 c
耕层Tillage 305.65 639.85 1766.99 耕层Tillage 302.98 1191.17 639.36 1671.55

表5

种植作物后土壤有机质、全盐、钠离子含量变化"

指标
Indicator
2018 处理Treatment 2019 处理Treatment
X1 X2 X3 X4 X5 T1 T2
有机质 对照 CK 12.49 e 7.11 e 14.35 c 对照 CK 21.63 c 10.66 c 14.52 d 10.38 f
Organic 谷子Millet 20.87 b 8.51 d 18.23 a 谷子Millet 25.43 b 12.38 b 19.51 b 23.05 b
matter 小麦Wheat 22.08 a 7.75 e 16.32 b 小麦Wheat 27.30 a 14.80 a 23.22 a 18.58 e
(g kg-1) 油菜Rapeseed 15.95 d 13.19 a 18.10 a 油菜Rapeseed 22.47 c 14.39 a 22.63 a 22.56 bc
高粱Sorghum 19.27 c 11.37 b 16.09 b 高粱Sorghum 22.99 c 12.80 b 22.59 a 24.38 a
玉米Maize 13.49 e 9.79 c 19.15 a 玉米Maize 23.00 c 12.60 b 15.91 c 21.60 c
大豆Soybean 21.95 c 14.48 a 22.61 a 20.15 d
全盐 对照 CK 1.69 a 2.79 a 6.87 c 对照 CK 2.30 ab 4.24 b 2.41 a 3.18 a
Total salt 谷子Millet 1.36 c 2.57 b 7.24 b 谷子Millet 2.26 b 4.23 b 2.06 b 2.85 b
(g kg-1) 小麦Wheat 1.27 d 2.53 bc 6.73 c 小麦Wheat 2.43 a 4.04 b 2.10 b 2.67 bc
油菜Rapeseed 1.02 e 1.86 d 5.56 d 油菜Rapeseed 1.33 e 3.42 c 1.31 c 2.14 d
高粱Sorghum 1.46 b 2.47 bc 8.25 a 高粱Sorghum 1.99 c 5.58 a 2.06 b 2.93 ab
玉米Maize 1.33 c 2.46 c 6.95 c 玉米Maize 1.79 d 5.47 a 2.05 b 2.42 cd
大豆Soybean 1.67 d 4.21 b 1.99 b 2.63 bc
Na+ 对照 CK 137.49 a 253.51 a 684.64 c 对照 CK 286.00 a 468.50 bc 604.00 a 701.50 a
(mg kg-1) 谷子Millet 102.68 c 231.07 b 723.25 b 谷子Millet 140.25 bc 341.00 d 541.50 b 286.75 d
小麦Wheat 93.58 d 226.58 bc 669.45 c 小麦Wheat 143.50 bc 446.75 c 436.50 cd 435.17 b
油菜Rapeseed 67.25 e 155.67 d 546.38 d 油菜Rapeseed 129.00 c 251.25 e 276.25 f 235.00 e
高粱Sorghum 113.24 b 220.34 bc 829.79 a 高粱Sorghum 165.75 b 517.25 a 410.50 de 452.35 b
玉米Maize 99.27 cd 219.00 c 693.01 c 玉米Maize 155.50 bc 498.85 ab 448.50 c 375.75 c
大豆Soybean 148.50 bc 483.75 abc 390.00 e 379.50 c
[1] 赵云, 谢开云, 万江春, 张英俊. 粮草兼顾型畜牧业饲草料发展现状及展望. 草业科学, 2017, 34: 653-660.
Zhao Y, Xie K Y, Wan J C, Zhang Y J. Development and prospects of grain-forage supply in modern animal husbangry. Pratac Sci, 2017, 34: 653-660 (in Chinese with English abstract).
[2] 黄绍琳, 刘爱民, 鲁春霞, 马蓓蓓. 中国大陆畜禽产品供求及未来饲料粮需求潜力研究. 资源与生态学报, 2020, 11: 475-482.
Huang S L, Liu A M, Lu C X, Ma B B. Supply and demand levels for livestock and poultry products in the Chinese mainland and the potential demand for feed grains. J Res Ecol, 2020, 11: 475-482 (in Chinese with English abstract).
[3] Xing L, Goldsmith P. Improving Chinese soybean meal demand estimation by addressing the non-commercial. China Agric Econ Rev, 2013, 5: 543-566.
[4] Li J, Li Z. Physical limitations and challenges to grain security in China. Food Secur, 2014, 6: 159-167.
doi: 10.1007/s12571-013-0326-0
[5] 倪印锋, 王明利. 中国青贮玉米产业发展时空演变及动因. 草业科学, 2019, 36: 1915-1924.
Ni Y F, Wang M L. Spatiotemporal evolution of China’s silage corn industry and the factors driving its development. Pratac Sci, 2019, 36: 1915-1924 (in Chinese with English abstract).
[6] Cotty T L, Dorin B. A global foresight on food crop needs for livestock. Animal, 2012, 6: 1528-1536.
doi: 10.1017/S1751731112000377 pmid: 23031526
[7] Li R, Lin H. Developing the Agro-Grassland System to insure food security of China. J Agric Chem Environ, 2014, 3: 9-15.
[8] Zhang J. Salt-affected Soil Resources in China. New York: Cold Spring Harbor Laboratory Press, 2014. pp 9-13.
[9] Wang W J, He H S, Zu T G, Guan Y, Liu Z G, Zhang Z H, Xu H N, Yu X Y. Addition of HPMA affects seed germination, plant growth and properties of heavy saline-alkali soil in northeastern China: comparison with other agents and determination of the mechanism. Plant Soil, 2011, 339: 177-191.
doi: 10.1007/s11104-010-0565-1
[10] 杨劲松, 姚荣江, 王相平, 谢文萍. 河套平原盐碱地生态治理和生态产业发展模式. 生态学报, 2016, 36: 7059-7063.
Yang J S, Yao R J, Wang X P, Xie W P. Research on ecological management and ecological industry development model of saline-alkali land in the Hetao Plain, China. Acta Ecol Sin, 2016, 36: 7059-7063 (in Chinese with English abstract).
[11] 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45: 837-845.
Yang J S. Development and prospect of the research on salt-affected soils in China. Acta Pedol Sin, 2008, 45: 837-845 (in Chinese with English abstract).
[12] Van Oosten M J, Maggio A. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot, 2015, 111: 135-146.
doi: 10.1016/j.envexpbot.2014.11.010
[13] Jesus J M, Danko A S, Fiúza A, Borges M T. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res, 2015, 22: 6511-6525.
doi: 10.1007/s11356-015-4205-4
[14] Liang L C, Liu W T, Sun Y B, Huo X H, Li S, Zhou Q X. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ Rev, 2016, 25: 269-281.
doi: 10.1139/er-2016-0063
[15] Zhang L, Fan J J, Meng Q, Niu Y, Niu W. Caragana fabr promotes revegetation and soil rehabilitation in saline-alkali wasteland. Int J Phytorem, 2013, 15: 38-50.
doi: 10.1080/15226514.2012.670314
[16] Imadi S R, Shah S W, Kazi A G, Azooz M M. Ahmad P. Plant Metal Interaction. Amsterdam: Elsevier Press, 2016. pp 455-468.
[17] 魏晨辉, 沈光, 裴忠雪, 任蔓莉, 路嘉丽, 王琼, 王文杰. 不同植物种植对松嫩平原盐碱地土壤理化性质与细根生长的影响. 植物研究, 2015, 35: 759-764.
Wei C H, Shen G, Pei Z X, Ren M L, Lu J L, Wang Q, Wang W J. Effects of different plants cultivation on soil physical-chemical properties and fine root growth in saline-alkaline soil in Songnen Plain, Northeastern China. Bull Bot Res, 2015, 35: 759-764 (in Chinese with English abstract).
[18] Wang Y Y, Guo D F. Response of soil fungi community structure to salt vegetation succession in the Yellow River Delta. Curr Microbiol, 2016, 73: 595-601.
doi: 10.1007/s00284-016-1099-4
[19] Salwan R, Sharma A, Sharma V. Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant Soil, 2019, 442: 1-22.
doi: 10.1007/s11104-019-04202-x
[20] Fatima A M, Yousef L F. Biological response of a sandy soil treated with biochar derived from a halophyte (Salicornia bigelovii). Appl Soil Ecol, 2017, 114: 9-15.
doi: 10.1016/j.apsoil.2017.02.012
[21] Rabhi M, Hafsi C, Lakhdar A, Hajji S, Barhoumi Z, Hamrouni M H, Abdelly C, Smaoui A. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr J Ecol, 2009, 47: 463-468.
doi: 10.1111/aje.2009.47.issue-4
[22] Jlassi A, Zorrig W, Khouni A E, Lakhdar A, Smaoui A, Abdelly C, Rabhi M. Phytodesalination of a moderately-salt-affected soil by sulla carnosa. In J Phytorem, 2013, 15: 398-404.
[23] Han L P, Liu H T, Yu S H, Wang W H, Liu J T. Potential application of oat for phytoremediation of salt ions in coastal saline-alkali soil. Ecol Eng, 2013, 61: 274-281.
doi: 10.1016/j.ecoleng.2013.09.034
[24] 秦都林, 王双磊, 刘艳慧, 聂军军, 赵娜, 毛丽丽, 宋宪亮, 孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响. 作物学报, 2017, 43: 1030-1042.
doi: 10.3724/SP.J.1006.2017.01030
Qin D L, Wang S L, Liu Y H, Nie J J, Zhao N, Mao L L, Song X L, Sun X L. Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil. Acta Agron Sin, 2017, 43: 1030-1042 (in Chinese with English abstract).
[25] Shamsutdinov N Z, Shamsutdinova E Z, Orlovsky N S, Shamsutdinov Z S H. Halophytes: ecological features, global resources, and outlook for multipurpose use. Her Russ Acad Sci, 2017, 87: 1-11.
doi: 10.1134/S1019331616060083
[26] Lekshmy S, Sairam R K, Kushwaha S R. Effect of long-term salinity stress on growth and nutrient uptake in contrasting wheat genotypes. Indian J Plant Physiol, 2013, 18: 344-353.
doi: 10.1007/s40502-014-0059-x
[27] Horie T, Karahara I, Katsuhara M. Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice, 2012, 5: 1-18.
doi: 10.1186/1939-8433-5-1
[28] Zhang M M, Dong B D, Qian Y Z, Yang H, Wang Y K, Liu M Y. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. Field Crops Res, 2018, 225: 130-140.
doi: 10.1016/j.fcr.2018.06.010
[29] Xu Z, Shao T, Lyu Z, Liu A, Long X, Zhou Z, Gao X, Rengel Z. The mechanisms of improving coastal saline soils by planting rice. Sci Total Environ, 2020, 703: 135529.
doi: 10.1016/j.scitotenv.2019.135529
[30] Chen X D, Opoku-Kwanowaa Y, Li J M, Wu J G. Application of organic wastes to primary saline-alkali soil in Northeast China: effects on soil available nutrients and salt ions. Commun Soil Sci Plant Anal, 2020, 51: 1238-1252.
doi: 10.1080/00103624.2020.1763394
[31] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 30-271.
Bao S D. Analysis of Soil Agrochemical, 3rd edn. Beijing: China Agriculture Press, 2000. pp 30-271(in Chinese).
[32] 刘忠宽, 刘振宇, 李江, 谢楠, 秦文利, 冯伟, 智健飞. 中国青贮饲料产业发展现状分析. 草学, 2020, (1):70-75.
Liu Z K, Liu Z Y, Li J, Xie N, Qin W L, Feng W, Zhi J F. Analysis on the development status of Chinese silage feed industry. J Grassl For Sci, 2020, (1):70-75 (in Chinese with English abstract).
[33] Grassini P, Yang H S, Cassman K G. Limits to maize productivity in western corn-belt: a simulation analysis for fully irrigated and rainfed conditions. Agric For Meteorol, 2009, 149: 1254-1265.
doi: 10.1016/j.agrformet.2009.02.012
[34] Detmann E, Valente E E L, Batista E D, Huhtanen P. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest Sci, 2014, 162: 141-153.
doi: 10.1016/j.livsci.2014.01.029
[35] 张弘, 胡清社, 胡彬, 肖阳. 性别和粗蛋白质水平对黑山羊饲料利用和瘤胃发酵参数的影响. 中国饲料, 2020, (6):81-85.
Zhang H, Hu Q S, Hu B, Xiao Y. Effects of sex and crude protein level on feed utilization and rumen fermentation parameters of black goats. China Feed, 2020, (6):81-85 (in Chinese with English abstract).
[36] Da Silva L D, Pereira O G, da Silva T C, Valadares Filho S C, Ribeiro K G. Effects of silage crop and dietary crude protein levels on digestibility, ruminal fermentation, nitrogen use efficiency, and performance of finishing beef cattle. Animal Feed Sci Technol, 2016, 220: 22-23.
doi: 10.1016/j.anifeedsci.2016.07.008
[37] Bailey E A, Titgemeyer E C, Olson K C, Brake D W, Jones M L, Anderson D E. Effects of supplemental energy and protein on forage digestion and urea kinetics in growing beef cattle. J Anim Sci, 2012, 90: 3505.
doi: 10.2527/jas.2011-4459 pmid: 22851242
[38] Kazemi K, Eskandari H. Effects of salt stress on germination and early seedling growth of rice (Oryza sativa) cultivars in Iran. Afr J Biotechnol, 2011, 10: 17789-17792.
[39] 高树琴, 王竑晟, 段瑞, 景海春, 方精云. 关于加大在中低产田发展草牧业的思考. 中国科学院院刊, 2020, 35: 166-174.
Gao S Q, Wang H S, Duan R, Jing H C, Fang J Y. How to develop grass-based livestock husbandry in areas of low- and middle-yield fields. Bull Chin Acad Sci, 2020, 35: 166-174 (in Chinese with English abstract).
[40] Zhao W, Zhou Q, Tian Z Z, Cui Y T, Liang Y, Wang H Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci Total Environ, 2020, 722: 137428.
doi: 10.1016/j.scitotenv.2020.137428
[41] Qadir M, Noble A D, Schubert S, Thomas R J, Arslan A. Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Develop, 2006, 17: 661-676.
doi: 10.1002/(ISSN)1099-145X
[42] 单奇华, 张建锋, 阮伟建, 唐华军, 沈立铭, 陈光才. 滨海盐碱地土壤质量指标对生态改良的响应. 生态学报, 2011, 31: 6072-6079.
Shan Q H, Zhang J F, Ruan W J, Tang H J, Shen L M, Chen G C. Response of soil quality indicators to comprehensive amelioration measures in coastal salt-affected land. Acta Ecol Sin, 2011, 31: 6072-6079 (in Chinese with English abstract).
[43] Mohanty S K, Saiers J E, Ryan J N. Colloid mobilization in a fractured soil during dry-wet cycles: role of drying duration and flow path permeability. Environ Sci Technol, 2015, 49: 9100-9106.
doi: 10.1021/acs.est.5b00889 pmid: 26134351
[44] Manousaki E, Galanaki K, Papadimitriou L, Kalogerakis N. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) boiss: two contrasting ecotypes. Int J Phytorem, 2014, 16: 755-769.
doi: 10.1080/15226514.2013.856847
[45] Jesus J M, Calheiros C S C, Castro P M L, Bprges M T. Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems. Int J Phytorem, 2013, 16: 334-346.
doi: 10.1080/15226514.2013.773284
[46] 梅勇. 耐盐饲料芸薹修复盐碱荒地的作用与其盐胁迫下的营养生理. 中国农业科学院硕士学位论文, 北京, 2005.
Mei Y. Remediation of Saline-sodic Land with Salt Tolerant Plant (Brassica) and Nutrition Physiology of the Plant under Salt Stress. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2005 (in Chinese with English abstract).
[47] Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot, 2008, 63: 266-273.
doi: 10.1016/j.envexpbot.2007.11.008
[1] 刘光宇, 关荣霞, 常汝镇, 邱丽娟. 大豆不同器官Na+含量与苗期耐盐性的相关分析[J]. 作物学报, 2011, 37(07): 1266-1273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!