欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2285-2299.doi: 10.3724/SP.J.1006.2022.12070

• 耕作栽培·生理生化 • 上一篇    下一篇

不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点

周群1,2(), 袁锐1,2, 朱宽宇1,2, 王志琴1,2, 杨建昌1,2,*()   

  1. 1.江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 扬州大学农学院, 江苏扬州 225009
    2.江苏省粮食作物现代产业技术协同创新中心 / 扬州大学, 江苏扬州 225009
  • 收稿日期:2021-10-12 接受日期:2022-01-05 出版日期:2022-09-12 网络出版日期:2022-07-15
  • 通讯作者: 杨建昌
  • 作者简介:E-mail: qunzhou19890812@163.com
  • 基金资助:
    江苏省普通高校研究生科研创新计划项目(XKYCX17_052);国家自然科学基金项目(32071943)

Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates

ZHOU Qun1,2(), YUAN Rui1,2, ZHU Kuan-Yu1,2, WANG Zhi-Qin1,2, YANG Jian-Chang1,2,*()   

  1. 1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2. Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-12 Accepted:2022-01-05 Published:2022-09-12 Published online:2022-07-15
  • Contact: YANG Jian-Chang
  • Supported by:
    Postgraduate Research and Innovation Program of Jiangsu Province(XKYCX17_052);National Natural Science Foundation of China(32071943)

摘要:

旨在探明在不同施氮量下籼/粳杂交稻产量、氮素吸收利用及损失的特点。2018—2019年籼/粳杂交稻品种甬优2640和常规粳稻品种连粳7号(对照品种1)和常规籼稻品种扬稻6号(对照品种2)种植于大田, 设置6种施氮量(0、100、200、300、400和500 kg hm-2)处理和15N示踪微区试验。3个供试品种的产量均随施氮量的增加呈现先增加后降低的趋势, 甬优2640在施氮量为400 kg hm-2时产量最高, 连粳7号和扬稻6号均在施氮量为300 kg hm-2时产量最高。在相同施氮量下, 甬优2640的产量高于对照品种。15N示踪试验表明, 适量增加施氮量(甬优2640≤400 kg hm-2、连粳7号和扬稻6号≤300 kg hm-2), 可以增加成熟期植株和穗中肥料氮积累量、土壤中的残留量、肥料氮对植株地上部氮积累量的贡献率、肥料氮的损失量和损失率, 降低土壤氮对植株地上部氮积累量的贡献率、肥料氮的植株吸收利用率和在土壤的残留率。在相同施氮量下, 甬优2640的肥料氮吸收量、在穗中的积累量、对植株地上部氮积累量的贡献率均高于对照品种, 肥料氮的损失量、损失率、在土壤的残留率均低于对照品种。肥料氮的21.0%~35.7%、6.7%~23.7%和42.3%~72.6%分别被植株吸收、残留在土壤中以及流失到了生态系统中。在相同施氮量条件下, 与常规高产品种相比, 籼/粳杂交稻甬优2640的产量和氮吸收利用率均较高, 氮损失率较低。在本试验条件下, 甬优2640产量和氮肥利用效率协同提高的施氮量为300 kg hm-2, 产量可达13.0 t hm-2

关键词: 籼/粳杂交稻, 施氮量, 产量, 15N示踪, 氮素吸收利用

Abstract:

The objective of this study is to investigate the characteristics of grain yield and nitrogen (N) absorption, distribution, utilization, and loss in indica/japonica hybrid rice under different N application rates. In 2018 and 2019, an indica/japonica hybrid rice cultivar Yongyou 2640 (YY2640), a high-yielding japonica inbred rice cultivar Lianjing 7 (LJ-7, CK 1) and a high-yielding inbred indica rice cultivar Yangdao 6 (YD-6, CK2) were grown in the field, with six N rates (0, 100, 200, 300, 400, 500 kg hm-2) and an 15N tracer micro-plot experiment. With the increase in N application rates, the grain yield of each test cultivar was increased first and then was decreased, and the highest grain yield was at the N rate of 400 kg hm-2 for YY2640 and 300 kg hm-2 for both check cultivars. At the same N rate, the grain yield of YY2640 was higher than that of either LJ-7 or YD-6. The 15N tracer experiment showed that when the rate of N application was less than 400 kg hm-2 for YY2640 and less than 300 kg hm-2 for LJ-7 and YD-6, the application of N increased the fertilizer-N accumulation in panicles at maturity stage, the accumulation of fertilizer-N in plants, residual-N in the soil, the contribution rate of fertilizer-N to aboveground plant-N accumulation, and the loss fertilizer-N into environment for all the test cultivars, whereas the contribution rate of soil-N to the plant-N accumulation, fertilizer-N absorption and utilization rate, and soil-N residue rate were decreased. At the same N rate, the amount of fertilizer-N accumulation in plants especially in panicles, the contribution rate of fertilizer-N to aboveground plant-N accumulation, fertilizer-N absorption and utilization rate were higher for YY2640 than for the two check cultivars. In contrast, the loss amount, loss rate, and the residue rate in the soil of fertilizer-N were lower for YY2640 than for the two check cultivars. Overall, 21.0%-35.7%, 6.7%-23.7%, and 42.3%-72.6% of fertilizer-N were absorbed by plants, remained in soil and lost to ecosystem, respectively. At the same N rate, compared with inbred rice cultivars, the indica/japonica hybrid rice cultivar YY2640 exhibited higher grain yield, N uptake, utilization, and less N loss. Under the conditions of the present experiment, N application rate of YY2640 for the synergistic increase of yield and N use efficiency was 300 kg hm-2, and the grain yield could reach 13.0 t hm-2.

Key words: indica-japonica hybrid rice, nitrogen application rate, grain yield, 15N tracer, nitrogen absorption and utilization

表1

不同施氮量下的水稻产量及其构成因素"

年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
产量
Grain yeild
(t hm-2)
穗数
Panicles
per m2
每穗粒数
Spikelets per panicle
总颖花数
Total spikelets
(×106 hm-2)
结实率
Filled grain
(%)
千粒重
1000-grain weight (g)
2018
甬优2640 0 7.6 ± 0.10 h 128.2 ± 2.9 k 267.2 ± 2.8 d 342.5 ± 5.2 k 87.6 ± 0.2 bc 25.4 ± 0.07 e
YY2640 100 9.6 ± 0.12 e 156.5 ± 2.2 i 289.4 ± 4.0 c 453.2 ± 6.0 f 86.3 ± 1.0 c 25.3 ± 0.18 e
200 11.7 ± 0.02 b 182.6 ± 3.3 h 317.3 ± 3.4 b 579.4 ± 8.8 c 85.7 ± 0.7 cd 25.3 ± 0.11 e
300 12.9 ± 0.07 a 192.3 ± 1.9 g 340.1 ± 5.9 a 654.0 ± 5.0 b 82.7 ± 0.6 e 24.9 ± 0.23 f
400 13.3 ± 0.16 a 200.6 ± 1.9 f 342.6 ± 3.0 a 687.3 ± 12.0 a 80.3 ± 0.5 f 24.5 ± 0.18 f
500 13.0 ± 0.13 a 205.1 ± 1.4 ef 336.2 ± 4.3 a 689.5 ± 6.2 a 78.2 ± 0.6 g 24.3 ± 0.13 f
连粳7号 0 6.4 ± 0.10 i 221.9 ± 2.1 d 119.9 ± 2.2 k 266.1 ± 4.4 m 91.0 ± 1.5 a 27.4 ± 0.20 c
LJ-7 100 8.3 ± 0.05 g 260.9 ± 1.9 c 131.9 ± 3.3 j 344.1 ± 7.9 k 90.6 ± 2.2 a 27.3 ± 0.25 c
200 10.1 ± 0.10 d 290.3 ± 1.1 b 154.0 ± 3.2 i 447.0 ± 5.8 g 89.3 ± 2.3 b 27.2 ± 0.14 cd
300 10.7 ± 0.11 c 308.2 ± 2.2 a 163.7 ± 4.6 h 504.1 ± 11.7 e 85.1 ± 2.0 d 26.6 ± 0.18 d
400 10.3 ± 0.16 cd 309.0 ± 1.6 a 165.4 ± 2.2 h 511.3 ± 8.5 d 82.1 ± 1.2 e 26.3 ± 0.16 d
500 9.6 ± 0.16 e 304.6 ± 1.3 a 162.9 ± 2.8 h 499.4 ± 4.7 e 80.6 ± 1.7 f 26.1 ± 0.23 d
扬稻6号 0 6.0 ± 0.02 j 139.1 ± 2.0 j 166.4 ± 2.3 h 231.4 ± 6.0 n 87.0 ± 1.2 c 30.9 ± 0.24 a
YD-6 100 7.3 ± 0.05 h 159.5 ± 3.2 i 185.0 ± 3.3 g 295.1 ± 7.1 l 85.9 ± 0.9 cd 30.5 ± 0.11 a
200 8.5 ± 0.11 g 183.8 ± 2.6 h 197.1 ± 4.3 f 362.3 ± 7.9 k 84.8 ± 1.4 d 30.1 ± 0.16 ab
300 9.4 ± 0.25 ef 205.3 ± 3.8 ef 207.2 ± 5.5 e 425.2 ± 11.3 h 83.5 ± 2.3 de 29.8 ± 0.14 b
400 9.1 ± 0.11 f 211.6 ± 1.6 e 197.7 ± 3.3 f 417.5 ± 9.5 i 82.3 ± 0.9 e 29.7 ± 0.13 b
500 8.6 ± 0.08 g 206.8 ± 1.5 ef 196.3 ± 2.0 f 404.7 ± 5.8 j 80.7 ± 2.6 f 29.5 ± 0.11 b
2019
甬优2640 0 7.4 ± 0.13 f 126.6 ± 3.6 k 266.7 ± 2.3 f 337.8 ± 6.4 k 87.4 ± 0.2 c 25.5 ± 0.04 e
YY2640 100 9.4 ± 0.15 d 154.3 ± 2.7 i 287.2 ± 3.3 e 443.1 ± 7.3 f 86.6 ± 1.2 cd 25.5 ± 0.10 e
200 11.6 ± 0.03 b 176.1 ± 4.0 h 325.0 ± 2.9 d 572.3 ± 10.9 c 85.8 ± 0.9 d 25.4 ± 0.06 e
300 13.1 ± 0.09 a 189.6 ± 2.4 g 340.9 ± 4.9 b 646.3 ± 6.2 b 83.4 ± 0.7 e 24.9 ± 0.13 f
400 13.4 ± 0.21 a 199.1 ± 2.3 f 341.0 ± 2.5 a 678.9 ± 14.8 a 81.8 ± 0.8 f 24.7 ± 0.10 f
500 13.2 ± 0.18 a 204.7 ± 1.7 ef 338.2 ± 3.6 c 692.3 ± 7.8 a 79.2 ± 0.8 g 24.4 ± 0.07 f
年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
产量
Grain yeild
(t hm-2)
穗数
Panicles
per m2
每穗粒数
Spikelets per panicle
总颖花数
Total spikelets
(×106 hm-2)
结实率
Filled grain
(%)
千粒重
1000-grain weight (g)
连粳7号 0 6.3 ± 0.13 g 218.6 ± 2.6 d 118.7 ± 1.8 o 259.5 ± 5.4 m 91.4 ± 1.9 a 27.4 ± 0.11 c
LJ-7 100 8.3 ± 0.07 e 255.9 ± 2.3 c 132.7 ± 2.8 n 339.6 ± 9.8 k 90.8 ± 2.7 a 27.3 ± 0.14 c
200 10.1 ± 0.13 c 284.1 ± 1.4 b 154.1 ± 2.7 m 437.8 ± 7.1 f 89.3 ± 2.9 b 27.2 ± 0.08 c
300 10.5 ± 0.14 c 297.2 ± 2.6 a 164.9 ± 3.9 l 490.1 ± 14.2 de 85.3 ± 2.5 d 26.8 ± 0.10 d
400 10.3 ± 0.21 c 301.8 ± 1.9 a 165.1 ± 1.8 l 498.3 ± 10.3 d 82.3 ± 1.5 ef 26.5 ± 0.09 d
500 9.5 ± 0.21 d 297.2 ± 1.6 a 163.1 ± 2.3 l 481.3 ± 5.7 e 80.3 ± 2.1 g 26.3 ± 0.13 d
扬稻6号 0 6.0 ± 0.03 g 137.4 ± 2.5 j 167.5 ± 1.9 k 230.1 ± 7.5 n 87.2 ± 1.5 c 30.6 ± 0.13 a
YD-6 100 7.2 ± 0.07 f 158.2 ± 4.0 i 173.4 ± 2.6 j 274.3 ± 8.3 l 86.1 ± 1.1 d 30.5 ± 0.06 a
200 8.4 ± 0.14 e 186.8 ± 3.3 g 191.3 ± 3.5 i 357.3 ± 9.8 j 85.2 ± 1.8 d 30.3 ± 0.10 ab
300 9.3 ± 0.32 d 203.7 ± 4.7 ef 209.5 ± 4.6 g 426.8 ± 14.2 g 83.3 ± 2.9 e 29.9 ± 0.08 b
400 9.1 ± 0.15 d 208.4 ± 2.0 e 199.1 ± 2.8 h 414.9 ± 11.8 h 82.1 ± 1.1 ef 29.7 ± 0.11 b
500 8.6 ± 0.10 e 203.8 ± 1.9 ef 197.8 ± 1.7 h 403.1 ± 7.2 i 80.9 ± 3.3 fg 29.6 ± 0.06 b
方差分析Analysis of variance
年份Year (Y) NS NS NS NS NS NS
品种Cultivar (C) ** ** ** ** ** **
施氮量N rate (N) ** ** ** ** ** **
Y×C NS NS NS NS NS NS
Y×N NS NS NS NS NS NS
C×N ** ** ** ** ** *
Y×C×N NS NS NS NS NS NS

图1

15N示踪微区植株吸氮量与对应小区植株吸氮量的相关性"

表2

不同施氮量下水稻肥料氮和土壤氮吸收量和吸收率"

年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
氮吸收总量
Total N uptake
(kg hm-2)
植株吸收
肥料氮量
PNdff
(kg hm-2)
植株吸收
土壤氮量
PNdfs
(kg hm-2)
植株吸收
肥料氮率
PNdff
(%)
植株吸收
土壤氮率
PNdfs
(%)
2018
甬优2640 100 151.3 ± 2.7 f 36.2 ± 1.2 j 115.1 ± 0.9 e 23.9 ± 0.7 i 76.1 ± 0.9 a
YY2640 200 195.1 ± 5.6 d 58.0 ± 1.2 g 137.1 ± 4.0 c 29.7 ± 0.4 g 70.3 ± 1.6 c
300 237.5 ± 4.7 b 85.6 ± 1.3 d 151.9 ± 6.2 a 36.0 ± 0.7 f 64.0 ± 1.9 d
400 255.2 ± 6.5 a 109.2 ± 3.3 b 146.0 ± 2.5 b 42.8 ± 1.3 e 57.2 ± 0.1 e
500 258.7 ± 2.8 a 122.0 ± 0.9 a 138.7 ± 5.5 ab 46.4 ± 2.0 c 53.6 ± 1.2 h
连粳7号 100 139.8 ± 4.1 g 32.7 ± 0.3 l 107.1 ± 2.5 f 23.4 ± 0.7 i 76.6 ± 1.6 a
LJ-7 200 179.2 ± 3.5 e 50.2 ± 0.7 i 129.0 ± 4.4 d 28.0 ± 0.5 h 72.0 ± 0.6 b
300 205.6 ± 4.2 c 73.6 ± 0.4 f 132.0 ± 5.5 cd 35.8 ± 0.2 f 64.2 ± 2.6 d
400 208.5 ± 3.7 c 90.9 ± 1.9 c 117.6 ± 5.8 e 43.6 ± 0.3 d 56.4 ± 1.4 f
500 213.2 ± 5.2 c 107.7 ± 0.8 b 105.5 ± 1.2 f 50.5 ± 1.6 a 49.5 ± 1.5 j
扬稻6号 100 146.4 ± 3.4 f 34.6 ± 1.5 k 111.8 ± 5.5 e 23.6 ± 0.8 i 76.4 ± 1.4 a
YD-6 200 188.4 ± 3.8 d 55.2 ± 1.4 h 133.2 ± 5.5 cd 29.3 ± 1.1 g 70.7 ± 0.8 c
300 227.0 ± 4.9 b 81.0 ± 2.8 e 146.0 ± 3.4 b 35.7 ± 1.0 f 64.3 ± 1.9 d
400 231.7 ± 4.2 b 108.2 ± 0.8 b 133.5 ± 4.7 cd 44.8 ± 1.8 c 55.2 ± 1.8 g
500 235.2 ± 5.4 b 120.1 ± 5.9 a 129.1 ± 5.7 d 48.2 ± 0.5 b 51.8 ± 2.3 i
2019
甬优2640 100 152.8 ± 2.2 f 36.6 ± 0.2 j 116.2 ± 5.3 e 24.1 ± 0.3 i 75.9 ± 3.7 a
YY2640 200 198.4 ± 4.6 d 59.0 ± 2.6 g 139.4 ± 6.8 c 30.2 ± 1.4 g 69.8 ± 2.0 c
300 243.9 ± 3.9 b 87.9 ± 1.0 d 156.0 ± 7.3 a 37.0 ± 1.9 f 63.0 ± 2.3 d
400 257.8 ± 5.3 a 107.3 ± 3.6 b 150.5 ± 2.3 ab 41.6 ± 1.0 e 58.4 ± 2.6 e
500 261.9 ± 2.3 a 123.5 ± 2.7 a 138.4 ± 1.0 b 47.2 ± 1.3 c 52.8 ± 2.1 g
连粳7号 100 141.6 ± 3.3 g 33.1 ± 1.6 l 108.5 ± 4.7 f 23.7 ± 0.4 i 76.3 ± 0.5 a
LJ-7 200 181.1 ± 2.8 e 50.7 ± 1.9 i 130.4 ± 6.5 d 28.3 ± 1.1 h 71.7 ± 2.4 b
300 203.8 ± 3.3 c 73.0 ± 2.5 f 130.8 ± 3.3 cd 35.5 ± 1.5 f 64.5 ± 1.5 d
400 213.1 ± 3.0 c 92.9 ± 2.1 c 120.2 ± 2.0 e 44.6 ± 1.0 d 55.4 ± 2.5 f
500 216.5 ± 4.2 c 109.4 ± 3.2 b 107.1 ± 5.0 f 51.3 ± 0.1 a 48.7 ± 0.8 i
扬稻6号 100 146.1 ± 2.7 f 34.5 ± 0.6 k 111.6 ± 1.2 e 23.6 ± 1.1 i 76.4 ± 0.7 a
YD-6 200 189.7 ± 3.1 d 55.6 ± 1.3 h 134.1 ± 5.2 cd 29.5 ± 0.8 g 70.5 ± 2.5 c
300 230.7 ± 4.0 b 82.3 ± 2.8 e 148.4 ± 1.6 b 36.3 ± 0.1 f 63.7 ± 1.1 d
400 232.8 ± 3.4 b 108.7 ± 0.7 b 134.1 ± 4.0 cd 45.0 ± 0.2 c 55.0 ± 1.4 f
500 235.8 ± 4.3 b 120.4 ± 3.0 a 129.4 ± 3.2 d 48.3 ± 0.2 b 51.7 ± 2.3 h
方差分析Analysis of variance
年份Year (Y) NS NS NS NS NS
品种Cultivar (C) ** ** ** * *
施氮量N rate (N) ** ** ** ** **
Y×C NS NS NS NS NS
Y×N NS NS NS NS NS
C×N ** ** ** ** **
Y×C×N NS NS NS NS NS

图2

2018年(A)和2019年(B)各水稻品种在不同施氮量下土壤氮素有效性“A”值 数据为平均值±标准差(n = 3)。YY2640: 甬优2640; LJ-7: 连粳7号; YD-6: 扬稻6号。"

表3

不同施氮量下肥料氮在水稻成熟期地上部分的分配"

年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
肥料氮分配量
Fertilizer-derived N distribution (kg hm-2)
肥料氮的分配率
Distribution rate of fertilizer-derived N in plants (%)
茎鞘
Stem sheath

Leaf

Ear
茎鞘
Stem sheath

Leaf

Ear
2018
甬优2640 100 7.8 ± 0.4 n 3.0 ± 0.1 l 25.4 ± 0.4 j 21.5 ± 0.5 n 8.3 ± 0.3 h 70.2 ± 0.4 a
YY2640 200 14.9 ± 0.3 k 4.2 ± 0.2 j 38.9 ± 1.4 c 25.7 ± 1.0 m 7.2 ± 0.2 i 67.1 ± 0.1 b
300 25.6 ± 0.6 h 6.1 ± 0.1 h 53.8 ± 1.0 b 29.9 ± 1.2 k 7.1 ± 0.3 i 62.9 ± 0.9 c
400 36.8 ± 1.1 e 10.8 ± 0.3 e 61.6 ± 0.3 a 33.7 ± 0.7 i 9.9 ± 0.1 f 56.4 ± 2.4 f
500 46.2 ± 0.3 c 15.0 ± 0.4 c 60.7 ± 1.9 a 37.9 ± 0.9 f 12.3 ± 0.4 d 49.8 ± 1.2 i
连粳7号 100 9.1 ± 0.1 m 3.5 ± 0.2 k 20.1 ± 0.2 k 27.8 ± 1.1 l 10.7 ± 0.1 e 61.5 ± 1.5 d
LJ-7 200 17.3 ± 0.4 j 4.8 ± 0.1 i 28.2 ± 0.6 i 34.4 ± 0.7 h 9.5 ± 0.4 fg 56.1 ± 0.2 f
300 27.7 ± 0.6 g 7.2 ± 0.2 g 38.7 ± 0.7 c 37.6 ± 0.3 f 9.8 ± 0.1 f 52.6 ± 0.6 h
400 40.8 ± 0.7 d 12.5 ± 0.1 d 37.6 ± 1.0 d 44.9 ± 1.9 d 13.8 ± 0.3 c 41.4 ± 1.3 k
500 54.0 ± 0.8 b 18.7 ± 0.3 b 35.0 ± 1.3 g 50.1 ± 0.9 b 17.4 ± 0.2 a 32.5 ± 1.4 m
扬稻6号 100 11.2 ± 0.5 l 3.6 ± 0.1 k 19.8 ± 0.9 k 32.4 ± 1.6 j 10.4 ± 0.4 e 57.2 ± 1.9 e
YD-6 200 20.0 ± 0.3 i 5.1 ± 0.2 i 30.1 ± 0.6 h 36.2 ± 1.3 g 9.2 ± 0.4 g 54.5 ± 2.4 g
300 34.2 ± 1.5 f 10.0 ± 0.4 f 36.8 ± 1.3 e 42.2 ± 0.1 e 12.3 ± 0.4 d 45.4 ± 2.1 j
400 53.7 ± 0.9 b 18.3 ± 0.5 b 36.2 ± 0.3 f 49.6 ± 0.3 c 16.9 ± 0.8 b 33.5 ± 1.6 l
500 55.9 ± 1.1 a 19.4 ± 0.2 a 34.9 ± 0.2 g 50.7 ± 2.3 a 17.6 ± 0.2 a 31.7 ± 1.2 n
2019
甬优2640 100 7.5 ± 0.3 n 2.8 ± 0.2 l 24.8 ± 0.6 j 21.4 ± 0.7 n 8.0 ± 0.3 h 70.7 ± 2.4 a
YY2640 200 14.6 ± 0.3 k 4.1 ± 0.1 j 38.6 ± 1.6 c 25.5 ± 0.8 m 7.2 ± 0.2 i 67.4 ± 0.3 b
300 25.2 ± 0.4 h 6.0 ± 0.2 h 53.8 ± 1.0 b 29.6 ± 0.8 k 7.1 ± 0.1 i 63.3 ± 1.8 c
400 35.9 ± 0.2 e 10.6 ± 0.1 e 61.1 ± 2.1 a 33.4 ± 1.4 i 9.9 ± 0.3 f 56.8 ± 1.7 f
500 45.3 ± 2.1 c 14.8 ± 0.3 c 60.5 ± 0.5 a 37.6 ± 0.2 f 12.3 ± 0.1 d 50.2 ± 2.4 i
连粳7号 100 8.9 ± 0.1 m 3.4 ± 0.1 k 20.1 ± 0.8 k 27.5 ± 0.8 l 10.5 ± 0.3 e 62.0 ± 0.9 d
LJ-7 200 17.2 ± 0.3 j 4.7 ± 0.2 i 28.4 ± 0.1 i 34.2 ± 0.2 h 9.3 ± 0.1 g 56.5 ± 1.2 f
300 26.6 ± 0.3 g 6.9 ± 0.1 g 37.8 ± 0.9 c 37.3 ± 0.3 f 9.7 ± 0.5 f 53.0 ± 0.7 h
400 39.0 ± 1.8 d 11.6 ± 0.2 d 36.1 ± 1.5 d 45.0 ± 0.1 d 13.4 ± 0.4 c 41.6 ± 1.4 k
500 51.8 ± 1.6 b 17.1 ± 0.3 b 34.3 ± 0.2 g 50.2 ± 0.8 b 16.6 ± 0.1 b 33.2 ± 1.7 m
扬稻6号 100 11.1 ± 0.5 l 3.5 ± 0.1 k 19.9 ± 0.8 k 32.2 ± 1.0 j 10.1 ± 0.1 ef 57.7 ± 1.3 e
YD-6 200 20.7 ± 0.3 i 5.2 ± 0.3 i 31.6 ± 0.9 h 36.0 ± 1.1 g 9.0 ± 0.4 g 55.0 ± 2.8 g
300 33.9 ± 0.5 f 9.9 ± 0.2 f 37.1 ± 1.0 e 41.9 ± 1.3 e 12.2 ± 0.3 d 45.9 ± 0.4 j
400 50.6 ± 2.5 b 17.6 ± 0.7 b 35.3 ± 0.7 f 48.9 ± 0.1 c 17.0 ± 0.7 b 34.1 ± 1.5 l
500 56.4 ± 0.3 a 20.2 ± 0.6 a 34.2 ± 1.0 g 50.9 ± 0.3 a 18.2 ± 0.8 a 30.9 ± 0.3 n
方差分析Analysis of variance
年份Year (Y) NS NS NS NS NS NS
品种Cultivar (C) ** ** ** ** ** **
施氮量N rate (N) ** ** ** ** ** **
Y×C NS NS NS NS NS NS
Y×N NS NS NS NS NS NS
C×N ** ** ** ** ** **
Y×C×N NS NS NS NS NS NS

表4

不同施氮量下水稻植株肥料氮吸收利用率、土壤残留率和损失率"

年度/品种
Year/cultivar
施氮量
N rate (kg hm-2)
肥料氮吸收利用率
RE-15N (%)
肥料氮土壤残留率
NRS (%)
肥料氮损失率
Loss (%)
2018
甬优2640 100 36.2 ± 0.4 a 21.1 ± 0.3 c 42.7 ± 1.3 h
YY2640 200 29.0 ± 1.1 d 12.4 ± 0.6 f 58.7 ± 1.5 f
300 28.5 ± 0.9 d 9.2 ± 0.1 i 62.3 ± 3.1 d
400 27.3 ± 0.6 ef 7.6 ± 0.4 k 65.1 ± 0.8 c
500 24.4 ± 0.1 hi 7.0 ± 0.1 m 68.6 ± 2.4 b
连粳7号 100 32.7 ± 0.4 c 23.7 ± 0.2 a 43.6 ± 0.2 g
LJ-7 200 25.1 ± 0.1 g 15.4 ± 0.1 d 59.5 ± 1.7 e
300 24.5 ± 0.7 h 11.0 ± 0.5 g 64.5 ± 1.5 c
400 22.7 ± 0.8 j 8.8 ± 0.2 j 68.5 ± 0.8 b
500 21.5 ± 0.3 k 7.4 ± 0.3 l 71.1 ± 0.4 a
扬稻6号 100 34.6 ± 1.5 b 23.1 ± 1.0 b 42.3 ± 1.8 h
YD-6 200 27.6 ± 1.4 e 13.8 ± 0.4 e 58.6 ± 2.1 f
300 27.0 ± 0.9 f 10.5 ± 0.2 h 62.5 ± 2.8 d
400 27.0 ± 0.6 f 8.6 ± 0.1 j 64.4 ± 0.8 c
500 24.0 ± 0.6 i 7.3 ± 0.1 l 68.7 ± 0.8 b
2019
甬优2640 100 35.2 ± 1.3 a 20.9 ± 0.9 c 43.9 ± 1.4 j
YY2640 200 28.6 ± 0.3 d 11.9 ± 0.1 f 59.5 ± 0.4 h
300 28.3 ± 0.7 d 9.0 ± 0.1 i 62.7 ± 1.4 g
400 26.9 ± 0.5 e 7.0 ± 0.1 j 66.1 ± 2.5 f
500 24.1 ± 0.5 h 6.4 ± 0.1 k 69.5 ± 2.8 c
连粳7号 100 32.5 ± 1.2 c 23.6 ± 0.4 a 43.9 ± 0.4 j
LJ-7 200 25.2 ± 0.9 g 15.5 ± 0.7 d 59.3 ± 2.5 h
300 23.8 ± 1.1 i 9.8 ± 0.1 h 66.4 ± 1.4 f
400 21.7 ± 0.2 j 6.6 ± 0.1 k 71.7 ± 1.1 b
500 20.6 ± 0.5 k 5.2 ± 0.1 l 74.2 ± 1.4 a
扬稻6号 100 34.6 ± 0.3 b 23.1 ± 0.4 b 42.3 ± 0.1 k
YD-6 200 28.7 ± 1.3 d 14.9 ± 0.7 e 56.4 ± 2.1 i
300 26.9 ± 0.8 e 10.4 ± 0.2 g 62.7 ± 2.4 g
400 25.9 ± 1.3 f 7.0 ± 0.3 j 67.1 ± 3.2 e
500 24.0 ± 0.3 hi 7.3 ± 0.3 j 68.7 ± 0.6 d
方差分析Analysis of variance
年份Year (Y) NS NS NS
品种Cultivar (C) ** ** **
施氮量N rate (N) ** ** **
Y×C NS NS NS
Y×N NS NS NS
C×N * ** *
Y×C×N NS NS NS

图3

不同施氮量下肥料氮的植株吸收量(PNdff) (A, B)、土壤残留量(NRS) (C, D)和损失量(N loss) (E, F) 数据为平均值±标准差(n = 3)。YY2640: 甬优2640; LJ-7: 连粳7号; YD-6: 扬稻6号; PNdff: 肥料氮植株吸收量; NRS: 肥料氮土壤残留量; N loss: 肥料氮损失量。"

图4

施氮量对水稻的产量(grain yield)、氮素吸收总量(TN)和肥料氮损失量(N loss)归一化值的影响 数据为平均值±标准差(n = 3), 归一化值的计算是用产量、植株氮吸收量和肥料氮损失量在各个施氮量中的数值分别除以施氮量为100 kg hm-2时的数值, 并取自然对数值(ln)。YY2640: 甬优2640; LJ-7: 连粳7号; YD-6: 扬稻6号; TN: 氮素吸收总量; N loss: 肥料氮损失量。"

图5

籼/粳杂交稻甬优2640的适宜生态施氮量 N loss: 肥料氮损失量。"

[1] FAOSTAT. FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2019 [2021-10-07]. http://www.fao.org/.
[2] International Rice Research Institute. Rice Almanac, Fourth edition. Manila, Philippines: International Rice Research Institute, 2013. pp 1-64. https://www.irri.org/.
[3] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[4] 国家统计局. 国家统计局关于2020年粮食产量数据的公告. 2020 [2021-10-07]. http://www.stats.gov.cn
National Bureau of Statistics, Announcement of the National Bureau of Statistics on grain production data in 2020 [2021-10-07]. http://www.stats.gov.cn. (in Chinese)
[5] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[6] Zhang F S, Chen X P, Vitousek P. An experiment for the world. Nature, 2013, 497: 33-35.
doi: 10.1038/497033a
[7] Liu L J, Chen T T, Wang Z Q, Zhang H, Yang J C, Zhang J H. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res, 2013, 154: 226-235.
doi: 10.1016/j.fcr.2013.08.016
[8] Peng S B, Buresh R J, Huang J L, Zhong X H, Zou J C, Wang G H, Liu Y Y, Hu R F, Tang K H, Zhang F S, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management. Agron Sustain Dev, 2010, 30: 649-656.
doi: 10.1051/agro/2010002
[9] Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009, 106: 3041-3046.
doi: 10.1073/pnas.0813417106
[10] Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
doi: 10.1016/j.fcr.2005.05.004
[11] Xue Y G, Duan H, Liu L J, Wang Z Q, Yang J C, Zhang J H. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013. 53: 271-284.
doi: 10.2135/cropsci2012.06.0360
[12] Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y X, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lu S H, Sun Y X, Liu Y Y, Peng X L, Ren J, Li S Q, Deng X P, Shi X J, Zhang Q, Yang Z P, Tang L, Wei C Z, Jia L L, Zhang J W, He M R, Tong Y A, Tang Q Y, Zhong X H, Liu Z H, Cao N, Kou C L, Ying H, Yin Y L, Jiao X Q, Zhang Q S, Fan M S, Jiang R F, Zhang F S, Dou Z X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-367.
doi: 10.1038/nature25785
[13] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[14] 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展. 生命科学, 2018, 30: 1129-1136.
Wang F, Peng S B. Research progress in rice green and high-yield management practices. Chin Life Sci Bull, 2018, 30: 1129-1136. (in Chinese with English abstract)
[15] Ma G H, Yuan L P. Hybrid rice achievements, development and prospect in China. J Integr Agric, 2015, 14: 197-205.
doi: 10.1016/S2095-3119(14)60922-9
[16] 袁隆平. 两系法杂交水稻研究的进展. 中国农业科学, 1990, 23: 1-6.
Yuan L P. Progress of two-line hybrid rice breeding. Sci Agric Sin, 1990, 23: 1-6. (in Chinese with English abstract)
[17] 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016, 49: 207-218.
Lin J R, Song X W, Wu M G, Cheng S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Sci Agric Sin, 2016, 49: 207-218. (in Chinese with English abstract)
[18] 桂君梅, 王林友, 范小娟, 祁永斌, 张礼霞, 范宏环, 金庆生, 王建军. 基于InDel分子标记的籼粳杂交稻与粳粳杂交稻的杂种优势比较研究. 中国农业科学, 2016, 49: 219-231.
Gui J M, Wang L Y, Fan X J, Qi Y B, Zhang L X, Fan H H, Jin Q S, Wang J J. Comparison the heterosis of indica-japonica hybrids and japonica-japonica hybrids using InDel markers. Sci Agric Sin, 2016, 49: 219-231. (in Chinese with English abstract)
[19] Wang D Y, Xu C M, Yan J X, Zhang X G, Chen S, Chauhan B S, Wang L, Zhang X F. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crops Res, 2017, 211: 27-36.
doi: 10.1016/j.fcr.2017.06.017
[20] 李鹏飞, 李小坤, 侯文峰, 任涛, 丛日环, 杜昌文, 邢烈火, 王少华, 鲁剑巍. 应用15N示踪技术研究控释尿素在稻田中的去向及利用率. 中国农业科学, 2018, 51: 3961-3971.
Li P F, Li X K, Hou W F, Ren T, Cong R H, Du C W, Xing L H, Wang S H, Lu J W. Studying the fate and recovery efficiency of controlled release urea in paddy soil using 15N tracer technique. Sci Agric Sin, 2018, 51: 3961-3971. (in Chinese with English abstract)
[21] 曹亚澄, 张金波, 温腾. 稳定同位素示踪技术与质谱分析——在土壤、生态、环境研究中的应用. 北京: 科学出版社, 2018. pp 128-144.
Cao Y C, Zhang J B, Wen T. Stable Isotope Tracer Technique and Mass Spectrometry:Application in Soil, Ecology and Environment Research. Beijing: Science Press, 2018. pp 128-144. (in Chinese)
[22] Xiong D L, Ling X X, Huang J L, Peng S B. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environ Exp Bot, 2017, 141: 1-9.
doi: 10.1016/j.envexpbot.2017.06.007
[23] 刘竞妍, 张可, 王桂华. 综合评价中数据标准化方法比较研究. 数字技术与应用, 2018, 36(6): 84-85.
Liu J K, Zhang K, Wang G H. Comparative study on data standardization methods in comprehensive evaluation. Digit Technol Appl, 2018, 36(6): 84-85. (in Chinese with English abstract)
[24] 王静. 氮肥运筹对长江中游中稻产量、氮肥利用率和氮素损失影响的研究. 华中农业大学博士学位论文, 湖北武汉, 2019.
Wang J. The Effects of Nitrogen Management on Grain Yield, Nitrogen Use Efficiency and Nitrogen Loss of Middle Rice in the Middle of Yangtze River Basin of China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[25] Yoshida H, Horic T, Shiraiwa T. A model explaining genotypic and environment variation of rice spikelet number per unit area measured by cross-location experiments in Asia. Field Crops Res, 2006, 97: 337-343.
doi: 10.1016/j.fcr.2005.11.004
[26] Zhang H, Yu C, Kong X S, Hou D P, Gu J F, Liu L J, Wang Z Q, Yang J C. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Res, 2018, 215: 1-11.
doi: 10.1016/j.fcr.2017.09.034
[27] 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32: 949-955.
Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season indica cultivars. Acta Agron Sin, 2006, 32: 949-955. (in Chinese with English abstract)
[28] 杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001, 15(4): 26-31.
Yang H Z, Li Y Z, Yang R C, Jiang Z W, Zheng J S. Dry matter production characteristics of super high yielding rice. Chin J Rice Sci, 2001, 15(4): 26-31. (in Chinese with English abstract)
[29] 张耗, 谈桂露, 薛亚光, 王志琴, 刘立军, 杨建昌. 江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化. 作物学报, 2010, 36: 133-140.
doi: 10.3724/SP.J.1006.2010.00133
Zhang H, Tan G L, Xue Y G, Wang Z Q, Liu L J, Yang J C. Changes in grain yield and morphological and physiological characteristics during 60-year evolution of japonica rice cultivars in Jiangsu province, China. Acta Agron Sin, 2010, 36: 133-140. (in Chinese with English abstract)
[30] 张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030.
doi: 10.3724/SP.J.1006.2011.01020
Zhang H, Huang Z H, Wang J C, Wang Z Q, Yang J C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season Indica rice cultivars in Jiangsu province. Acta Agron Sin, 2011, 37: 1020-1030. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01020
[31] Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice panicle in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871-879.
doi: 10.1093/jxb/42.7.871
[32] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid- season japonica rice. Sci Agric Sin, 2006, 39: 1336-1345. (in Chinese with English abstract)
[33] 李晓芸, 孟天瑶, 戴其根. 中熟类型甬优籼粳杂交稻组合产量优势形成及其形态生理特征. 中国稻米, 2017, 23(1): 10-16.
Li X Y, Meng T Y, Dai Q G. Yield formation and morphological and physiological characteristics of medium-maturity type of Yongyou Japohica/Indica hybrid rice. China Rice, 2017, 23(1): 10-16. (in Chinese with English abstract)
[34] 晏娟, 尹斌, 张绍林, 沈其荣, 朱兆良. 不同施氮量对水稻氮素吸收与分配的影响. 植物营养与肥料学报, 2008, 14: 835-839.
Yan J, Yin B, Zhang S L, Shen Q R, Zhu Z L. Effect of nitrogen application rate on nitrogen uptake and distribution in rice. Plant Nutr Fert Sci, 2008, 14: 835-839 (in Chinese with English abstract).
[35] Huang M, Jiang L, Xia B. Yield gap analysis of super hybrid rice between two subtropical environments. Aust J Crop Sci, 2013, 7: 600-608.
[36] Xiong Y M, X L. Low nitrogen retention in soil and litter under conditions without plants in a subtropical pine plantation. Forests, 2015, 6: 2387-2404.
doi: 10.3390/f6072387
[37] Liu X J A, Van Groenigen K J, Dijkstra P. Increased plant uptake of native soil nitrogen following fertilizer addition-not a priming effect. Appl Soil Ecol, 2017, 114: 105-110.
doi: 10.1016/j.apsoil.2017.03.011
[38] Kuzyakov Y, Friedel J K, K Stahr. Review of mechanisms and quantification of priming effects. Soil Biol Biochem, 2000, 32: 1485-1498.
doi: 10.1016/S0038-0717(00)00084-5
[39] Huang J, He F, Cui K. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008, 105: 70-80.
doi: 10.1016/j.fcr.2007.07.006
[40] Zhao X, Xie Y X, Xiong Z Q. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China. Plant Soil, 2009, 319: 225-234.
doi: 10.1007/s11104-008-9865-0
[41] Reddy. Uptake efficiency of 15N-urea in flooded and aerobic rice fields under semi-arid conditions. Paddy Water Environ, 2015, 13: 545-556.
doi: 10.1007/s10333-014-0473-8
[42] 杨利, 张建峰, 张富林, 范先鹏, 杨俊诚, 杨永成, 熊桂云, 吴运明, 余延丰, 符家安. 长江中下游地区氮肥减施对稻麦轮作体系作物氮吸收、利用与氮素平衡的影响. 西南农业学报, 2013, 26(1): 195-202.
Yang L, Zhang J F, Zhang F L, Fan X P, Yang J C, Yang Y C, Xiong G Y, Wu Y M, Yu Y F, Fu J A. Effects of reducing N application on crop N uptake, utilization and soil N balance under rice-wheat rotation system on middle and lower reaches of Yangtze River region. Southwest China J Agric Sci, 2013, 26(1): 195-202. (in Chinese with English abstract)
[43] Zhang Q W, Yang Z L, Zhang H, Yi J. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River basin. Agric Ecosyst Environt, 2012, 158: 118-126.
[44] Cao Y S, Yin B. Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate. Agric Ecosyst Environt, 2015, 202: 1-7.
[45] Pan S G, Huang S Q, Zhai J, Wang J P, Cao C G, Cai M L, Zhan M, Tang X R. Effects of N management on yield and N uptake of rice in central China. J Integr Agric, 2012, 11: 1993-2000.
doi: 10.1016/S2095-3119(12)60456-0
[46] 魏颖娟, 夏冰, 赵杨, 邹应斌. 15N示踪不同施氮量对超级稻产量形成及氮素吸收的影响. 核农学报, 2016, 30: 783-791.
doi: 10.11869/j.issn.100-8551.2016.04.0783
Wei Y J, Xia B, Zhao Y, Zou Y B. Effects of nitrogen application on yield formation and the nitrogen absorption and utilization of super rice based on 15N-tracing. Acta Agric Nucl Sin, 2016, 30: 783-791. (in Chinese with English abstract)
[47] Zhu Z L. Fate and management of fertilizer nitrogen in agro-ecosystems. In: Zhu Z, Wen Q, Freney J R, eds. Nitrogen in Soils of China. Springer, Dordrecht: Developments in Plant and Soil Sciences, 1997. pp 239-279. https://link.springer.com/book/10.1007/978-94-011-5636-3.
[48] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004
[49] Chu G, Chen S, Xu C M, Wang D Y, Zhang X F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
[50] Zhu K, Zhou Q, Shen Y, Shen Y, Yan J Q, Xu Y J, Wang Z Q, Yang J C. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. Crop Sci, 2020, 60: 1556-1568.
doi: 10.1002/csc2.20150
[51] Zhou Q, Ju C X, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric, 2017, 16: 1028-1043.
doi: 10.1016/S2095-3119(16)61506-X
[52] Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice system. Field Crops Res, 1998, 56: 7-39.
doi: 10.1016/S0378-4290(97)00140-8
[53] Zhou Z C, Gan Z T, Shangguan Z P, Zhang F P. Effects of long-term repeated mineral and organic fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. Eur J Agron, 2013, 45: 20-26.
doi: 10.1016/j.eja.2012.11.002
[54] Pandey A, Mai V T, Vu D Q, Bui T P, Mai T L, Jensen L S, Neergaard A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric Ecosyst Environ, 2014, 196: 137-146.
doi: 10.1016/j.agee.2014.06.010
[1] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[4] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[5] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[6] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[7] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[8] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[9] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[10] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[11] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[12] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[13] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[14] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[15] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!