欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2400-2408.doi: 10.3724/SP.J.1006.2022.11075

• 研究简报 • 上一篇    下一篇

小麦花后穗部温度变化规律及其与产量的关系

王云奇(), 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿*()   

  1. 西北农林科技大学农学院, 陕西杨陵 712100
  • 收稿日期:2021-08-22 接受日期:2021-11-30 出版日期:2022-09-12 网络出版日期:2022-07-15
  • 通讯作者: 王云奇,张睿
  • 作者简介:E-mail: wyqay163@163.com第一联系人:

    **同等贡献

  • 基金资助:
    陕西省引进国内博士专项(F2020221004);大学生创新创业训练计划项目(S202010712146);中国博士后科学基金项目(2018M643749)

Variation of ear temperature after anthesis and its relationship with yield in wheat

WANG Yun-Qi(), GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui*()   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2021-08-22 Accepted:2021-11-30 Published:2022-09-12 Published online:2022-07-15
  • Contact: WANG Yun-Qi,ZHANG Rui
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Special Support for the Introduction of Domestic Doctors in Shaanxi Province(F2020221004);Innovation and Entrepreneurship Training Program for College Students(S202010712146);China Postdoctoral Science Foundation(2018M643749)

摘要:

小麦的体温是反映小麦生态生理状态的重要参数, 尽管目前已经从冠层温度的角度对小麦的体温进行了一系列研究, 但是小麦花后穗部温度变化规律及其与产量的关系尚不清楚。因此, 该研究以本课题筛选的抗旱性差异显著的6个品种为研究对象, 调查开花期、花后7、14、21和28 d及成熟期穗部温度, 测定穗光合对产量的贡献率、穗粒数、千粒重、穗粒重和产量。研究发现开花期强抗旱品种旗叶SPAD值显著高于弱抗旱品种; 不同品种穗部温度均表现出先降低而后升高的变化趋势, 强抗旱品种最低值小于弱抗旱品种, 且强抗旱品种和中抗旱品种最低值出现时间推迟1周左右; 强抗旱品种穗光合对产量的贡献率、穗粒数、千粒重、穗粒重和产量显著高于中抗旱品种和弱抗旱品种; 开花期旗叶SPAD值、花后7 d穗部温度与产量及产量要素呈现正相关关系, 而花后其他时期穗部温度与产量及产量要素有负相关关系, 且强抗旱品种的相关性强于弱抗旱品种。因此, 穗部温度可以作为抗旱高产品种选育的参考指标。该研究不仅丰富了小麦抗旱高产理论, 而且创新了小麦品种生理育种方法。

关键词: 穗部温度, 小麦, 抗旱性, 粒重, 产量

Abstract:

The wheat temperature is an important parameter to reflect the ecological and physiological state of wheat. A series of studies have been carried out on the temperature of wheat from the perspective of canopy temperature, but the relationship between the temperature of wheat ear after anthesis and its yield is still unclear. In the present study, six varieties with different drought resistance were selected as the research objects. The ear temperature of these varieties at flowering stage, 7, 14, 21, 28 days after flowering and mature stage was investigated, and the contribution of ear photosynthesis to grain yield, grain number per ear, 1000-grain weight, grain weight per ear, and yield of each variety were determined. The results showed that flag leaf SPAD value of strong drought resistance varieties was significantly higher than that of weak drought resistance varieties at flowering stage. The lowest value of strong drought resistant varieties was lower than that of weak drought resistant varieties, and the occurrence time of strong drought resistant varieties and medium drought-resistant varieties was delayed about a week. The contribution of ear photosynthesis to grain yield, grain number per ear, 1000-grain weight, grain weight per ear, and yield of strong drought resistance varieties were significantly higher than those of medium drought-resistant varieties and weak drought resistance varieties. The flag leaf SPAD value at flowering stage and ear temperature at seven days after anthesis was positively correlated with yield and yield factors, while the ear temperature after anthesis was negatively correlated with yield and yield factors, and the correlation of strong drought resistant varieties was slightly higher than that of weak drought resistant varieties. Together, the ear temperature can be used as a reference index for breeding drought resistant and high yield varieties. This study not only enriches the theory of drought resistance and high yield of wheat, but also innovates the physiological breeding method of wheat varieties.

Key words: ear temperature, wheat, drought resistance, grain weight, yield

表1

品种和试验年份影响开花期旗叶SPAD值和花后穗部温度的方差分析"

F
F-value
SPAD值SPAD value 花后0 d
DAA0
花后7 d
DAA7
花后14 d
DAA14
花后21 d
DAA21
花后28 d
DAA28
成熟期
Maturity
年份Year 20.90*** 195.19**** 162.54**** 207.64**** 1.90 73.84**** 7.43*
品种Cultivar 10.58**** 9.95**** 20.09**** 176.69**** 133.07**** 103.82**** 5.83**
年份×品种Year × Cultivar 2.55 9.79**** 6.64*** 28.53**** 40.16**** 52.17**** 1.97

图1

品种对不同试验年份开花期旗叶SPAD值影响 同年不同小写字母表示在0.05水平差异显著; LSD为最小显著差(P < 0.05)。"

图2

品种对2017-2018 (A)和2018-2019 (B)花后穗部温度的影响 LSD为最小显著差(P < 0.05)。"

表2

品种和试验年份影响穗粒数、千粒重、穗光合对产量的贡献率、穗粒重和产量的方差分析"

F
F-value
穗粒数
GN
千粒重
TGW
穗光合对产量的贡献率
CEP
穗粒重
GW
产量
GY
年份Year 2.02 14.14** 0.05 5.40* 18.81***
品种Cultivar 10.48**** 38.74**** 41.93**** 20.94**** 42.88****
年份×品种Year × Cultivar 0.47 22.55**** 3.40* 1.19 2.64*

表3

品种和试验年份的交互效应对穗粒数、千粒重、穗光合对产量的贡献率、穗粒重和产量的影响"

年份
Year
品种
Cultivar
穗粒数
GN
千粒重
TGW (g)
穗光合对产量的贡献率
CEP (%)
穗粒重
GW (g)
产量
GY (kg hm-2)
2017-2018 矮抗58 Aikang 58 40.33 a 48.96 a 35.97 ab 1.97 ab 10,395.3 ab
周麦18 Zhoumai 18 42.44 a 49.38 a 38.75 a 2.10 a 10,475.0 a
石4185 Shi 4185 38.57 ab 45.48 bc 33.71 ab 1.73 bc 10,095.1 bc
邯6172 Han 6172 39.10 ab 46.19 ab 32.25 b 1.80 abc 9360.2 cd
温麦6号Wenmai 6 37.33 ab 42.30 c 25.73 c 1.59 c 10,191.1 b
洛麦23 Luomai 23 34.33 b 33.73 d 28.51 d 1.16 d 9123.9 d
2018-2019 矮抗58 Aikang 58 42.58 a 44.81 b 34.82 b 1.91 b 10,295.4 a
周麦18 Zhoumai 18 44.07 a 49.58 a 38.21 a 2.19 a 10,432.4 a
石4185 Shi 4185 40.46 ab 44.14 b 31.60 c 1.79 b 9823.4 b
邯6172 Han 6172 41.59 a 45.21 b 29.08 cd 1.88 b 9649.5 b
温麦6号Wenmai 6 36.81 bc 48.93 a 27.32 de 1.80 b 9570.5 b
洛麦23 Luomai 23 33.71 c 43.84 b 24.94 e 1.48 c 8266.1 c

表4

品种和试验年份对穗粒数、千粒重、穗光合对产量的贡献率、穗粒重和产量的影响"

影响因素
Interfering factor
处理
Treatment
穗粒数
GN
千粒重
TGW (g)
穗光合对产量的贡献率
CEP (%)
穗粒重
GW (g)
产量
GY (kg hm-2)
年份Year 2017-2018 38.69 a 44.34 b 30.82 a 1.73 b 10,030.11 a
2018-2019 39.87 a 46.08 a 30.99 a 1.84 a 9672.88 b
品种 Cultivar 矮抗58 Aikang 58 41.46 ab 46.83 b 35.40 b 1.94 b 10,345.4 a
周麦18 Zhoumai 18 43.26 a 49.48 a 38.48 a 2.15 a 10,588.7 a
石4185 Shi 4185 39.52 bc 44.81 c 32.66 c 1.75 bc 9959.3 b
邯6172 Han 6172 40.35 ab 45.70 bc 30.66 c 1.84 bc 9639.8 c
温麦6号Wenmai 6 37.07 c 45.64 bc 26.53 d 1.69 c 9880.8 bc
洛麦23 Luomai 23 34.02 d 38.79 d 21.72 e 1.32 d 8695.0 d

表5

开花期SPAD值、花后穗部温度和产量的关系"

品种
Cultivar
产量指标
Yield index
开花期SPAD值
SPAD value
花后0 d
DAA0
花后7 d
DAA7
花后14 d
DAA14
花后21 d
DAA21
花后28 d
DAA28
成熟期穗部温度Maturity
强抗旱品种 穗粒数GN 0.74** -0.67* 0.32 -0.60* -0.20 0.17 -0.61*
DC 千粒重TGW 0.77** -0.89**** 0.60* -0.71** -0.28 0.21 -0.75**
穗光合对产量的贡献率CEP 0.79** -0.89**** 0.44 -0.80** -0.37 0.13 -0.77**
穗粒重GW 0.81** -0.84*** 0.48 -0.69* -0.26 0.19 -0.71**
产量GY 0.68* -0.77** 0.67* -0.52 -0.05 0.40 -0.64*
中抗旱品种 穗粒数GN 0.77** -0.67* -0.85*** -0.44 0.19 0.75** -0.13
MDC 千粒重TGW 0.39 0.41 0.53 0.73** -0.16 -0.07 0.94****
穗光合对产量的贡献率CEP 0.54 0.27 0.54 0.33 0.24 -0.01 0.39
品种
Cultivar
产量指标
Yield index
开花期SPAD值
SPAD value
花后0 d
DAA0
花后7 d
DAA7
花后14 d
DAA14
花后21 d
DAA21
花后28 d
DAA28
成熟期穗部温度Maturity
穗粒重GW 0.71** -0.47 -0.58* -0.07 0.17 0.60* 0.20
产量GY 0.61* 0.13 0.20 -0.28 -0.05 -0.24 -0.21
弱抗旱品种 穗粒数GN 0.60* -0.08 0.42 -0.62* -0.64* -0.62* -0.15
WDC 千粒重TGW 0.06 0.62* 0.84*** 0.29 -0.09 0.01 0.34
穗光合对产量的贡献率CEP 0.61* -0.13 0.51 -0.63* -0.73** -0.71** -0.38
穗粒重GW 0.50 0.14 0.66* -0.39 -0.58* -0.52 0.00
产量GY 0.73** 0.15 0.41 -0.57* -0.42 -0.38 -0.12
所有品种 穗粒数GN 0.45** -0.34* 0.14 -0.53*** -0.33* -0.23 -0.29
AC 千粒重TGW 0.47** -0.49** 0.23 -0.53*** -0.20 0.19 0.25
穗光合对产量的贡献率CEP 0.63**** -0.42* 0.30 -0.66**** -0.42* -0.19 -0.44**
穗粒重GW 0.53*** -0.46** 0.21 -0.60**** -0.32 -0.04 -0.31
产量GY 0.64**** 0.03 0.47* -0.32 -0.23 -0.12 -0.17
[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric, 2018, 8(1): 99-106. (in Chinese with English abstract)
[2] 闫丽霞, 于振文, 石玉, 赵俊晔, 张永丽. 测墒补灌对2个小麦品种旗叶叶绿素荧光及衰老特性的影响. 中国农业科学, 2017, 50: 1416-1429.
Yan L X, Yu Z W, Shi Y, Zhao J Y, Zhang Y L. Effects of supplemental irrigation based on soil moisture measurement on flag leaf chlorophyll fluorescence and senescence characteristics in two wheat cultivars. Sci Agric Sin, 2017, 50: 1416-1429. (in Chinese with English abstract)
[3] Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Best N. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci USA, 2014, 111: 3239-3244.
doi: 10.1073/pnas.1222474110
[4] 张立伟, 张智郡, 刘海军, 刘钰, 朱明承, 丁梅. 基于冠层温度的玉米缺水诊断研究. 干旱地区农业研究, 2017, 35: 94-98.
Zhang L W, Zhang Z J, Liu H J, Liu Y, Zhu M C, Ding M. Research on water deficit diagnosis of maize based on canopy temperature. Agric Res Arid Area, 2017, 35: 94-98. (in Chinese with English abstract)
[5] 赵刚, 樊廷录, 李尚中, 王勇, 王磊, 党翼, 唐小明, 张建军, 王国宇. 不同品种冬小麦冠层温度与抗旱性和水分利用效率的关系研究. 农业现代化研究, 2010, 31: 334-337.
Zhao G, Fan T L, Li S Z, Wang Y, Wang L, Dang Y, Tang X M, Zhang J J, Wang G Y. Study of relationship of canopy temperature with drought resistance and water use efficiency on different genotype winter wheat. Res Agric Modern, 2010, 31: 334-337. (in Chinese with English abstract)
[6] 蔡焕杰, 康绍忠. 棉花冠层温度的变化规律及其用于缺水诊断研究. 灌溉排水, 1997, 16(1): 1-5.
Cai H J, Kang S Z. The changing pattern of cotton crop canopy temperature and its application in detecting crop water stress. Irrig Drain, 1997, 16(1): 1-5. (in Chinese with English abstract)
[7] 樊廷录, 宋尚有, 徐银萍, 李兴茂. 旱地冬小麦灌浆期冠层温度与产量和水分利用效率的关系. 生态学报, 2007, 27, 4491-4497.
Fan T L, Song S Y, Xu Y P, Li X M. Relationship between canopy temperature and water use efficiency/grain yield among dryland winter wheat genotypes during grain filling stage. Acta Ecol Sin, 2007, 27: 4491-4497. (in Chinese with English abstract)
[8] 李丽, 申双和, 李永秀, 韩小梅, 汪秀敏, 李倩, 邹学智. 不同水分处理下冬小麦冠层温度、叶片水势和水分利用效率的变化及相关关系. 干旱地区农业研究, 2012, 30(2): 68-72.
Li L, Shen S H, Li Y X, Han X M, Wang X M, Li Q, Zou X Z. Variation and interrelationship of winter wheat canopy temperature, leaf water potential and water use efficiency under different water treatments. Agric Res Arid Area, 2012, 30(2): 68-72. (in Chinese with English abstract)
[9] Gonzalez-Dugo V, Zarco-Tejada P, Berni J A J, Suárez L, Goldhamer D, Fereres E. Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agric For Meteorol, 2012, 154-155: 156-165.
doi: 10.1016/j.agrformet.2011.11.004
[10] Wang X, Yang W, Wheaton A, Cooley N, Moran B. Automated canopy temperature estimation via infrared thermography: a first step towards automated plant water stress monitoring. Comput Electron Agric, 2010, 73: 74-83.
doi: 10.1016/j.compag.2010.04.007
[11] Panigada C, Rossini M, Meroni M, Cilia C, Busetto L, Amaducci S, Boschetti M, Cogliati S, Picchi V, Pinto F, Marchesi A, Colombo R. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. Int J Appl Earth Observ Geoinf, 2014, 30: 167-178.
doi: 10.1016/j.jag.2014.02.002
[12] Mon J, Bronson K F, Hunsaker D J, Thorp K R, White J W, French A N. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat. Field Crops Res, 2016, 191: 54-65.
doi: 10.1016/j.fcr.2016.02.011
[13] Han M, Zhang H, Dejonge K C, Comas L H, Trout T J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agric Water Manage, 2016, 177: 400-409.
doi: 10.1016/j.agwat.2016.08.031
[14] Taghvaeian S, Comas L, Dejonge K C, Trout T J. Conventional and simplified canopy temperature indices predict water stress in sunflower. Agric Water Manage, 2014, 144: 69-80.
doi: 10.1016/j.agwat.2014.06.003
[15] Conaty W C, Mahan J R, Neilsen J E, Tan D K Y, Yeates S J, Sutton B G. The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Res, 2015, 183: 329-334.
doi: 10.1016/j.fcr.2015.08.010
[16] 王志敏, 张英华, 张永平, 吴永成. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24(4): 136-139.
Wang Z M, Zhang Y H, Zhang Y P, Wu Y C. Review on photosynthetic performance of ear organs in Triticeae crops. J Triticeae Crops, 2004, 24(4): 136-139. (in Chinese with English abstract)
[17] Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446-458.
pmid: 15645303
[18] Tambussi E A, Bort J, Guiamet J J. The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci, 2007, 26: 1-16.
doi: 10.1080/07352680601147901
[19] Wang Y, Xi W, Wang Z M, Wang B, Xu X, Han M, Zhou S, Zhang Y. Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain. J Integr Agric, 2016, 15: 2247-2256.
doi: 10.1016/S2095-3119(16)61408-9
[20] Maydup M L, Antonietta M, Guiamet J J, Graciano C, López J R, Tambussi E A. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Res, 2010, 119: 48-58.
doi: 10.1016/j.fcr.2010.06.014
[21] 毕永基, 彭春花, 黄山, 谭雪明, 潘晓华. 不同基因型早籼稻气冠温差的差异及其与产量的关系. 中国农学通报, 2015, 31(21): 9-15.
Bi Y J, Peng C H, Huang S, Tan X M, Pan X H. Genetic differences in canopy temperature depression among different early-rice varieties and its relationship with yield. Chin Agric Sci Bull, 2015, 31(21): 9-15. (in Chinese with English abstract)
[22] 苗芳, 张嵩午, 张宾, 冯佰利, 杨振. 绿豆的冠层温度分异现象及其叶片结构特征. 西北农业学报, 2005, 14(4): 5-9.
Miao F, Zhang S W, Zhang B, Feng B L, Yang Z. Canopy temperature difference of mung bean and its leaf structure characteristics. Acta Agric Boreali-Occident Sin, 2005, 14(4): 5-9. (in Chinese with English abstract)
[23] Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G, Larque Saavedra A. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci, 1998, 38: 1467-1475.
doi: 10.2135/cropsci1998.0011183X003800060011x
[24] Ayeneh A, van Ginkel M, Reynolds M P, Ammar K. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Res, 2002, 79: 173-184.
doi: 10.1016/S0378-4290(02)00138-7
[25] 张文忠, 韩亚东, 杜宏绢, 黄瑞东, 陈温福. 水稻开花期冠层温度与土壤水分及产量结构的关系. 中国水稻科学, 2007, 21: 99-102.
Zhang W Z, Han Y D, Du H J, Huang R D, Chen W F. Relationship between canopy temperature and soil water content, yield components at flowering stage in rice. Chin J Rice Sci, 2007, 21: 99-102. (in Chinese with English abstract)
[26] 周红亮, 徐林峰, 张丽娟, 费聪, 李阳阳, 苏继霞, 樊华. 水分胁迫及复水对滴灌甜菜冠层温度及光合生理特性的影响. 石河子大学学报(自然科学版), 2020, 38(1): 24-30.
Zhou H L, Xu L F, Zhang L J, Fei C, Li Y Y, Su J X, Fan H. Effects of water stress and rewatering on canopy temperature and photosynthetic physiological characteristics of sugarbeet under drip irrigation. J Shihezi Univ (Nat Sci), 2020, 38(1): 24-30. (in Chinese with English abstract)
[27] Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Lu J. Potassium fertilization reduces silique canopy temperature variation in Brassica napus to enhance seed yield. Ind Crop Prod, 2021, 168: 113604.
[28] 张鑫, 孔祥, 李勇, 骆永丽, 黄翠, 金敏. 外源ABA对干旱条件下小麦冠层温度及光合同化物积累与分配的调控效应. 麦类作物学报, 2019, 39: 1080-1094.
Zhang X, Kong X, Li Y, Luo Y, Huang C, Jin M. Effect of exogenous ABA on the canopy temperature and accumulation and distribution of photo assimilates in wheat under drought conditions. J Triticeae Crops, 2019, 39: 1080-1094. (in Chinese with English abstract)
[29] Thapa S, Jessup K E, Pradhan G P, Rudd J C, Liu S, Mahan J R, Devkota R N, Baker J A, Xue Q. Canopy temperature depression at grain filling correlates to winter wheat yield in the US Southern High Plains. Field Crops Res, 2018, 217: 11-19.
[30] 刘建军, 肖永贵, 祝芳彬, 程敦公, 李豪圣, 刘爱峰, 宋健民. 不同基因型冬小麦冠层温度与产量性状的关系. 麦类作物学报, 2009, 29: 283-288. (in Chinese with English abstract)
Liu J J, Xiao Y G, Zhu F B, Cheng D G, Li H S, Liu A F, Song J M. Effect of canopy temperature on yield traits of different genotypes of winter wheat. J Triticeae Crops, 2009, 29: 283-288.
[31] 张冬玲, 张洪娜, 郝晨阳, 王兰芬, 李甜, 张学勇. 花后冠层温度对小麦产量的影响及几个关联SSR位点的效应分析. 作物学报, 2015, 41: 548-556.
doi: 10.3724/SP.J.1006.2015.00548
Zhang D L, Zhang H N, Hao C Y, Wang L F, Li T, Zhang X Y. Influence of canopy temperature (CT) during grain-filling period on yield and effects of several CT-associated SSR loci. Acta Agron Sin, 2015, 41: 548-556. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00548
[32] 张娜, 张永强, 徐文修, 仵妮平, 吴培杰, 程雪峰, 张波. 滴灌量对冬小麦田间小气候及产量的影响研究. 中国生态农业学报, 2016, 24: 64-73.
Zhang N, Zhang Y Q, Xu W X, Wu N P, Wu P J, Cheng X F, Zhang B. Effect of different drip irrigation amounts on microclimate and yield of winter wheat. Chin J Eco-Agric, 2016, 24: 64-73. (in Chinese with English abstract)
[33] Gautam A, Prasad S V S, Jajoo A, Ambati D. Canopy temperature as a selection parameter for grain yield and its components in durum wheat under terminal heat stress in late sown conditions. Agric Res, 2015, 4: 238-244.
doi: 10.1007/s40003-015-0174-6
[34] Sanchez-Bragado R, Vicente R, Molero G, Serret M D, Maydup M L, Araus J L. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Curr Opin Plant Biol, 2020, 56: 223-234.
doi: S1369-5266(20)30002-9 pmid: 32088154
[35] 殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53: 4748-4760.
Yin W, Chai Q, Yu A Z, Zhao C, Fan Z L, Hu F L, Fan H, Guo Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Sci Agric Sin, 2020, 53: 4764-4776. (in Chinese with English abstract)
[36] Luan Y, Xu J, Lü Y, Liu X, Wang H, Liu S. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agric Water Manage, 2021, 246: 106699.
[37] Graß R, Ulf B, Holger L, Peer W, Henning K. Is canopy temperature suitable for high throughput field phenotyping of drought resistance of winter rye in temperate climate? Eur J Agron, 2020, 120: 126104.
[38] Kashiwagi J, Yoshioka Y, Nakayama S, Inoue Y, An P, Nakashima T. Potential importance of the ear as a post-anthesis carbon source to improve drought tolerance in spring wheat (Triticum aestivum L.). J Agron Crop Sci, 2021, 207: 936-945.
doi: 10.1111/jac.12541
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[4] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[5] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[6] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[7] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[8] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[9] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[10] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[11] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[12] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[13] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[14] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[15] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!