欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1721-1729.doi: 10.3724/SP.J.1006.2022.11045

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦生殖发育阶段对低温的敏感性鉴定

王娟(), 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠()   

  1. 中国农业科学院作物科学研究所 / 作物分子育种国家工程实验室, 北京 100081
  • 收稿日期:2021-04-23 接受日期:2021-11-29 出版日期:2022-07-12 网络出版日期:2021-12-13
  • 通讯作者: 孙果忠
  • 基金资助:
    国家重点研发计划项目(2017YFD0100703);中央级公益性科研院所基本科研业务费专项(S2020YC03);国家现代农业产业技术体系建设专项(CARS-03)

Identification on sensitivity of wheat to low temperature at reproductive stages

WANG Juan(), LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong()   

  1. National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-04-23 Accepted:2021-11-29 Published:2022-07-12 Published online:2021-12-13
  • Contact: SUN Guo-Zhong
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100703);Fundamental Research Funds for Central Public Welfare Research Institutes(S2020YC03);China Agriculture Research System(CARS-03)

摘要:

由春季低温引发的倒春寒是严重威胁我国小麦生产安全的自然灾害之一。为准确评价倒春寒的危害程度与小麦植株发育阶段的关系, 本研究以春性品种中麦8444为试验材料, 在可控环境条件下, 比较了不同幼穗分化发育阶段的小麦遭受低温后的冻害症状和生长发育情况。结果表明, 小麦植株发育叶龄和幼穗分化阶段存在一定的对应关系。小麦植株的茎和叶片受冻害的程度随着温度降低和发育进程而呈现加重趋势, 株高、穗长和结实率随着温度降低和发育进程而呈现降低趋势。二棱末期(S2.25)至小花原基分化期(S3.5)、药隔期(S5)至柱头羽毛突起期(S7)是幼穗发育过程中对低温敏感性发生明显变化的两个阶段。综合茎、叶、穗等器官对低温的耐受性, 减数分裂期可以更全面地评价小麦的倒春寒抗性水平。

关键词: 小麦, 生殖发育, 低温敏感性, 减数分裂期

Abstract:

Spring freezing injury caused by the low temperature at the reproductive stage is one of the natural disasters that seriously threaten the safety of wheat production in China. Spring wheat cultivar Zhongmai 8444 was employed to accurately determine the correlation between low-temperature damage and the sensitive stages of plant development under the controlled condition. Yield loss and the symptoms of frostbite were observed when plants were treated with freezing stress during the spike differentiation stage. The results showed that the developmental leaf age is relevant to the young spike differentiation stage in wheat plants. In addition, the degree of frost damage to the stems and leaves of wheat plants increased with the decrease of temperature and the developmental processes. In contrast, the plant height, spike length, and seed setting rate declined with a decrease in temperature and developmental processes. The late double ridge phase (S2.25) to floret primordia differentiation phase (S3.5) and the anther connective tissue formation phase (S5) to stigma branches protuberance phase (S7) are the two stages that change significantly to low-temperature sensitivity during the young spike development. Based on the tolerance of stems, leaves, spikes, and other organs to low temperature, the meiotic stage can be used to comprehensively evaluate the resistance level of wheat to frost in spring.

Key words: wheat, reproductive development, sensitivity to low temperature, meiosis stage

图1

小麦苗期和抽穗期的LED光谱 A: 苗期; B: 抽穗期。"

图2

不同播期的小麦主茎叶龄 根据Zadoks decimal code判断的7个播期的小麦植株发育阶段(标尺为10 cm)。T1: 三叶一心(GS13); T2: 四叶龄(GS14); T3: 四叶一心(GS14.5); T4: 五叶一心(GS15); T5: 六叶一心(GS16); T6: 七叶龄(GS17, AD=0.5~1.0 cm); T7: 七叶龄(GS17, AD = 4~5 cm ); AD: 叶枕距。"

图3

不同播期的小麦幼穗分化阶段 根据Wadington scale判断的7个播期的小麦植株幼穗分化时期(标尺为100 μm)。T1: 二棱末期(S2.25); T2: 小花原基分化期(S3.5); T3: 雌雄蕊原基分化期(S4.25); T4: 药隔期(S5); T5: 柱头羽毛突起期(S7); T6: 柱头羽毛伸长期(S8); T7: 柱头羽毛形成期(S9)。"

图4

不同发育阶段的小麦植株对低温胁迫的冻害表现 照片为恢复常温生长36 h后拍摄, 标尺为10 cm。"

表1

穗发育过程中遭受低温胁迫引起的小麦植株冻害情况"

穗发育阶段
Developmental phase of spike
小麦植株冻害情况 Freezing damage of wheat plants
0℃ -2.5℃ -3.5℃
二棱末期
Late double ridge
无症状
No symptoms
无症状
No symptoms
新生叶片存活
Survival of new leaves
小花原基分化期
Floret primordia differentiation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
新生叶片存活
Survival of new leaves
雌雄蕊原基分化期
Pistil and stamen primordia differentiation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
新生叶片存活
Survival of new leaves
药隔期
Anther connective tissue formation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
新生叶片存活
Survival of new leaves
柱头羽毛突起期
Stigma branches protuberance
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
主茎冻死率44%
Freeze death rate of main stem is 44%
柱头羽毛伸长期
Stigma branches elongation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
主茎冻死率60%
Freeze death rate of main stem is 60%
柱头羽毛形成期
Stigma branches formation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
主茎冻死率67%
Freeze death rate of main stem is 67%

表2

低温胁迫对不同小麦幼穗分化时期的株高、穗长和结实率的影响"

处理
Treatment
穗发育阶段
Differentiation stage of spike
温度
Temperature
(℃)
株高
Plant height
(cm)
降幅
Percentage of reduce (%)
穗长
Spike length (cm)
降幅Percentage of reduce 结实率
Seed-setting rate
(%)
降幅
Percentage of reduce (%)
CK 45.01±2.47 5.60±0.28 65.45±4.92
T1 二棱末期
Late double ridge
0 44.36±1.74 1.44 5.33±0.68 4.82 64.62±9.93 1.27
‒2.5 43.78±3.14 2.73 5.30±0.21 5.36 63.28±9.93 3.32
‒3.5 42.98±2.22 4.51 4.53±0.30** 19.11 56.55±6.83* 13.60
T2 小花原基分化期
Floret primordum differentiation
0 44.16±2.26 1.89 5.32±0.34 5.00 60.18±7.17 8.05
‒2.5 43.50±2.39 3.35 5.30±0.35 5.36 59.25±6.14 9.47
‒3.5 38.30±2.61** 14.91 4.48±0.66** 20.00 48.57±4.22** 25.79
T3 雌雄蕊原基分化期
Pistil and stamen
primordum differentiation
0 43.80±2.97 2.69 5.35±0.32 4.46 58.34±2.91 10.86
‒2.5 42.34±3.69 5.93 5.38±0.40 3.93 55.95±8.40 14.51
‒3.5 36.07±4.15** 19.86 4.13±0.58** 26.25 44.02±6.52** 32.74
T4 药隔期
Anther connective tissue formation
0 44.09±1.43 2.04 5.50±0.27 1.79 62.80±5.88 4.05
‒2.5 44.08±3.01 2.07 5.36±0.40 4.29 56.19±10.98* 14.15
‒3.5 38.08±3.51** 15.40 4.60±0.27** 17.86 46.93±2.50** 28.30
T5 柱头羽毛突起期
Stigmatic branches protuberance
0 43.68±1.82 2.95 5.47±0.35 2.32 62.38±6.57 3.00
‒2.5 43.55±2.70 3.24 5.25±0.25 6.25 58.64±4.78 6.00
‒3.5 33.82±8.57** 24.86 5.06±0.52** 9.64 50.81±12.14**# 22.37
T6 柱头羽毛伸长期
Stigmatic branches elongating
0 44.18±2.20 1.84 5.50±0.37 1.79 61.89±7.79 5.44
‒2.5 44.83±0.57 0.39 5.25±0.35 6.25 59.76±4.79 8.69
‒3.5 29.50±4.24** 34.46 5.10±0.28** 8.93 49.30±8.44**# 24.68
T7 柱头羽毛形成期
Stigmatic branches formation
0 42.30±2.50* 6.00 5.19±0.43* 7.32 57.36±10.63* 12.36
‒2.5 40.25±4.53** 10.58 5.16±0.43** 7.86 50.51±2.80** 22.83
‒3.5 30.10±0.43** 33.11 4.97±0.32** 11.25 46.53±3.92**# 28.91
[1] Li H J, Zhou Y, Xin W L, Wei Y Q, Zhang J L, Guo L L. Wheat breeding in northern China: achievements and technical advances. Crop J, 2019, 7: 718-729.
doi: 10.1016/j.cj.2019.09.003
[2] 肖世和主编. 中国小麦产业技术发展报告. 北京: 中国农业出版社, 2015. p 509.
Xiao S H (ed). Technical Development Report of Wheat Industry in China. Beijing: China Agriculture Press, 2015. p 509 (in Chinese).
[3] Zhong X, Mei X, Li Y, Yoshida H, Zhao P, Wang X, Han L, Hu X, Huang S, Huang J, Sun Z. Changes in frost resistance of wheat young ears with development during jointing stage. J Agron Crop Sci, 2008, 194: 343-349.
doi: 10.1111/j.1439-037X.2008.00320.x
[4] 欧行奇, 王玉玲. 黄淮南片麦区小麦耐倒春寒育种研究初探. 麦类作物学报, 2019, 39: 560-566.
Ou X Q, Wang Y L. Preliminary study on wheat breeding for late spring cold tolerance in Southern Huang Huai Region. J Triticeae Crops, 2019, 39: 560-566. (in Chinese with English abstract)
[5] 吴青霞, 杨林, 邵慧, 冉从福, 杨子博, 余静, 李立群, 李学军. 药隔期低温胁迫对小麦生理及产量的影响. 麦类作物学报, 2013, 33: 752-757.
Wu Q X, Yang L, Shao H, Ran C F, Yang Z B, Yu J, Li L Q, Li X J. Effects of low temperature stress on wheat physiology and yield during drug interval. J Triticeae Crops, 2013, 33: 752-757. (in Chinese with English abstract)
[6] 刘方方, 万映秀, 曹文昕, 张琪琪, 李耀, 李炎, 张平治. 小麦倒春寒抗性鉴定及分子机制研究进展. 植物遗传资源学报, 2021, 22: 1193-1199.
Liu F F, Wan Y X, Cao W X, Zhang Q Q, Li Y, Li Y, Zhang P Z. Advances on identification and molecular basis of wheat cold tolerance in spring. J Plant Genet Resour, 2021, 22: 1193-1199. (in Chinese with English abstract)
[7] Paulsen G M, Heyne E G. Grain production of winter wheat after spring freeze injury. Agron J, 1983, 75: 705-707.
doi: 10.2134/agronj1983.00021962007500040031x
[8] Zheng B, Chapman S C, Christopher J T, Frederiks T M, Chenu K. Frost trends and their estimated impact on yield in the Australian wheatbelt. J Exp Bot, 2015, 66: 3611-3623.
doi: 10.1093/jxb/erv163
[9] Frederiks T M, Christopher J T, Borrell A K. Low temperature adaption of wheat post head-emergence in northern Australia. In:Appels R, Eastwood R, Lagudah E, Langridge P, Mackay-Lynne M, eds. The 11th International Wheat Genetics Symposium Proceedings. Sydney University Press 2008. pp 2-3.
[10] Cheong B E, William W H H, Biddulph B, Wallace X, Rathjen T, Rupasinghe T W T, Roessner U, Dolferus R. Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics, 2019, 15: 144.
doi: 10.1007/s11306-019-1606-2 pmid: 31630279
[11] Gusta L V, Wisniewski M. Understanding plant cold hardiness: an opinion. Physiol Plant, 2013, 147: 4-14.
doi: 10.1111/j.1399-3054.2012.01611.x
[12] Frederiks T M, Christopher J T, Sutherland M W, Borrell A K. Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance. J Exp Bot, 2015, 66: 3487-3498.
doi: 10.1093/jxb/erv088 pmid: 25873656
[13] Subedi K D, Gregory P J, Summerfield R J, Gooding M J. Cold temperatures and boron deficiency caused grain set failure in spring wheat (Triticum aestivum L.). Field Crops Res, 1998, 57: 277-288.
doi: 10.1016/S0378-4290(97)00148-2
[14] Thakur P, Kumar S, Malik J A, Berger J D, Nayyar H. Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot, 2010, 67: 429-443.
doi: 10.1016/j.envexpbot.2009.09.004
[15] 张自阳, 王智煜, 王斌, 王志伟, 朱启迪, 霍云风, 茹振钢, 刘明久. 春季穗分化阶段低温处理对不同小麦品种幼穗结实性及生理特性的影响. 华北农学报, 2019, 34(4): 130-139.
Zhang Z Y, Wang Z Y, Wang B, Wang Z W, Zhu Q D, Huo Y F, Ru Z G, Liu M J. Effects of low temperature treatment on young spike setting and physiological characteristics of different wheat varieties at spike differentiation stage in spring. Acta Agric Boreali-Sin, 2019, 34(4): 130-139. (in Chinese with English abstract)
[16] 吉田久. 麦の冻上害と冻霜害. 农林水产研究文献解题, 2000, 23: 305-317.
Yoshida J. Frost damage on wheat. Sol Agric For Aquat Res Lit, 2000, 23: 305-317. (in Japanese)
[17] 胡新, 黄绍华.晚霜冻害与小麦品种的关系:1998年霜冻害调查报告之一. 中国农业气象, 1999, 20(3): 28-30.
Hu X, Huang S H. Relationships between late frost damage and wheat varieties:a report of frost damage investigation in 1998Agromet China, 1999, 20(3): 28-30. (in Chinese with English abstract)
[18] 曾正兵, 钟秀丽, 王道龙, 郭金耀, 赵鹏, 王晓光, 韩立帅. 冬小麦拔节后幼穗低温敏感期的鉴定. 自然灾害学报, 2006, 15(6): 297-300.
Zeng Z B, Zhong X L, Wang D L, Guo J Y, Zhao P, Wang X G, Han L S. Identification of young ear’s low temperature sensitive phase after jointing stage of winter wheat. J Nat Disasters, 2006, 15(6): 297-300. (in Chinese with English abstract)
[19] 李晓林, 白志元, 杨子博, 王培, 钟丽洁, 李学军. 黄淮麦区部分主推冬小麦品种越冬及拔节期的抗寒生理研究. 西北农林科技大学学报(自然科学版), 2013, 41(1): 40-48.
Li X L, Bai Z Y, Yang Z B, Wang P, Zhong L J, Li X J. Cold resistant physiology of some main wheat varieties at wintering and jointing stages in Huanghuai area. J Northwest Univ Agric For Sci Technol (Nat Sci Edn), 2013, 41(1): 40-48. (in Chinese with English abstract)
[20] Díaz M L, Soresi D S, Basualdo J, Cuppari S J, Carrera A. Transcriptomic response of durum wheat to cold stress at reproductive stage. Mol Biol Rep, 2019, 46: 2427-2445.
doi: 10.1007/s11033-019-04704-y
[21] Shroyer J P, Mikesell M E, Paulsen G M. Spring Freeze Injury to Kansas Wheat. Kansas State University Publications, Manhattan, USA, 1995. p 12.
[22] 薛辉, 余慷, 马晓玲, 刘晓丹, 宋艳红, 朱保磊, 刘冬成, 张爱民, 詹克慧. 黄淮麦区小麦品种耐倒春寒相关性状的评价及关联分析. 麦类作物学报, 2018, 38: 1174-1188.
Xue H, Yu K, Ma X L, Liu X D, Song Y H, Zhu B L, Liu D C, Zhang A M, Zhan K H. Evaluation and association analysis of related traits of wheat varieties resistant to late spring cold in Huanghuai Wheat Region. J Triticeae Crops, 2018, 38: 1174-1188. (in Chinese with English abstract)
[23] Frederiks T M, Christopher J T, Harvey G L, Sutherland M W, Borrell A K. Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley. J Exp Bot, 2012, 63: 5405-5416.
doi: 10.1093/jxb/ers215 pmid: 22888127
[24] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和. 春季低温对小麦产量和光合特性的影响. 作物学报, 2018, 44: 288-296.
Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H. Effects of low temperature on wheat yield and photosynthetic characteristics in spring. Acta Agron Sin, 2018, 44: 288-296. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00288
[25] Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Res, 1974, 14: 415-421.
doi: 10.1111/j.1365-3180.1974.tb01084.x
[26] Waddington S R, Cartwright P M, Wall P C. A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot, 1983, 51: 119-130.
doi: 10.1093/oxfordjournals.aob.a086434
[27] Cheong B E, Onyemaobi O, Wing H H W, Biddulph T B, Rupasinghe T W T, Roessner U, Dolferus R. Phenotyping the chilling and freezing responses of young microspore stage wheat spikes using targeted metabolome and lipidome profiling. Cells, 2020, 9: 1309.
doi: 10.3390/cells9051309
[28] 崔金梅, 郭天财. 小麦的穗 北京:中国农业出版社, 2007. pp 18-54.
Cui J M, Guo T C. Spike of Wheat. Beijing: China Agriculture Press, 2007. pp 18-54. (in Chinese)
[29] Bomblies K, Higgins J D, Yant L. Meiosis evolves: adaptation to external and internal environments. New Phytol, 2015, 208: 306-323.
doi: 10.1111/nph.13499 pmid: 26075313
[30] 高芸, 张玉雪, 马泉, 苏盛楠, 李春燕, 丁锦峰, 朱敏, 朱新开, 郭文善. 春季低温对小麦花粉育性及粒数形成的影响. 作物学报, 2021, 47: 104-115.
doi: 10.3724/SP.J.1006.2021.01031
Gao Y, Zhang Y X, Ma Q, Su S G, Li C Y, Ding J F, Zhu M, Zhu X K, Guo W S. Effects of low temperature in spring on pollen fertility and grain number formation of wheat. Acta Agron Sin, 2021, 47: 104-115. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01031
[31] Zhang W, Wang J, Huang Z, Mi L, Xu K, Wu J, Fan Y, Ma S, Jiang D. Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Front Plant Sci, 2019, 10: 498.
doi: 10.3389/fpls.2019.00498
[32] Barton D A, Cantrill L C, Law A M, Phillips C G, Sutton B G, Overall R L. Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L. Plant Cell Environ, 2014, 37: 2781-2794.
doi: 10.1111/pce.12358
[33] Draeger T, Moore G. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2017, 130: 1785-1800.
doi: 10.1007/s00122-017-2925-1 pmid: 28550436
[34] Barlowa K M, Christya B P, O’Leary G J, Riffkinc P A, Nuttall J G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res, 2015, 171: 109-119.
doi: 10.1016/j.fcr.2014.11.010
[35] Do R A, Çak R H. Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Func Plant Biol, 2020, 47: 250-262.
doi: 10.1071/FP19200
[1] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[2] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[3] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[4] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[5] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[6] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[9] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[10] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[11] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .