欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 580-589.doi: 10.3724/SP.J.1006.2022.11015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦矮秆突变体je0098的遗传分析与其矮秆基因定位

付美玉1,2(), 熊宏春2, 周春云2, 郭会君2, 谢永盾2, 赵林姝2, 古佳玉2, 赵世荣2, 丁玉萍2, 徐延浩1,*(), 刘录祥2,*()   

  1. 1长江大学农学院/主要粮食作物产业化湖北省协同创新中心, 湖北荆州 434025
    2中国农业科学院作物科学研究所 /农作物基因资源与基因改良国家重大科学工程/国家农作物航天诱变技术改良中心, 北京 100081
  • 收稿日期:2021-02-03 接受日期:2021-06-16 出版日期:2022-03-12 网络出版日期:2021-06-28
  • 通讯作者: 徐延浩,刘录祥
  • 作者简介:E-mail: 17862825179@163.com
  • 基金资助:
    国家自然科学基金项目(31801346);中国农业科学院基本科研业务费专项(Y2020YJ09);国家重点研发计划项目(2016YFD0102100)

Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene

FU Mei-Yu1,2(), XIONG Hong-Chun2, ZHOU Chun-Yun2, GUO Hui-Jun2, XIE Yong-Dun2, ZHAO Lin-Shu2, GU Jia-Yu2, ZHAO Shi-Rong2, DING Yu-Ping2, XU Yan-Hao1,*(), LIU Lu-Xiang2,*()   

  1. 1Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
  • Received:2021-02-03 Accepted:2021-06-16 Published:2022-03-12 Published online:2021-06-28
  • Contact: XU Yan-Hao,LIU Lu-Xiang
  • Supported by:
    National Natural Science Foundation of China(31801346);Chinese Academy of Agricultural Sciences Basal Research Fund(Y2020YJ09);National Key Research and Development Program of China(2016YFD0102100)

摘要:

倒伏易引发小麦严重减产, 发掘和利用优异矮秆基因是培育高产抗倒伏小麦新品种的关键。本研究以京411 (WT)及其经EMS诱变获得的产量相关性状优良的矮秆突变体je0098为试验材料, 对其株高进行遗传分析, 结合外显子捕获测序和遗传连锁分析定位矮秆基因。3年田间株高数据统计分析表明, je0098与WT相比株高降低15 cm, 组织细胞学观察结果显示, je0098与WT相比节间细胞长度缩短18%, 暗示je0098的矮化是由于节间细胞长度变短所致; 赤霉素敏感性分析表明, je0098为赤霉素敏感型矮秆突变体。利用WT和je0098杂交构建的由344个单株组成的F2分离群体, 结合F2:3家系表型数据, 选取矮秆纯合和高秆单株构建混池, 对两亲本和子代混池分别进行外显子捕获测序, 在2D染色体上定位到一个具有降秆效应的数量性状位点(QTL)。结合全基因组重测序所得SNP位点, 在2D染色体开发了6个KASP分子标记, 对F2单株进行基因分型。利用QTL IciMapping作图软件构建遗传连锁图谱, 结合3年田间表型数据, 将矮秆基因定位在20.77~28.84 Mb区间内, 遗传距离为11.48 cM。本研究结果为突变体je0098矮秆基因的功能研究以及育种利用奠定了基础。

关键词: 小麦, 株高, 矮秆基因, BSA, 分子标记

Abstract:

Lodging easily causes severe decrease in wheat yields. Identification and utilization of favorable dwarfing genes is the key to develop new varieties with high yield and lodging resistance. In this study, a dwarf mutant je0098 as material was induced by EMS mutagenesis from Jing 411 (WT) and had fine characteristics in yield components. We mapped the dwarfing gene through genetic analysis of plant height, and combining with exon capture sequencing and genetic linkage analysis. Statistical analyses of plant height in three-year field experiment suggested that plant height of je0098 was 15 cm lower than that of WT. Histocytological analysis of je0098 and WT indicated that the internode cell length of je0098 was about 18% shorter than that of WT, suggesting that the shorter internode cell length caused the dwarfism of je0098. Gibberellic acid treatment showed that je0098 was a gibberellic acid-sensitive dwarf mutant. An F2 segregation population consisting of 344 individuals was constructed by crossing WT and je0098. Combining with the phenotypic data of F2:3 families, dwarf homozygous and tall individuals were selected to construct progeny pools. Exon capture sequencing was performed on the two parents and progeny pools, respectively. A quantitative trait locus (QTL) with effects on reduced height was identified on chromosome 2D. Based on SNPs detected by genome-wide sequencing, six KASP markers were developed on chromosome 2D to genotype F2 individuals. Genetic linkage map was constructed using QTL IciMapping. Combining with phenotype data of three-year field experiment, the dwarfing gene was mapped in the range of 20.77-28.84 Mb with genetic distance of 11.48 cM. These results will lay the foundation for further functional research of je0098 and its application in wheat breeding.

Key words: wheat, plant height, dwarf gene, BSA, molecular marker

图1

野生型(WT)与突变体je0098的表型比较 *表示野生型与突变体之间在P < 0.05水平差异显著, **表示野生型与突变体之间在P < 0.01水平差异显著。"

图2

野生型(WT)与je0098的节间细胞长度和赤霉素敏感性比较 *表示在P < 0.05水平差异显著, **表示在P < 0.01水平差异显著。"

表1

两年F2:3家系株高统计"

年份
Year
表型
Phenotype
观察值
Observed count (O)
期望值
Expected count (E)
(O-E)2/E χ2 P (df=1)
2019 矮秆表型 Dwarf phenotype 68 83.5 2.877 3.836 0.050
非矮秆表型 Non-dwarf phenotype 266 250.5 0.959
合计 Total 334 334.0 3.836
2020 矮秆表型 Dwarf phenotype 69 82.5 2.209 2.945 0.086
非矮秆表型 Non-dwarf phenotype 261 247.5 0.736
合计 Total 330 330.0 2.945

图3

欧氏距离关联分析拟合图 红色虚线表示拟合值的99百分位数。"

图4

2D染色体上QTL连锁图谱与相应物理图谱 红线表示以2018年J411/je0098 F2群体单株株高为表型检测到的LOD曲线, 绿线和蓝线分别表示以2019年和2020年J411/je0098 F2:3家系株高平均值为表型检测到的LOD曲线。"

图5

附图1 2015年WT和je0098的农艺性状比较 WT和je0098在中圃场和昌平试验点的千粒重和穗长: (A)千粒重; (B)穗长。**表示在P < 0.01水平差异显著。"

表2

候选区间SNP位点功能预测"

基因
Gene
突变位点
Position (bp)
野生型
Wild type
突变型
Mutated type
突变类型
Mutation type
基因功能
Gene function
TraesCS2D01G059800 24,925,674 C T 错义突变
Missense mutant
RNA结合家族蛋白
RNA-binding family protein
TraesCS2D01G062900 26,616,391 C T 错义突变
Missense mutant
PHD锌指蛋白
PHD finger protein
TraesCS2D01G052400LC 22,812,351 C T UTR突变
UTR mutant
MBOAT家族蛋白
MBOAT family protein
TraesCS2D01G053600LC 23,479,083 C T 内含子突变
Intron mutant
类烯醇化酶
Enolase-like
[1] Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies W J, Zhang F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Exp Bot, 2012, 63:13-24.
doi: 10.1093/jxb/err248
[2] Wan J. Genetic Crop Improvement: a guarantee for sustainable agricultural production. Engineering, 2018, 4:431-432.
doi: 10.1016/j.eng.2018.07.019
[3] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400:256-261.
doi: 10.1038/22307
[4] 蒋梦婷, 渠慎春. DELLA蛋白在植物生长发育中的作用. 西北植物学报, 2018, 38:1952-1960.
Jiang M T, Qu S C. DELLA and its functions in plant growth and development. Acta Bot Boreal-occident Sin, 2018, 38:1952-1960 (in Chinese with English abstract).
[5] Hauvermale A L, Ariizumi T, Steber C M. Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol, 2012, 160:83-92.
doi: 10.1104/pp.112.200956 pmid: 22843665
[6] Daviere J M, Achard P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant, 2016, 9:10-20.
doi: 10.1016/j.molp.2015.09.011
[7] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19:5-9.
pmid: 12493241
[8] Würschum T, Langer S M, Longin C F. Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet, 2015, 128:865-874.
doi: 10.1007/s00122-015-2476-2 pmid: 25687129
[9] Chen G, Zheng Q, Bao Y, Liu S, Wang H, Li X. Thinopyrum ponticum chromatin Thinopyrum ponticum chromatin. J Biosci, 2012, 37:149-155.
doi: 10.1007/s12038-011-9175-1
[10] Zhao K, Xiao J, Liu Y, Chen S, Yuan C, Cao A, You F M, Yang D, An S, Wang H, Wang X. Rht23 (5Dq') likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor Appl Genet, 2018, 131:1825-1834.
doi: 10.1007/s00122-018-3115-5
[11] Peng Z S, Li X, Yang Z J, Liao M L. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Gen Mol Res, 2011, 10:2349-2357.
doi: 10.4238/2011.October.5.5
[12] Yang T Z, Zhang X K, Liu H W, Wang Z H. Rht21 in common wheat variety—XN0004 Rht21 in common wheat variety—XN0004. Acta Univ Agric Boreali-Occident, 1993, 21:13-17.
[13] Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol, 2011, 157:2120-2130.
doi: 10.1104/pp.111.185272 pmid: 22010107
[14] Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelm E P, Sparks C A, Al-Kaff N, Korolev A, Boulton M I, Phillips A L, Hedden P, Nicholson P, Thomas S G. Rht-1 dwarfing genes in hexaploid wheat Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol, 2011, 157:1820-1831.
doi: 10.1104/pp.111.183657
[15] Wu Q, Chen Y, Xie J, Dong L, Wang Z, Lu P, Wang R, Yuan C, Zhang Y, Liu Z. A 36 Mb terminal deletion of chromosome 2BL is responsible for a wheat semi-dwarf mutation. Crop J, 2020, 9:873-881.
doi: 10.1016/j.cj.2020.06.015
[16] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111:423-430.
pmid: 15968526
[17] Bazhenov M S, Divashuk M G, Amagai Y, Watanabe N, Karlov G I. Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Mol Breed, 2015, 35:213.
doi: 10.1007/s11032-015-0407-1
[18] Daba S D, Tyagi P, Brown-Guedira G, Mohammadi M. Genome-wide association study in historical and contemporary U.S. winter wheats identifies height-reducing loci. Crop J, 2020, 8:243-251.
doi: 10.1016/j.cj.2019.09.005
[19] Gale M D, Youssefian S. Dwarfing Genes in Wheat. England: Plant Breeding Institute, 1985.
[20] Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A. Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J, 2019, 97:887-900.
doi: 10.1111/tpj.2019.97.issue-5
[21] Wang Y, Du Y, Yang Z, Chen L, Condon A G, Hu Y G. Rht13 and Rht8 on plant height and some agronomic traits in common wheat Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Res, 2015, 179:35-43.
doi: 10.1016/j.fcr.2015.04.010
[22] Vikhe P, Venkatesan S, Chavan A, Tamhankar S, Patil R. Rht14 in durum wheat and its effect on seedling vigor, internode length and plant height Rht14 in durum wheat and its effect on seedling vigor, internode length and plant height. Crop J, 2019, 7:187-197.
doi: 10.1016/j.cj.2018.11.004
[23] Ford B A, Foo E, Sharwood R, Karafiatova M, Vrana J, Macmillan C, Nichols D S, Steuernagel B, Uauy C, Dolezel J, Chandler P M, Spielmeyer W. Rht18 semi-dwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiol, 2018, 177:168-180.
doi: 10.1104/pp.18.00023
[24] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018, 131:2021-2035.
doi: 10.1007/s00122-018-3130-6
[25] Chen S, Gao R, Wang H, Wen M, Xiao J, Bian N, Zhang R, Hu W, Cheng S, Bie T, Wang X. Rht23) regulating panicle morphology and plant architecture in bread wheat Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 2014, 203:583-594.
doi: 10.1007/s10681-014-1275-1
[26] Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. A modern green revolution gene for reduced height in wheat. Plant J, 2017, 92:892-903.
doi: 10.1111/tpj.13726
[27] Wang M, Wang S, Xia G. From genome to gene: a new epoch for wheat research? Trends Plant Sci, 2015, 20:380-387.
doi: 10.1016/j.tplants.2015.03.010
[28] 陈昊, 谭晓风. 基于第二代测序技术的基因资源挖掘. 植物生理学报, 2014, 50:1089-1095.
Chen H, Tan X F. Excavation of genic resources based on next generation sequencing technologies. Acta Phytophysiol Sin, 2014, 50:1089-1095 (in Chinese with English abstract).
[29] Winfield M O, Wilkinson P A, Allen A M, Barker G L, Coghill J A, Burridge A, Hall A, Brenchley R C, D'amore R, Hall N, Bevan M W, Richmond T, Gerhardt D J, Jeddeloh J A, Edwards K J. Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J, 2012, 10:733-742.
doi: 10.1111/j.1467-7652.2012.00713.x pmid: 22703335
[30] Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J, 2006, 48:463-474.
doi: 10.1111/tpj.2006.48.issue-3
[31] Jordan K W, Wang S, Lun Y, Gardiner L J, Maclachlan R, Hucl P, Wiebe K, Wong D, Forrest K L, Consortium I, Sharpe A G, Sidebottom C H, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal U K, Bariana H S, Hayden M J, Pozniak C, Jeddeloh J A, Hall A, Akhunov E. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol, 2015, 16:1-18.
doi: 10.1186/s13059-014-0572-2
[32] 许达兴. 小麦茎秆快速发育基因qd1的遗传定位与转录组学分析. 中国农业科学院硕士学位论文, 北京, 2018.
Xu D X. Genetic Mapping of the qd1 Gene of Wheat Stem Quick Development and Transcriptome Analysis in Wheat. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[33] Robert K, Nicholas B, Ricardo R G, Coghill J A, Archana P, Keywan H P, Cristobal U, Phillips A L. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One, 2015, 10:e0137549.
doi: 10.1371/journal.pone.0137549
[34] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23:687-697.
doi: 10.1101/gr.146936.112
[35] Lincoln S E, Daly M J, Lander E. Constructing Genetic Linkage Maps with MAPMAKER/EXP version 3.0: a Tutorial and Reference Manual, Technical Report, 3rd edn. USA: Whitehead Institute for Biomedical Research, 1993.
[36] Xiong H C, Li Y T, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Liu L X. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat. Front Plant Sci, 2021, 12:628478.
doi: 10.3389/fpls.2021.628478
[37] 张在宝, 李婉杰, 李九丽, 张弛, 胡梦辉, 程琳, 袁红雨. 植物RNA结合蛋白研究进展. 中国农业科学, 2018, 15:4007-4019.
Zhang Z B, Li W J, Li J L, Zhang C, Hu M H, Cheng L, Yuan H Y. The research progress of plant RNA binding proteins. Sci Agric Sin, 2018, 15:4007-4019 (in Chinese with English abstract).
[38] 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性. 遗传, 2021, 43:323-339.
Wang T Y, Wang Y X, You C J. Structural and functional characteristics of plant PHD domain-containing proteins. Hereditas, 2021, 43:323-339 (in Chinese with English abstract).
[39] Hofmann K. A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem Sci, 2000, 25:111-112.
pmid: 10694878
[40] 马小凤, 刘子金, 郑超星, 王星, 武宇, 李洪杰, 张根发. 植物烯醇化酶基因ENO2的功能研究进展. 植物遗传资源学报, 2018, 19:1030-1037.
Ma X F, Liu Z J, Zheng C X, Wang X, Wu Y, Li H J, Zhang G F. Status and progress on functions of plant enolase gene ENO2. J Plant Genet Resour, 2018, 19:1030-1037 (in Chinese with English abstract).
[41] 钟明志, 魏淑红, 彭正松, 杨在君. 小麦Rht矮秆基因研究和应用综述. 分子植物育种, 2018, 16:6670-6677.
Zhong M Z, Wei S H, Peng Z S, Yang Z J. A review of the research and application of Rht dwarf genes in wheat. Mol Plant Breed, 2018, 16:6670-6677 (in Chinese with English abstract).
[42] Worland A J, Sayers E J, Korzun V. Rht8 locus and its significance in international breeding programs Rht8 locus and its significance in international breeding programs. Euphytica, 2001, 119:155-159.
[43] Kowalski A M, Gooding M, Ferrante A, Slafer G A, Orford S, Gasperini D, Griffiths S. Rht8 in contrasting nitrogen treatments and water regimes Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Res, 2016, 191:150-160.
doi: 10.1016/j.fcr.2016.02.026
[44] Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S. Rht24 in bread wheat Rht24 in bread wheat. Front Plant Sci, 2017, 8:1379.
doi: 10.3389/fpls.2017.01379
[45] Korzun V, Roder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I: Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat(Triticum aestivum L.). Theor Appl Genet, 1998, 96:1104-1109.
doi: 10.1007/s001220050845
[46] Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. Triticum aestivum L.) Triticum aestivum L.). Theor Appl Genet, 2019, 132:1815-1831.
doi: 10.1007/s00122-019-03318-z
[47] Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan A S, Raghothama K G, Baek D, Koo Y D, Jin J B, Bressan R A, Yun D J, Hasegawa P M. Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA, 2005, 102:7760-7765.
doi: 10.1073/pnas.0500778102
[48] 唐娜, 姜莹, 何蓓如, 胡银岗. 赤霉素敏感性不同矮秆基因对小麦胚芽鞘长度和株高的效应. 中国农业科学, 2009, 42:3774-3784.
Tang N, Jiang Y, He B R, Hu Y G. Effects of dwarfing genes of Rht-B1b, Rht-D1b and Rht8 with different response to GA3 on coleoptile length and plant height of wheat. Sci Agric Sin, 2009, 42:3774-3784 (in Chinese with English abstract).
[49] Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul, 2015, 34:740-760.
doi: 10.1007/s00344-015-9546-1
[50] Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S. Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot, 2012, 63:4419-4436.
doi: 10.1093/jxb/ers138 pmid: 22791821
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[6] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[7] 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284.
[8] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[9] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870.
[10] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[11] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[12] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[13] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[14] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[15] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .