欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2221-2227.doi: 10.3724/SP.J.1006.2022.11085

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基因聚合选育抗赤霉病小麦新品系百农4299

张一铎1(), 李国强1, 孔忠新1, 王玉泉2, 李小利2, 茹振钢2, 贾海燕1,*(), 马正强1   

  1. 1.南京农业大学作物基因组学与生物信息学中心 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
    2.河南科技学院小麦中心, 河南新乡 453003
  • 收稿日期:2021-09-29 接受日期:2021-11-29 出版日期:2022-09-12 网络出版日期:2022-12-27
  • 通讯作者: 贾海燕
  • 作者简介:E-mail: 2014201043@njau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFD0101802);国家自然科学基金项目(31930081);国家自然科学基金项目(30430440);现代作物生产(省部共建)协同创建中心

Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding

ZHANG Yi-Duo1(), LI Guo-Qiang1, KONG Zhong-Xin1, WANG Yu-Quan2, LI Xiao-Li2, RU Zhen-Gang2, JIA Hai-Yan1,*(), MA Zheng-Qiang1   

  1. 1. Crop Genomics and Bioinformatics Center, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2. Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang 450003, Henan, China
  • Received:2021-09-29 Accepted:2021-11-29 Published:2022-09-12 Published online:2022-12-27
  • Contact: JIA Hai-Yan
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101802);National Natural Science Foundation of China(31930081);National Natural Science Foundation of China(30430440);Collaborative Innovation Initiative for Modern Crop Production

摘要:

小麦赤霉病是一种严重危害小麦生产的真菌性病害, 其抗性由多基因控制, 抗性机制复杂。type I (抗侵入)和type II (抗扩展)是小麦抵御赤霉病侵害的2种最主要抗性类型。在抗赤霉病育种中兼顾2种抗性, 对于保证生产上抗性的稳定和持久有着重要意义。在前期研究中, 作者所在课题组从小麦地方品种望水白中克隆了抗赤霉病扩展的主效QTL Fhb1, 精细定位了Fhb4Fhb5, 获得了功能性/紧密连锁的分子标记。本研究利用这些标记, 以小麦品系NMAS022作为供体亲本, 现代小麦品种百农4199作为受体亲本, 通过分子标记辅助回交育种方法选育成了聚合望水白Fhb1Fhb4Fhb5的小麦新品系百农4299。与百农4199相比, 百农4299在2年的田间试验中type I抗性至少增加了73%~74%, type II抗性至少增加了83%~88% (以病小穗数计), 并且产量潜力也得到了提高。上述结果证明了通过分子标记辅助选择聚合不同类型抗赤霉病QTL以提高小麦赤霉病抗性的可行性。抗赤霉病小麦品系百农4299有望成为一个新的抗赤霉病小麦品种。

关键词: 小麦, 赤霉病, 抗病基因聚合, MAS, 百农4299

Abstract:

Fusarium head blight (FHB) is a devastating fungal disease in wheat production. Wheat FHB resistance is controlled by multiple genes and has complicated resistance mechanisms. Type I (resistance to invasion) and type II (resistance to expansion) are two main resistance types of wheat against FHB. Combining both types of FHB resistance in breeding is vitally important for the resistance durability and stability of cultivars. In fine mapping and cloning of type I resistance QTL Fhb4 and Fhb5 and type II resistance QTL Fhb1 in wheat landrace Wangshuibai, functional/tightly-linked molecular markers for them had been obtained. In this study, a new wheat line named Bainong 4299 was bred after introduction of these QTL from NMAS022 with the help of these markers and using modern wheat variety Bainong 4199 as the recipient parent. Compared with Bainong 4199, Bainong 4299 increased type I resistance by at least 73% to 74% and type II resistance by 83% to 88% increase (in terms of the number of diseased spikelets per spike) in two field trials. Moreover, its yield potential had moderate elevation. In conclusion, this study provided another successful illustration of marker-assisted selection and pyramiding of FHB QTL in improving wheat FHB resistance. Bainong 4299 had the potential to become a new FHB resistance cultivar.

Key words: wheat, Fusarium head blight, pyramiding of resistance genes, MAS, Bainong 4299

图1

百农4199、NMAS022、百农4299中Fhb1、Fhb4、Fhb5标记检测结果 M: DNA marker, 图片左侧的数字为条带分子量大小(单位: bp); 1: 百农4199; 2: NMAS022; 3: 百农4299; 望水白类型的目标条带分别在图中用箭头标出, 图片下方分别为引物名称。"

图2

百农4299的选育过程(a)及其供体亲本NMAS022 (b) n: 群体大小; 图片(b)拍摄于2020年5月4日, 江苏淮安。"

表1

百农4299及其轮回亲本的赤霉病抗性鉴定结果"

环境
Environment
材料
Material
赤霉病严重度
FHB severity
病穗率
Percentage of infected spikes (%)
病小穗数
Number of diseased spikelets
病轴长
Length of diseased rachides (cm)
2019-2020淮安
2019-2020 Huai’an
百农4199 Bainong 4199 2.23±0.11 38.5±1.8 5.8±0.6 4.1±0.5
百农4299 Bainong 4299 0.10±0.02** 10.2±2.2** 1.0±0.0** 0.8±0.1**
2020-2021南京
2020-2021 Nanjing
百农4199 Bainong 4199 3.44±0.14 42.3±2.1 8.2±0.1 4.1±0.1
百农4299 Bainong 4299 0.11±0.01** 11.5±1.3** 1.0±0.0** 0.6±0.0**

图3

百农4299 (左)及其轮回亲本百农4199 (右)在田间自然发病状态下的赤霉病抗性表现 图片拍摄于开花后21 d, 2021年江苏南京。"

表2

百农4299及其轮回亲本的农艺性状和产量鉴定结果"

环境
Environment
材料
Material
株高
Plant height (cm)
穗粒数
No. of kernels per spike
单株穗数
No. of spikes per plant
千粒重
1000-kernel weight (g)
1 m2产量
Yield per square meter (g)
2019-2020淮安
2019-2020 Huai’an
百农4199 Bainong 4199 80.2±1.2 54.4±1.8 12.1±0.6 44.2±0.4 984.5±3.5
百农4299 Bainong 4299 84.2±0.9** 55.0±1.9 12.0±0.9 48.4±0.5** 1002.0±4.2*
2020-2021淮安
2020-2021 Huai’an
百农4199 Bainong 4199 82.0±1.2 42.3±1.6 4.4±0.8 46.3±0.4 845.9±5.8
百农4299 Bainong 4299 86.9±1.7** 39.0±1.6** 5.3±1.2 44.7±0.2** 874.8±3.4*
2020-2021南京
2020-2021 Nanjing
百农4199 Bainong 4199 72.6±1.8 42.5±0.8 3.8±0.1 41.5±0.2 490±5.2
百农4299 Bainong 4299 72.0±1.2 37.1±1.1** 4.6±0.3 42.8±0.2** 520±4.7*
[1] Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet, 2020, 133: 1541-1568.
doi: 10.1007/s00122-019-03525-8
[2] Gilbert J, Tekauz A. Review: recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Pathol, 2000, 22: 1-8.
doi: 10.1080/07060660009501155
[3] 程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28: 938-942.
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu J Agric Sci, 2012, 28: 938-942. (in Chinese with English abstract)
[4] 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望. 遗传, 2018, 40: 858-873.
Zhang A M, Yang W L, Li X, Sun J Z. Current status and perspective on research against Fusarium head blight in wheat. Hereditas (Beijing), 2018, 40: 858-873. (in Chinese with English abstract)
[5] Schroeder H W, Christensen J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 1963, 53: 831-838.
[6] Miller J D, Young J C, Sampson D R. Deoxynivalenol and Fusarium head blight resistance in spring cereals. J Phytopathol, 1985, 113: 359-367
doi: 10.1111/j.1439-0434.1985.tb04837.x
[7] Mesterházy A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed, 1995, 114: 377-386.
doi: 10.1111/j.1439-0523.1995.tb00816.x
[8] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brulé-Babel A. Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 112: 1465-1472.
doi: 10.1007/s00122-006-0249-7
[9] Cuthbert P A, Somers D J, Brulé-Babel A. Mapping of Fhb2on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 429-437.
doi: 10.1007/s00122-006-0439-3
[10] Qi L L, Pumphrey M O, Friebe B, Chen P D, Gill B S. Molecular cytogenetic characterization of alien introgressions with gene Fhb3for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008, 117: 1155-1166.
doi: 10.1007/s00122-008-0853-9 pmid: 18712343
[11] Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 147-156.
doi: 10.1007/s00122-010-1298-5
[12] Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 123: 1055-1063.
doi: 10.1007/s00122-011-1647-z
[13] Cainong J C, Bockus W W, Feng Y, Chen P, Qi L, Sehgal S K, Danilova T V, Koo D, Friebe B, Gill B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet, 2015, 128: 1019-1027.
doi: 10.1007/s00122-015-2485-1 pmid: 25726000
[14] Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm H W, Wang H, Li A, Han F, Wang H, Kong L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015, 128: 2301-2316.
doi: 10.1007/s00122-015-2586-x
[15] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555-564.
pmid: 12897863
[16] Jiang G, Dong Y, Shi J, Ward R W. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ9306: II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet, 2007, 115: 1043-1052.
doi: 10.1007/s00122-007-0630-1
[17] Jiang G, Shi J, Ward R W. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306: I. Resistance to fungal spread. Theor Appl Genet, 2007, 116: 3-13.
doi: 10.1007/s00122-007-0641-y
[18] Li C, Zhu H, Zhang C, Lin F, Xue S, Cao Y, Zhang Z, Zhang L, Ma Z. Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419 × Wangshuibai population. Euphytica, 2008, 163: 185-191.
doi: 10.1007/s10681-007-9626-9
[19] Bonin C M, Kolb F L. Resistance to Fusarium head blight and kernel damage in a winter wheat recombinant inbred line population. Crop Sci, 2009, 49: 1304-1312.
doi: 10.2135/cropsci2008.08.0459
[20] Jayatilake D V, Bai G H, Dong Y H. A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theor Appl Genet, 2011, 122: 1189-1198.
doi: 10.1007/s00122-010-1523-2 pmid: 21221526
[21] Szabó-Hevér Á, Lehoczki-Krsjak S, Varga M, Purnhauser L, Pauk J, Lantos C, Mesterházy Á. Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Fontana-derived wheat population. Euphytica, 2014, 200: 9-26.
doi: 10.1007/s10681-014-1124-2
[22] Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Chen X, Wu J, Dong L, Chen W, Li W, Xian G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu S S, Bai G, Nevo E, Cao C, Ohm H, Kong L. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
[23] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44: 505-511.
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, Yang L, Li H J, Zhou Y. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505-511. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00505
[24] Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, Liu Y, Kong Q, Zheng S, Wang Y, Qin B, Cao S, Ding Y, Shi J, Yan H, Wang X, Ran C, Ma Z. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019, 51: 1106-1112.
doi: 10.1038/s41588-019-0426-7
[25] Jia H, Zhou J, Xue S, Li G, Yan H, Ran C, Zhang Y, Shi J, Wang X, Luo J, Ma Z. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J, 2018, 6: 48-59.
doi: 10.1016/j.cj.2017.09.006
[26] Xue S, Li G, Jia H, Lin F, Cao Y, Xu F, Tang M, Wang Y, Wu X, Zhang Z, Zhang L, Kong Z, Ma Z. Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed, 2010, 25: 397-405.
doi: 10.1007/s11032-009-9339-y
[27] Zhang Y, Yang Z, Ma H, Huang L, Ding F, Du Y, Jia H, Li G, Kong Z, Ran C, Gu Z, Ma Z. Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Front Plant Sci, 2021, 12: 694023.
[28] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137-1143.
doi: 10.2135/cropsci1995.0011183X003500040037x
[29] Bassam B J, Caetano-Anollés G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80-83.
pmid: 1716076
[30] 许峰, 李文阳, 闫素辉, 张从宇, 郑甲成, 杜军丽, 张子学, 时侠清. 小麦抗赤霉病主效QTL的聚合效应分析. 麦类作物学报, 2017, 37: 585-593.
Xu F, Li W Y, Yan S H, Zhang C Y, Zheng J C, Du J L, Zhang Z X, Shi X Q. Analysis of pyramiding effect of major QTLs for resistance to scab in wheat. J Triticeae Crops, 2017, 37: 585-593. (in Chinese with English abstract)
[31] 李静静, 史娜溶, 杨孟于, 王金鹏, 孙道杰, 冯毅, 张玲丽. 抗赤霉病小麦优异新种质的分子标记辅助选择. 麦类作物学报, 2020, 40: 261-269.
Li J J, Shi N R, Yang M Y, Wang J P, Sun D J, Feng Y, Zhang L L. Marker-assisted selection for Fusarium head blight resistance of wheat germplasms with excellent agronomy traits and seed quality. J Triticeae Crops, 2020, 40: 261-269 (in Chinese with English abstract)
[32] 刘建军, 李豪圣, 陈雪燕, 贾海燕, 翟胜男, 郭军, 程敦公, 刘成, 曹新有, 刘爱峰, 宋健民, 刘佳, 楚秀生, 马正强. 利用分子标记辅助选择创制抗赤霉病小麦新品系. 山东农业科学, 2021, 53: 74-79.
Liu J J, Li H S, Chen X Y, Jia H Y, Zhai S N, Guo J, Cheng D G, Liu C, Cao X Y, Liu A F, Song J M, Liu J, Chu X S, Ma Z Q. Creation of new wheat lines with Fusarium head blight resistance through molecular marker-assisted selection. Shandong Agric Sci, 2021, 53(3): 74-79. (in Chinese with English abstract)
[1] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[2] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[3] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[4] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[5] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[6] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[7] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[8] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[9] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[10] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[11] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[12] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[13] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[14] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[15] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!