欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 747-758.doi: 10.3724/SP.J.1006.2022.11019

• 研究简报 • 上一篇    下一篇

黄淮麦区Fhb1基因的育种应用

马红勃(), 刘东涛*(), 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛   

  1. 江苏徐淮地区徐州农业科学研究所, 江苏徐州 221131
  • 收稿日期:2021-03-01 接受日期:2021-07-21 出版日期:2022-03-12 网络出版日期:2021-08-10
  • 通讯作者: 刘东涛
  • 作者简介:E-mail: mahongbo863@163.com
  • 基金资助:
    徐州市重点研发(现代农业)计划项目(KC20036);江苏省重点研发计划项目(BE2018340-2);财政部和农业农村部: 国家现代农业产业技术体系建设专项(CARS-03)

Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China

MA Hong-Bo(), LIU Dong-Tao*(), FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan   

  1. Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, China
  • Received:2021-03-01 Accepted:2021-07-21 Published:2022-03-12 Published online:2021-08-10
  • Contact: LIU Dong-Tao
  • Supported by:
    Key Research and Development Program (Modern Agriculture) of Xuzhou(KC20036);Key Research and Development Program of Jiangsu Province(BE2018340-2);China Agriculture Research System of MOF and MARA(CARS-03)

摘要:

小麦赤霉病是由禾谷镰孢菌引起的一种世界性重要病害, 严重威胁小麦生产安全。黄淮麦区作为我国小麦主产区, 赤霉病危害日趋严重, 因缺乏半冬性抗源, 抗赤霉病育种进展缓慢。Fhb1基因是迄今发现的效应最大、抗性最稳定, 也是被广泛应用于全球小麦赤霉病抗性育种的主效基因, 但Fhb1基因在黄淮麦区尚未被广泛应用。本研究以感病品种矮抗58为轮回亲本, H35为Fhb1基因供体亲本, 通过有限回交和分子标记辅助选择, 同时利用双单倍体育种和传统系谱选育两种方法, 培育出了一批综合性状较好、具有Fhb1基因的优良新品系, 其中徐麦DH9和徐麦17252经多年鉴定均达到中抗水平。在以徐麦36和徐麦2023为杂交父本的后代品系中, 含Fhb1基因的家系赤霉病平均抗性明显优于感病对照。Fhb1基因的导入显著提高了赤霉病抗性, 但部分家系对赤霉病仍旧表现出高感水平, 说明赤霉病抗性还受到Fhb1基因以外其他遗传因素的显著影响。本研究为Fhb1基因在黄淮麦区抗赤霉病小麦育种中的应用提供了成功的经验。

关键词: 小麦, Fhb1基因, 分子标记辅助选择, 育种

Abstract:

Fusarium head blight (FHB), caused by Fusarium graminearum, is an important disease that seriously threatens the safety of wheat production. Breeding progress of resistant cultivars has been limited due to absence of the resistant sources with facultative growth habit and poor screening environment in the Huang-Huai region, the main wheat producing area of China. Fhb1, as the most effective and stable gene, is the only gene widely used in the global breeding programs for improving FHB resistance of wheat. However, utilization of Fhb1 in the Yellow-Huai River Valleys Winter Wheat Zone is limited so far. In this study, several excellent advanced lines with Fhb1 were developed by limited backcrossing and molecular marker-assisted selection in the BC2F1 progenies of the susceptible variety Aikang 58 (the recurrent parent) and H35 (the donor parent of Fhb1 gene). Then, the individuals were used to cross with Xumai 36 and Xumai 2023 (with high yield but susceptible to FHB), and a series of elite lines with Fhb1 were developed using the doubled haploid and the traditional pedigree selection methods. Xumai DH9 and Xumai 17252 were moderate resistance to FHB in different screening environments for several years. The average resistance level of the lines with Fhb1 gene was significantly higher than that of the susceptible control. The introduction of Fhb1 significantly improved the resistance to FHB, but some lines were still highly susceptible, indicating that the resistance to FHB was affected by other genetic factors. This study provides an example for the use of Fhb1 gene in improving FHB resistance in the Yellow-Huai River Valleys Winter Wheat Zone of China.

Key words: Triticum aestivum, Fhb1 gene, molecular marker-assisted selection, breeding

图1

系谱选择法和加倍单倍育种法选育抗赤霉病小麦新品系的过程"

表1

本研究所用引物信息"

标记
Marker
引物序列
Primer sequence (5′-3′)
扩增产物大小
Size of target fragment
参考文献
Reference
Gwm493 F: TTCCCATAACTAAAACCGCG
R: GGAACATCATTTCTGGACTTTG
Fhb1 180 bp
nonFhb1 140 bp
[7]
JAAS01 F: GTTCCACGTCTTCTTACATAATCCC
R: TGAAGTTCATGCCACGCATA
Fhb1 236 bp
nonFhb1 -
专利号:
Patent No. ZL201310013279.2
TaHRC-GSM GSM-F: ATTCCTACTAGCCGCCTGGT
GSM-R: ACTGGGGCAAGCAAACATTG
Fhb1 1300 bp
nonFhb1 2000 bp
[25]

图2

标记Gwm493对部分BC1F1单株的检测结果 M: marker; 泳道1和2分别为H35和矮抗58; 泳道4、7、9、10、12、14、15、18为不含Fhb1基因单株; 泳道3、5、6、8、11、13、16、17、19、20为含Fhb1位点杂合单株。"

图3

标记JAAS01对部分F1单株的检测结果 M: marker; 泳道1、2、3、4、6、9、11为含Fhb1基因单株; 泳道5、7、8、10、12~17为无Fhb1基因单株。"

图4

共显性诊断标记TaHRC-GSM在部分F2群体中扩增结果 M: marker; 泳道1、6~10、14、15为Fhb1基因纯合单株; 泳道4、12、13、16为无Fhb1基因单株; 泳道2、3、5、11为杂合型单株。"

表2

2019-2020年度赤霉病抗性鉴定结果汇总"

品系/组合
Line/Cross
家系数量
Number of lines
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴注(徐州)
Single flower drip inoculation
(in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
病情指数
Disease index
范围
Range
病小穗率
Diseased spikelet rate (%)
范围
Range
病情指数
Disease index
范围
Range
H35/矮抗58*3//徐麦36
H35/Aikang58*3//Xumai 36
83 52.58±11.47 c 25.00-81.25 22.90±3.91 c 12.00-58.12 65.80±6.00 bc 51.92-79.17
徐麦36 Xumai 36 2 66.59±4.27 b 64.49-70.67 51.86±10.24 ab 44.62-59.10 67.73±3.85 b 65.00-70.25
H35/矮抗58*3//徐麦2023
H35/Aikang 58*3//Xumai 2023
83 43.31±12.83 cd 26.67-78.33 16.46±3.77 cde 7.77-63.71 66.18±5.59 b 52.08-80.77
徐麦2023 Xumai 2023 2 64.59±4.12 b 61.67-67.50 45.10±6.73 b 40.34-49.86 71.67±1.18 ab 70.83-72.50
徐农029 Xunong 029 24 39.32±6.54 de 26.25-50.00 21.43±6.03 c 12.66-42.06 60.24±5.52 c 47.73-72.73
淮麦20 Huaimai 20 2 55.35±3.68 cd 51.46-57.24 28.72±2.33 c 26.56-30.88
矮抗58 Aikang 58 2 79.17±29.47 a 58.33-100.00 49.22±8.53 b 43.18-55.25 79.17±11.79 a 70.83-87.50
徐麦35 Xumai 35 24 68.40±13.40 b 47.73-95.00 55.45±16.53 a 27.47-83.44 69.27±5.44 b 57.69-82.14

图5

H35/矮抗58*3//徐麦36组合后代家系23 (b)及对照徐麦35 (a)、徐农029 (c)赤霉病单花滴注(徐州)结果"

表3

2019-2020年度Fhb1基因纯合型高代家系的赤霉病抗性鉴定结果"

家系号
No. of family
H35/矮抗58*3//徐麦36 H35/Aikang58*3//Xumai36 H35/矮抗58*3//徐麦2023 H35/Aikang58*3//Xumai2023
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴注(徐州)
Single flower drip
Inoculation (in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
家系号
No. of family
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴注(徐州)
Single flower drip inoculation
(in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
病情指数Disease index 抗性评价Evaluation
of resistance
病小穗率Diseased
spikelet rate (%)
抗性评价Evaluation of resistance 病情指数Disease index 抗性评价Evaluation of resistance 病情指数
Disease index
抗性评价Evaluation of resistance 病小穗率
Diseased
spikelet rate (%)
抗性评价Evaluation of resistance 病情指数
Disease index
抗性评价Evaluation of resistance
1 25.00 MR 18.20 MR 51.92 MS 1 27.50 MR 11.64 MR 52.08 MS
2 50.00 MS 19.01 MR 68.18 S 2 29.17 MR 11.85 MR 77.08 S
3 57.50 S 24.40 MS 72.73 S 3 44.17 MS 14.18 MR 56.82 MS
4 43.33 MS 20.03 MR 62.50 MS 4 33.75 MR 16.44 MR 60.00 MS
5 40.00 MS 17.04 MR 62.50 MS 5 42.50 MS 11.43 MR 66.67 S
6 38.33 MR 32.62 S 69.23 S 6 40.00 MS 19.02 MR 67.50 S
7 47.50 MS 22.91 MS 67.50 S 7 50.83 MS 13.39 MR 62.50 MS
8 54.17 MS 21.87 MR 59.09 MS 8 45.00 MS 12.96 MR 80.77 S
9 49.17 MS 18.39 MR 60.00 MS 9 40.83 MS 24.23 MS 73.21 S
10 53.33 MS 17.61 MR 67.50 S 10 29.17 MR 9.72 MR 64.29 MS
11 56.67 S 17.13 MR 70.00 S 11 40.00 MS 12.49 MR 64.58 MS
12 53.33 MS 20.06 MR 60.00 MS 12 35.83 MR 10.71 MR 70.83 S
13 53.33 MS 23.68 MS 65.00 MS 13 38.33 MR 12.57 MR 62.50 MS
14 54.17 MS 17.84 MR 62.50 MS 14 35.83 MR 12.99 MR 61.54 MS
15 50.83 MS 19.99 MR 67.50 S 15 30.83 MR 11.43 MR 62.50 MS
16 58.33 S 22.15 MS 65.00 MS 16 31.67 MR 12.30 MR 65.38 S
17 60.83 S 22.80 MS 65.00 MS 17 29.17 MR 8.18 MR 62.50 MS
18 60.00 S 16.24 MR 60.00 MS 18 33.33 MR 10.10 MR 52.08 MS
19 56.67 S 21.31 MR 60.00 MS 19 36.67 MR 10.80 MR 62.50 MS
20 60.00 S 23.07 MS 57.50 MS 20 58.33 S 12.34 MR 57.50 MS
21 59.17 S 19.92 MR 57.50 MS 21 49.17 MS 14.00 MR 62.50 MS
22 49.17 MS 21.27 MR 62.50 MS 22 51.67 MS 21.11 MR 65.00 MS
23 38.33 MR 16.46 MR 60.00 MS 23 42.50 MS 15.74 MR 65.00 MS
24 61.67 S 35.43 S 75.00 S 24 40.83 MS 17.04 MR 63.64 MS
25 56.67 S 18.77 MR 75.00 S 25 37.50 MR 10.35 MR 66.67 S
26 55.00 MS 17.19 MR 68.18 S 26 33.33 MR 12.77 MR 68.75 S
27 45.00 MS 17.26 MR 65.91 S 27 30.83 MR 16.01 MR 70.83 S
28 46.67 MS 19.90 MR 56.82 MS 28 34.17 MR 14.31 MR 67.50 S
29 75.83 S 28.62 MS 70.83 S 29 34.17 MR 16.48 MR 65.91 S
30 81.25 S 32.19 S 68.75 S 30 30.83 MR 16.93 MR 66.67 S
31 75.00 S 39.30 S 65.38 S 31 47.50 MS 40.81 S 70.83 S
32 57.76 S 22.27 MS 66.67 S 32 47.50 MS 18.55 MR 66.67 S
33 49.14 MS 24.87 MS 67.50 S 33 60.00 S 18.31 MR 75.00 S
34 57.76 S 27.04 MS 73.08 S 34 45.83 MS 13.65 MR 66.67 S
35 75.83 S 24.61 MS 67.50 S 35 49.17 MS 12.37 MR 70.00 S
36 44.17 MS 18.40 MR 57.50 MS 36 54.17 MS 15.79 MR 68.18 S
37 35.00 MR 21.04 MR 57.50 MS 37 78.33 S 25.67 MS 67.50 S
38 37.50 MR 21.30 MR 55.00 MS 38 78.33 S 25.41 MS 70.00 S
39 44.17 MS 22.84 MS 56.82 MS 39 71.67 S 18.10 MR 70.83 S
40 40.00 MS 17.61 MR 72.73 S 40 47.50 MS 16.70 MR 75.00 S
41 35.83 MR 19.64 MR 66.67 S 41 60.83 S 16.66 MR 65.91 S
42 40.83 MS 15.19 MR 65.91 S 42 50.83 MS 15.77 MR 60.00 MS
43 44.17 MS 26.64 MS 68.75 S 43 65.83 S 15.39 MR 62.50 MS
44 45.00 MS 20.29 MR 79.17 S 44 60.83 S 25.12 MS 70.00 S
45 43.33 MS 19.71 MR 65.91 S 45 45.00 MS 15.68 MR 69.23 S
46 55.00 MS 15.37 MR 72.50 S 46 46.67 MS 16.57 MR 67.50 S
47 37.50 MR 13.78 MR 72.50 S 47 46.67 MS 17.89 MR 67.50 S
48 61.67 S 49.82 S 68.18 S 48 55.83 S 24.25 MS 67.50 S
49 48.33 MS 27.89 MS 66.67 S 49 61.67 S 25.24 MS 75.00 S
50 56.67 S 24.07 MS 67.50 S 50 27.50 MR 15.42 MR 61.36 MS
51 50.00 MS 22.22 MS 70.45 S 51 28.33 MR 14.49 MR 55.00 MS
52 37.93 MR 21.07 MR 55.00 MS 52 38.33 MR 15.82 MR 52.50 MS
53 53.33 MS 19.21 MR 55.00 MS 53 42.50 MS 28.78 S 55.00 MS
54 59.17 S 15.34 MR 57.50 MS 54 36.67 MR 10.30 MR 55.00 MS
55 55.83 S 23.10 MS 66.67 S 55 26.67 MR 12.11 MR 67.50 S
56 60.83 S 27.13 MS 65.91 S 56 28.33 MR 16.82 MR 70.00 S
57 64.17 S 20.17 MR 61.36 MS 57 38.33 MR 15.99 MR 67.50 S
58 63.33 S 25.74 MS 62.50 MS 58 28.33 MR 14.85 MR 68.18 S
59 61.67 S 17.84 MR 67.50 S 59 34.17 MR 19.04 MR 67.31 S
60 65.83 S 19.71 MR 67.50 S 60 31.67 MR 12.68 MR 69.23 S
61 63.33 S 21.87 MR 70.00 S 61 36.67 MR 15.06 MR 72.73 S
62 57.50 S 18.09 MR 70.00 S 62 34.17 MR 12.71 MR 66.67 S
63 54.17 MS 26.81 MS 62.50 MS 63 38.33 MR 14.84 MR 72.73 S
64 44.17 MS 22.17 MS 62.50 MS 64 55.00 MS 27.16 MS 67.50 S
65 55.83 S 18.44 MR 62.50 MS 65 33.33 MR 12.55 MR 68.18 S
66 50.83 MS 19.39 MR 68.75 S 66 35.00 MR 14.09 MR 67.50 S
67 56.67 S 18.71 MR 67.50 S 67 30.83 MR 12.85 MR 75.00 S
68 60.00 S 12.00 MR 67.50 S 68 35.00 MR 15.74 MR 75.00 S
69 45.83 MS 27.03 MS 67.50 S 69 37.50 MR 15.33 MR 67.50 S
70 54.17 MS 26.49 MS 68.18 S 70 44.17 MS 10.24 MR 75.00 S
71 54.17 MS 19.89 MR 65.91 S 71 52.50 MS 10.46 MR 75.00 S
72 50.83 MS 25.96 MS 68.18 S 72 50.83 MS 20.69 MR 70.00 S
73 48.33 MS 22.83 MS 65.91 S 73 48.33 MS 15.27 MR 67.50 S
74 50.00 MS 23.87 MS 70.45 S 74 45.00 MS 12.10 MR 57.50 MS
75 54.17 MS 20.63 MR 68.75 S 75 43.33 MS 11.62 MR 63.64 MS
76 59.17 S 14.55 MR 65.00 MS 76 45.83 MS 8.78 MR 55.00 MS
77 43.33 MS 19.86 MR 65.00 MS 77 54.17 MS 21.53 MR 62.50 MS
78 66.67 S 54.49 S 70.83 S 78 54.17 MS 22.14 MS 72.50 S
79 45.00 MS 30.83 S 67.31 S 79 71.67 S 23.73 MS 70.00 S
80 78.33 S 58.12 S 69.23 S 80 51.67 MS 19.91 MR 65.00 MS
81 33.33 MR 26.40 MS 70.83 S 81 32.50 MR 10.24 MR 63.64 MS
82 47.50 MS 21.07 MR 75.00 S 82 56.03 S 63.71 S 68.18 S
83 42.50 MS 24.60 MS 75.00 S 83 35.83 MR 7.77 MR 55.00 MS

表4

186个Fhb1基因纯合型高代家系不同赤霉病鉴定方法之间的相关性"

处理
Treatment
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴住(徐州)
Single flower drip inoculation
(in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
土表接种(徐州) Screening under natural condition (in Xuzhou) 1.00 0.53** 0.19*
单花滴住(徐州) Single flower drip inoculation (in Xuzhou) 1.00 0.20*
自然发病(建阳) Screening under natural condition (in Jianyang) 1.00

表5

徐麦DH9和徐麦17252在江苏省区试、淮北科企联合体小麦区试中赤霉病抗性鉴定结果"

品种
Variety
2017-2018年度
Plant season of 2017-2018
2018-2019年度
Plant season of 2018-2019
2019-2020年度
Plant season of 2019-2020
严重度
Severity of disease
抗性评价
Evaluation of resistance
严重度
Severity of disease
抗性评价
Evaluation of resistance
严重度
Severity of disease
抗性评价
Evaluation of resistance
徐麦DH9 Xumai DH9 2.10 MR 2.53 MR 1.22 MR
徐麦17252 Xumai 17252 1.91 MR 1.15 R
苏麦3号Sumai 3 (CK1) 1.27 R 1.45 R 1.10 R
扬麦158 Yangmai 158 (CK2) 2.15 MR 2.57 MR 1.98 MR
淮麦20 Huaimai 20 (CK3) 3.31 MS 3.37 MS 2.62 MS
矮抗58 Aikang 58 (CK4) 3.87 S 3.86 S 3.66 S

表6

徐麦DH9和徐麦17252在国家小麦良种联合攻关大区试验中赤霉病抗性鉴定结果"

品种名称
Variety
2018-2019年度Plant season of 2018-2019 2019-2020年度Plant season of 2019-2020
严重度
Severity of disease
病情指数
Disease index
抗性评价
Evaluation of resistance
严重度
Severity of disease
病情指数
Disease index
抗性评价
Evaluation of resistance
徐麦DH9 Xumai DH9 1.00 10.00 MR 1.47 36.72 MR
徐麦17252 Xumai 17252 1.6 40.08 MR
苏麦3号 Sumai 3 (CK1) 0.80 1.00 R 0.09 2.26 R
郑麦9023 Zhengmai 9023 (CK2) 2.00 20.00 MR 1.69 42.13 MR
郑麦0943 Zhengmai 0943 (CK3) 2.50 50.00 MS 2.69 67.32 MS
周麦18 Zhoumai 18 (CK4) 3.20 80.00 S
[1] 程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28:938-942.
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu J Agric Sci, 2012, 28:938-942 (in Chinese with English abstract).
[2] 马鸿翔, 陆维忠. 小麦赤霉病抗性改良研究进展. 江苏农业学报, 2010, 26:197-203.
Ma H X, Lu W Z. Progress on genetic improvement for resistance to Fusarium head blight in wheat. Jiangsu J Agric Sci, 2010, 26:197-203 (in Chinese with English abstract).
[3] 刘易科, 佟汉文, 朱展望, 陈泠, 邹娟, 张宇庆, 焦春海, 高春保. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016, 36:51-57.
Liu Y K, Tong H W, Zhu Z W, Chen L, Zou J, Zhang Y Q, Jiao C H, Gao C B. Review on improvement of Fusarium head blight resistance in wheat. J Triticeae Crop, 2016, 36:51-57 (in Chinese with English abstract).
[4] 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望. 遗传, 2018, 40:858-873.
Zhang A M, Yang W L, Li X, Sun J Z. Current status and perspective on research against Fusarium head blight in wheat. Hereditas, 2018, 40:858-873 (in Chinese with English abstract).
[5] 牛皓, 姜玉梅, 牛吉山. 小麦抗赤霉病遗传育种研究进展. 农业生物技术学报, 2020, 28:530-542.
Niu H, Jiang Y M, Niu J S. Research advances in the genetics and breeding of wheat (Triticum aestivum L.) resistance to Fusarium head blight. Chin J Agric Biotechnol, 2020, 28:530-542 (in Chinese with English abstract).
[6] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44:505-511.
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, Yang L, Li H J, Zhou Y. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44:505-511 (in Chinese with English abstract).
[7] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brulé-Babel A. Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2006, 112:1465-1472.
doi: 10.1007/s00122-006-0249-7
[8] Cuthbert P A, Somers D J, Brulé-Babel A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2007, 114:429-437.
doi: 10.1007/s00122-006-0439-3
[9] Qi L L, Pumphrey M Q, Friebe B, Chen P D, Gill B S. Fhb3 for resistance to Fusarium head blight disease of wheat Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008, 117:1155-1166.
doi: 10.1007/s00122-008-0853-9 pmid: 18712343
[10] Xue S L, Li G Q, Jia H Y, Xu F, Lin F, Tang M Z, Wang Y, An X, Xu H B, Zhang L X, Kong Z X, Ma Z Q. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2010, 121:147-156.
doi: 10.1007/s00122-010-1298-5
[11] Xue S L, Xu F, Tang M Z, Zhou Y, Li G Q, An X, Lin F, Xu H B, Jia H Y, Zhang L X, Kong Z X, Ma Z Q. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2011, 123:1055-1063.
doi: 10.1007/s00122-011-1647-z
[12] Cainong J C, Bockus W W, Feng Y, Chen P, Qi L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S. Fusarium head blight disease from Elymus tsukushiensis into wheat Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet, 2015, 128:1019-1027.
doi: 10.1007/s00122-015-2485-1 pmid: 25726000
[13] Guo J, Zhang X L, Hou Y L, Cai J J, Shen X R, Zhou T T, Xu H H, Ohm H W, Wang H W, Li A F, Han F P, Wang H G, Kong L R. Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015, 128:2301-2316.
doi: 10.1007/s00122-015-2586-x
[14] 徐婷婷, 王永军, 狄佳春, 孙苏阳, 蔡士宾, 汪巧玲, 邹淑琼, 朱银, 杨欣, 颜伟. 小麦抗赤霉病鉴定及其抗病基因的检测. 麦类作物学报, 2019, 39:1301-1308.
Xu T T, Wang Y J, Di J C, Sun S Y, Cai S B, Wang Q L, Zou S Q, Zhu Y, Yang X, Yan W. Identification of scab-resistance wheat varieties and detection of disease resistance genes. J Triticeae Crop, 2019, 39:1301-1308 (in Chinese with English abstract).
[15] Del Blanco I A, Frohberg R C, Stack R W, Berzonsky W A, Kianian S F. Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines. Theor Appl Genet, 2003, 106:1027-1031.
pmid: 12671750
[16] Pumphrey M O, Bernardo R, Anderson J A. Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci, 2007, 47:200-206.
doi: 10.2135/cropsci2006.03.0206
[17] McCartney C A, Somers D J, Fedak G, DePauw R M, Thomas J, Fox S L, Humphreys D G, Lukow O, Savard M E, McCallum B D. The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed, 2007, 20:209-221.
doi: 10.1007/s11032-007-9084-z
[18] Xie G Q, Zhang M C, Chakraborty S, Liu C J. Fusarium head blight resistance in Australian wheats Fusarium head blight resistance in Australian wheats. Aust J Exp Agric, 2007, 47:603-607.
doi: 10.1071/EA05250
[19] Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E. Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet, 2006, 112:562-569.
pmid: 16362277
[20] 陆维忠. 小麦赤霉病抗性分子标记的筛选及其利用. 江苏农业学报, 2011, 27:243-249.
Lu W Z. Screening and application of molecular markers linked to wheat scab resistance. Jiangsu J Agric Sci, 2011, 27:243-249 (in Chinese with English abstract).
[21] 许峰, 闫素辉, 张从宇, 时侠清, 李文阳, 张子学. 基于MAS的小麦抗赤霉病育种材料抗性评价. 植物遗传资源学报, 2016, 17:132-139.
Xu F, Yan S H, Zhang C Y, Shi X Q, Li W Y, Zhang Z X. Comprehensive evaluation of breeding materials resistant to wheat scab based on MAS. J Plant Genet Resour, 2016, 17:132-139 (in Chinese with English abstract).
[22] 李静静, 史娜溶, 杨孟于, 王金鹏, 孙道杰, 冯毅, 张玲丽. 抗赤霉病小麦优异新种质的分子标记辅助选择. 麦类作物学报, 2020, 40:261-269.
Li J J, Shi N R, Yang M Y, Wang J P, Sun D J, Feng Y, Zhang L L. Marker-assisted selection for Fusarium head blight resistance of wheat germplasms with excellent agronomy traits and seed quality. J Triticeae Crop, 2020, 40:261-269 (in Chinese with English abstract).
[23] Zhu Z W, Chen L, Zhang W, Yang L J, Zhu W W, Li J H, Liu Y K, Tong H W, Fu L P, Liu J D, Rasheed A, Xia X C, He Z H, Hao Y F, Gao C B. Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Front Plant Sci, 2020, 11:206.
[24] 马红勃, 刘东涛, 冯国华, 陈荣振, 张会云, 王静, 贾辉辉. 部分小麦品种(系)品质相关基因的分子检测. 麦类作物学报, 2015, 35:768-776.
Ma H B, Liu D T, Feng G H, Chen R Z, Zhang H Y, Wang J, Jia H H. Identification of major quality genes in some wheat cultivars from Yellow and Huai River valley wheat region. J Triticeae Crop, 2015, 35:768-776 (in Chinese with English abstract).
[25] Su Z Q, Jin S J, Zhang D D, Bai G H. Fhb1 region, a major QTL for Fusarium head blight resistance in wheat Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet, 2018, 131:2371-2380.
doi: 10.1007/s00122-018-3159-6
[26] Liu S X, Pumphrey M O, Gill B S, Trick H N, Zhang J X, Dolezel J, Chalhoub B, Anderson J A. Fhb1, a major QTL for Fusarium head blight resistance in wheat Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun, 2008, 36:195-201.
doi: 10.1556/CRC.36.2008.Suppl.B.15
[27] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018, 44:473-482.
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H. Characterization of Fusarium head blight resistance gene fhb1 and its putative ancestor in chinese wheat germplasm. Acta Agron Sin, 2018, 44:473-482 (in Chinese with English abstract).
[28] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R. Fhb7 from fungus underlies Fusarium head blight resistance in wheat Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368:6493.
[1] 严威凯. 品种选育与评价的原理和方法评述[J]. 作物学报, 2022, 48(9): 2137-2154.
[2] 丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型、遗传效应、地理分布及育种利用分析[J]. 作物学报, 2022, 48(9): 2196-2209.
[3] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[4] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[5] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[6] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[7] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[8] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[9] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[10] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[11] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[12] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[13] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[14] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[15] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .