欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 739-746.doi: 10.3724/SP.J.1006.2022.12011

• 耕作栽培·生理生化 • 上一篇    下一篇

增强叶片氮素输出对水稻分蘖和碳代谢的影响

王琰1(), 陈志雄2, 姜大刚3, 张灿奎4, 查满荣1,*()   

  1. 1吉首大学生物资源与环境科学学院, 湖南吉首 416000
    2华南农业大学农学院, 广东广州 510642
    3华南农业大学生命科学学院, 广东广州 510642
    4普渡大学农学院, 美国印第安纳州 47907
  • 收稿日期:2021-02-10 接受日期:2021-06-16 出版日期:2022-03-12 网络出版日期:2021-07-19
  • 通讯作者: 查满荣
  • 作者简介:E-mail: wy90408@163.com
  • 基金资助:
    国家自然科学基金项目(32060432);湖南省教育厅项目(18C0578);广东省农作物种质资源保存与利用重点实验室开放课题项目(2020B121201008)

Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice

WANG Yan1(), CHEN Zhi-Xiong2, JIANG Da-Gang3, ZHANG Can-Kui4, ZHA Man-Rong1,*()   

  1. 1College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Hunan, China
    2College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    3College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
    4Department of Agronomy, Purdue University, Indiana 47907, IN, USA
  • Received:2021-02-10 Accepted:2021-06-16 Published:2022-03-12 Published online:2021-07-19
  • Contact: ZHA Man-Rong
  • Supported by:
    National Natural Science Foundation of China(32060432);Research Foundation of Education Bureau of Hunan Province(18C0578);Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization(2020B121201008)

摘要:

增施氮肥是保证水稻高产的重要栽培措施, 但高氮肥投入所增加的植株氮素积累大部分滞留在营养器官中, 对产量的促进作用有限。叶片是氮素储存的主要器官及籽粒氮素的主要供给源。为了明确植株中氮素分配对水稻生长的影响, 本研究将拟南芥铵转运蛋白基因AtAMT1.2在水稻韧皮部特异表达, 促进叶片氮素输出, 检测转基因水稻植株在不同氮肥浓度下的生长情况。试验结果显示, 高氮下pOsSUT1:: AtAMT1.2转基因水稻分蘖数、氮素利用效率显著增加, 叶片中糖输出量增加, 分蘖芽中独角金内酯途径相关基因OsTB1OsD14表达水平下调。研究说明增加叶片氮素输出能够增大叶片中糖向分蘖芽的转运量, 促进分蘖生长, 从而提高了有效分蘖数并带来了更高的氮素利用效率。

关键词: 氮素, 水稻, 分蘖, 氮素利用效率

Abstract:

Nitrogen fertilizer application is one of the main cultivation measures to raise the yield, and high nitrogen level has limited contribution to grain yield due to limited nitrogen translocation in rice. To clarify the effects of nitrogen allocation on rice growth, we constructed pOsSUT1::AtAMT1.2 transgenic rice, the ammonium transporter gene AtAMT1.2 specific expression in phloem to promote leaf nitrogen output. The growth and yield of transgenic plants were measured under HN (high nitrogen) and LN (low nitrogen) conditions. Compared to WT plants, more tillers and higher grain yield were detected in transgenic plants in response to HN condition. The sugar output in leaves was increased, and the relative expression levels of the strigolactone pathway related genes OsTB1 and OsD14 in tiller buds were down-regulated. Our results indicated that the increase of leaf nitrogen export by overexpressing AtAMT1.2 gene could promote sugar translocation from leaves to tillering buds, which improved the growth of tiller, increased the effective tiller number and nitrogen use efficiency.

Key words: nitrogen, rice (Oryza sativa L.), tiller, nitrogen use efficiency

表1

荧光定量PCR引物序列"

基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
OsSUT1 TCATCCCTCAGGTGGTCATCG CTTGGAGATCTTGGGCAGCAG
OsSUT2 GTCATACCACAGGTTATTGTGTC GAATTGCAAAGAATGGCCG
OsSUT4 CGTTGTTCCGCAGATAGTAGTG GTGTTCTGCTCAGCCAAATCC
OsSSI GGGCCTTCATGGATCAACC CCGCTTCAAGCATCCTCATC
OsGBSSI AACGTGGCTGCTCCTTGAA TTGGCAATAAGCCACACACA
OsGBSSIl AGGCATCGAGGGTGAGGAG CCATCTGGCCCACATCTCTA
OsFd-GOGAT TGGTTGAGGGCACTGGAGATCA AATATAGGCAAGGCCACCCGTC
OsNADH-GOGAT CCTGTCGAAGGATGATGAAGGTGA TGCATGGCCCTACTATCTTCGC
OsGS1.1 CAAGTCTTTTGGGCGTGATAT CTCAAGAATGTAGCGAG
OsGDH1 CATCTGATCATCTCCCTGTT TTCAGGCAATTCATCACTAC
OsGDH2 GGCCATTAACAACACTCATA ACGCCGATCTATCTTGAAT
OsGDH3 CCAAAAGTACATGAAGAACG GTGATTCCTCAACAGATTCTC
OsTB1 GCCGGATGCAAGAAATC TCAGCAGTAGTGCCGCGAA
OsD14 CGCCTTCGTCGGCCACTC TCGAACCCGCCGTGGTAGTC
OsMADS57 ATGGGGAGGGGGAAGATAG AATTTAGGCTTCTAGAAAGTTCG
AtAMT1.2 ATGGCGACGTGCTTGGACAG CGAGCACGTTGGTGAGCATG
Actin CAATCGTGAGAAGATGACCC GTCCATCAGGAAGCTCGTAGC

图1

pOsSUT1::AtAMT1.2转基因水稻株系筛选 A: AtAMT1.2在叶片中表达量; B: 分蘖数。*和**分别表示在0.05和0.01水平上显著(n = 3)。"

图2

pOsSUT1::AtAMT1.2转基因水稻植株在不同氮素条件下的生长情况 拔节期水稻表型(A), 标尺为15 cm; 高氮下分蘖数(B)、干重(C); 低氮下分蘖数(D)、干重(E)。*和**分别表示在0.05和0.01水平上显著(n = 15); HN: 高氮; LN: 低氮。"

表2

施氮量对pOsSUT1::AtAMT1.2转基因水稻产量及其构成因素的影响"

种植时间/处理
Planting time/treatment
品种
Cultivar
有效穗数/株
Effective panicle per plant
颖花数/穗
Spikelets per panicle
颖花数/株
Spikelets per plant
产量/株
Grain yield (g plant-1)
2020/5 高氮HN WT 7.0±1.9 72.3 ±11.9 490.5±95.3 9.8±1.8
SA11 10.0±2.1** 74.5±11.2 721.3±140.1** 16.6±2.5**
SA33 9.6±2.2* 75.8±12.2 744.3±152.8** 17.0±2.5**
低氮LN WT 5.3±1.5 52.5±7.1 246.6±60.8 5.4±1.0
SA11 5.3±1.6 52.4±6.4 257.4±44.1 5.5±1.1
SA33 5.5±1.5 53.3±8.8 255.2±47.5 5.5±1.0
2020/9 高氮HN WT 9.6±1.0 83.7±17.2 833.1±114.0 19.6±2.3
SA11 15.2±1.4** 82.5±10.1 1146.7±214.4** 27.9±3.9**
SA33 14.1±1.5* 86.7±17.4 1087.6±146.3* 27.5±4.0**
低氮LN WT 6.5±1.0 61.7±8.0 403.8±77.8 9.7±1.7
SA11 6.9±0.9 63.1±8.9 442.6±75.1 10.0±1.4
SA33 6.7±1.1 62.1±7.9 420.4±73.6 9.8±0.9

表3

施氮量处理对pOsSUT1::AtAMT1.2转基因水稻各器官氮浓度的影响"

种植时间/处理
Planting date/treatment
品种
Cultivar

Leaf (%)

Steam (%)

Panicle (%)
2020/5 高氮HN WT 1.07±0.09 0.96±0.06 1.03±0.08
SA11 0.98±0.05* 1.01±0.10 1.15±0.07**
SA33 0.97±0.07* 1.02±0.07* 1.13±0.08**
低氮LN WT 0.86±0.05 0.83±0.06 0.79±0.06
SA11 0.85±0.04 0.86±0.04 0.81±0.05
SA33 0.87±0.06 0.85±0.04 0.82±0.06
2020/9 高氮HN WT 1.00±0.09 0.94±0.06 1.12±0.12
SA11 0.93±0.04* 1.01±0.10 1.28±0.11**
SA33 0.91±0.08* 1.04±0.11* 1.27±0.09**
低氮LN WT 0.84±0.08 0.83±0.06 0.81±0.06
SA11 0.85±0.07 0.84±0.05 0.84±0.11
SA33 0.83±0.09 0.86±0.06 0.83±0.06

图3

pOsSUT1::AtAMT1.2转基因水稻植株在不同氮肥条件下的氮肥农学利用率 转基因水稻植株为2020年9月种植批次。*和**分别表示在0.05 和0.01 水平上显著(n = 3); HN: 高氮; LN: 低氮。"

图4

pOsSUT1::AtAMT1.2转基因水稻植株分蘖数及生物量积累动态 转基因水稻植株为2020年9月种植批次。(A)分蘖数; (B)鲜重; (C)分蘖芽中独角金内酯途径相关基因表达量。*和**分别表示在0.05 和0.01 水平上显著(n = 3); DAS: 播种后天数。"

图5

高氮下pOsSUT1::AtAMT1.2转基因水稻叶片中氮代谢相关基因表达量 转基因水稻植株为2020年9月种植批次。*和**分别表示在0.05和0.01 水平上显著(n = 3)。"

图6

高氮下pOsSUT1::AtAMT1.2转基因水稻叶片中碳氮代谢变化 转基因水稻植株为2020年9月种植批次。(A)光合效率; (B)淀粉含量; (C)可溶性糖含量; (D)糖转运相关基因表达量。*和**分别表示在0.05和0.01水平上显著(n = 3); Pn: 净光合速率。"

[1] Li S, He P, Jin J. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture. J Sci Food Agric, 2013, 93:1191-1197.
doi: 10.1002/jsfa.5874
[2] Xu M, Li D, Li J, Qin D, Hosen Y, Shen H, Rihuan C, He X. Polyolefin-coated urea decreases ammonia volatilization in a double rice system of southern china. Agron J, 2013, 105:277-284.
doi: 10.2134/agronj2012.0222
[3] 孙志广, 王宝祥, 杨波, 徐波, 邢运高, 刘艳, Kazeem B B. 施氮量对不同水稻品种氮肥利用率和农艺性状的影响. 江西农业学报, 2019, 31:23-28.
Sun Z G, Wang B X, Yang B, Xu B, Xing Y G, Liu Y, Kazeem B B. Effects of nitrogen application levels on nitrogen use efficiency and agronomic traits of rice cultivars. Acta Agric Jiangxi, 2019, 31:23-28 (in Chinese with English abstract).
[4] 李俊周, 邵鹏, 彭廷, 张静, 孙红正, 赵全志. 施氮量对杂交水稻Y两优886产量、稻米品质及氮肥吸收利用的影响. 杂交水稻, 2017, 32(6):50-54.
Li J Z, Shao P, Peng T, Zhang J, Sun H Z, Zhao Q Z. Effects of nitrogen rate on grain yield, quality and nitrogen uptake and utilization of hybrid rice Y-liangyou 886. Hybrid Rice, 2017, 32(6):50-54 (in Chinese with English abstract).
[5] 段里成, 吕伟生, 方加海, 曾勇军, 石庆华, 潘晓华, 蔡海生, 吴自明. 施氮量和每穴苗数对双季杂交早稻产量及氮肥利用率的影响. 生态学杂志, 2018, 37:2959-2967.
Duan L C, Lyu W S, Fang J H, Zeng Y J, Shi Q H, Pan X H, Cai H S, Wu Z M. Effects of nitrogen application rate and seedlings per hole on yield and nitrogen use efficiency of double-season early hybrid rice. Chin J Ecol, 2018, 37:2959-2967 (in Chinese with English abstract).
[6] 邹应斌, 敖和军, 夏冰, 唐启源, 彭少兵, Buresh R J. 不同氮肥施用对杂交稻产量及其氮素利用效率的影响. 作物研究, 2008, 22:214-219.
Zou Y B, Ao H J, Xia B, Tang Q Y, Peng S B, Buresh R J. Effects of different nitrogen application on the yield and nitrogen use efficiency in hybrid rice. Crop Res, 2008, 22:214-219 (in Chinese with English abstract).
[7] 张亚丽, 黄启为, 徐阳春, 沈其荣. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006, 12:616-621.
Zhang Y L, Huang Q W, Xu Y C, Shen Q R. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutr Fert Sci, 2006, 12:616-621 (in Chinese with English abstract).
[8] 阳显斌, 张锡洲, 李廷轩, 余海英, 吴德勇. 不同产量水平小麦的氮吸收利用差异. 核农学报, 2010, 24:1073-1079.
Yang X B, Zhang X Z, Li Y X, Yu H Y, Wu D Y. Difference of nitrogen uptake and utilization in wheat cultivars with different grain yield level. J Nucl Agric Sci, 2010, 24:1073-1079 (in Chinese with English abstract).
[9] Shiratsuchi H, Yamagishi T, Ishii R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Res, 2006, 95:291-304.
doi: 10.1016/j.fcr.2005.04.005
[10] Mae T, Makino A, Ohira K. Oryza sativa L.) Oryza sativa L.). Plant Cell Physiol, 1983, 24:1079-1086.
[11] Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J J. amt1 by glutamine in rice amt1 by glutamine in rice. Plant Cell Physiol, 2003, 44:1396-1402.
doi: 10.1093/pcp/pcg169
[12] Shelden M C, Dong B, Guy L, Trevaskis B, Whelan J, Ryan P R, Howitt S M, Udvardi M K. Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil, 2001, 231:151-160.
doi: 10.1023/A:1010303813181
[13] Scofield G N, Hirose T, Aoki N, Furbank R T. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot, 2007, 58:3155-3169.
pmid: 17728297
[14] Kosuke M, Hiromu K, Naoko Y, Mikihisa U, Le L, Kaoru K, Atsushi H, Kotomi U, Tadao A, Shinjiro Y, Junko K. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 2010, 51:1127-1135.
doi: 10.1093/pcp/pcq083
[15] Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C, Ma Y, Zhang Q R, Meng Z, Chong K. OsMADS57 and OsTB1 modulates rice tillering via DWARF14 OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4:1566.
doi: 10.1038/ncomms2542
[16] Selvaraj M J, Valencia M O, Ogawa S, Lu Y Z, Wu L Y, Downs C, Skinner W, Lu Z J, Kridl J C, Ishitani M, Boxtel J V. Development and field performance of nitrogen use efficient rice lines for Africa. Plant Biotechnol J, 2017, 15:775-787.
doi: 10.1111/pbi.12675 pmid: 27889933
[17] Li H, Hu B, Chu C C. Arabidopsis and rice Arabidopsis and rice. J Exp Bot, 2017, 68:2477-2488.
doi: 10.1093/jxb/erx101
[18] Agrell D, Oscarson P, Larsson C M. Translocation of N to and from barley roots its dependence on localnitrate supply in splitroot cultures. Physiol Plant, 1994, 90:467-474.
doi: 10.1111/ppl.1994.90.issue-3
[19] Ohashi M, Ishiyama K, Kusano M, Fukushima A, Kojima S, Hayakawa T, Yamaya T. fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2 fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2. Rice, 2018, 11:65.
doi: 10.1186/s12284-018-0261-y pmid: 30578468
[20] Decourteix M, Alves G, Bonhomme M, Peuch M, Baaziz K B, Brunel N, Guilliot A, Rageau R. Améglio T, Pétel G, Sakr S. Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol, 2008, 28:215-224.
pmid: 18055432
[21] Maurel K, Leite G B, Bonhomme M, Guilliot A, Rageau R, Petel G, Sakr S. Prunus persica) trees: a possible role of hexoses Prunus persica) trees: a possible role of hexoses. Tree Physiol, 2004, 24:579-588.
doi: 10.1093/treephys/24.5.579
[22] Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13:273-278.
doi: 10.1016/j.pbi.2009.12.002
[23] Granot D, Schwartz R D, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci, 2013, 4:44.
doi: 10.3389/fpls.2013.00044 pmid: 23487525
[24] Salam B B, Barbier F, Danieli R, Paula T B, Ziv C, SpIchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Mira W C, Amit G O, Jiang J M, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. Plant Physiol, 2021, 185:1-14.
[25] Barbier F, Peron T, Lecerf M, Garcia P, Barriere Q, Rolcik J, Mercey S B, Citerne S, Lemoine R, Porcheron B, Roman H, Leduc N, Gourrierec J L, Bertheloot J, Sakr S. Rosa hybrid Rosa hybrid. J Exp Bot, 2015, 66:2569-2582.
doi: 10.1093/jxb/erv047
[26] Wang F, Han T W, Song Q X, Ye W X, Song X G, Chu J F, Li J Y, Chen Z J. Rice circadian clock regulates tiller growth and panicle through strigolactone signaling and sugar sensing. Plant Cell, 2020, 10:10.
[27] 董桂春, 于小凤, 赵江宁, 居静, 田昊, 李进前, 张燕, 王余龙. 不同穗型常规籼稻品种氮素吸收利用的基本特点. 作物学报, 2009, 35:2091-2100.
Dong G C, Yu X F, Zhao J N, Ju J, Tian H, Li J Q, Zhang Y, Wang Y L. General characteristics of nitrogen uptake and utilization in conventional indica rice cultivars with different panicle weight types. Acta Agron Sin, 2009, 35:2091-2100 (in Chinese with English abstract).
[28] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45:267-273.
Zhang Y L, Fan J B, Duan Y H, Wang D S, Ye L T, Shen Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedol Sin, 2008, 45:267-273 (in Chinese with English abstract).
[29] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34:119-125.
doi: 10.3724/SP.J.1006.2008.00119
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34:119-125 (in Chinese with English abstract).
[30] Zhang Y L, Fan J B, Wang D S. Genotypic differences in grain yield and physiological nitrogen use efficiency among rice cultivars. Pedosphere, 2009, 19:681-691.
doi: 10.1016/S1002-0160(09)60163-6
[31] 王彦荣, 华泽田, 陈温福, 代贵金, 郝宪彬, 王岩, 张忠旭, 隋国民. 粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响. 作物学报, 2003, 29:892-898.
Wang Y R, Hua Z T, Chen W F, Dai G J, Hao X B, Wang Y, Zhang Z X, Sui G M. Relation between root and leaf senescence and their effects on grain-filling in japonica rice. Acta Agron Sin, 2003, 29:892-898 (in Chinese with English abstract).
[32] Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, JiangX Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 2021, 19:167-176.
doi: 10.1111/pbi.v19.1
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[4] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[5] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[6] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[7] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[8] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[9] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[10] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[11] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[12] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[13] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[14] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[15] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .