作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2210-2220.doi: 10.3724/SP.J.1006.2022.12037
薛皦(), 卢东柏(), 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英*()
XUE Jiao(), LU Dong-Bai(), LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying*()
摘要:
白叶枯病是对水稻危害最大的细菌性病害, 严重危及我国乃至全球粮食安全。挖掘新的抗病基因是改良水稻对白叶枯病抗病性的重要措施。本研究以广东省及华南稻区主栽的优质抗病水稻品种粤农丝苗为材料, 利用抗病品种粤农丝苗和感病品种丽江新团黑谷为亲本构建重组自交系(recombinant inbred lines, RILs)及回交群体, 进行接种鉴定及基因定位分析。遗传分析表明: 粤农丝苗的抗性由不完全显性的白叶枯病抗病基因控制; 重组自交系抗病表型结合重测序结果初定位到一个抗性QTL qBB-11-1, 位于11号染色体长臂末端; 利用片段重叠群分法将qBB-11-1精细定位在InDel标记P89和P54之间, 物理距离约为63 kb, 区间内包含6个候选基因, 且粤农丝苗中的白叶枯病抗性基因可能是未被报道的新基因。这些研究结果对于主栽品种粤农丝苗的抗性基因挖掘与利用将对华南稻区白叶枯病抗性育种具有重要的代表性意义。
[1] |
Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.): an updated review. Rice, 2020, 13: 3.
doi: 10.1186/s12284-019-0358-y pmid: 31915945 |
[2] | 章琦. 中国杂交水稻白叶枯病抗性的遗传改良. 中国水稻科学, 2009, 23: 111-119. |
Zhang Q. Genetics and improvement of resistance to bacterial blight in hybrid rice in China. Chin J Rice Sci, 2009, 23: 111-119. (in Chinese with English abstract) | |
[3] | Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacteria-blight disease in rice. Plant Commun, 2021, 2: 100143. |
[4] |
何秀英, 廖耀平, 陈钊明, 程永盛, 陈粤汉, 刘维. 优质抗病水稻新品种粤农丝苗的选育及应用. 中国稻米, 2014, 20(2): 69-70.
doi: 10.3969/j.issn.1006-8082.2014.02.020 |
He X Y, Liao Y P, Chen Z M, Cheng Y S, Chen Y H, Liu W. Breeding and application of a new rice variety Yuenongsimiao with good quality and disease resistance. China Rice, 2014, 20(2): 69-70. (in Chinese with English abstract) | |
[5] | 陈深, 汪聪颖, 苏菁, 冯爱卿, 朱小源, 曾列先. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44: 217-222. |
Chen S, Wang C Y, Su J, Feng A Q, Zhu X Y, Zeng L X. Differential detection and analysis of pathotypes and differentiation against Xanthomonas oryzae pv. oryzae in southern China. J Plant Prot, 2017, 44: 217-222. (in Chinese with English abstract) | |
[6] | 方中达, 许志刚, 过崇俭, 殷尚智, 伍尚忠, 徐羡明, 章琦. 中国水稻白叶枯病菌致病型的研究. 植物病理学报, 1990, 20(2): 3-10. |
Fang Z D, Xu Z G, Guo C J, Yin S Z, Wu S Z, Xu X M, Zhang Q. Studies on pathotypes of Xanthomonas campestris pv. oryzae in China. Acta Phytopathol Sin, 1990, 20(2): 3-10. (in Chinese with English abstract) | |
[7] |
Li H, Richard D. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 |
[8] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 |
[9] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 |
[10] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, De Pristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522 |
[11] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[12] |
Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics, 2017, 33: 3726-3732.
doi: 10.1093/bioinformatics/btx494 pmid: 29036272 |
[13] | Van Ooijen J W. MapQTL® 6: Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species. Netherlands, 2009. p 59. |
[14] |
Arends D, Prins P, Jansen R C, Broman K W. R/QTL: high- throughput multiple QTL mapping. Bioinformatics, 2010, 26: 2990-2992.
doi: 10.1093/bioinformatics/btq565 pmid: 20966004 |
[15] |
李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918 |
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918 |
|
[16] |
Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124: 735-742.
doi: 10.1093/genetics/124.3.735 pmid: 1968874 |
[17] | 张月雄, 梁海福, 秦钢, 马增凤, 岑贞陆, 刘驰, 罗同平, 韦敏益, 李振经, 李容柏, 黄大辉. 籼稻品种9311抗白叶枯基因鉴定和定位. 分子植物育种, 2018, 16: 460-465. |
Zhang Y X, Liang H F, Qin G, Ma Z F, Cen Z L, Liu C, Luo T P, Wei M Y, Li Z J, Li R B, Huang D H. Identification and mapping of a bacterial blight resistance gene in indica cv. 9311. Mol Plant Breed, 2018, 16: 460-465. (in Chinese with English abstract) | |
[18] | Kim S M, Reinke R F. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS One, 2019, 14: e0211775. |
[19] | Chen S, Wang C, Yang J, Chen B, Wang W, Su J, Feng A, Zeng L, Zhu X. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci Rep, 2020, 10: 12642. |
[20] |
Zhang F, Huang L Y, Zhang F, Ali J, Cruz C V, Zhuo D L, Du Z L, Li Z K, Zhou Y L. Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genomics, 2015, 16: 111.
doi: 10.1186/s12864-015-1329-3 pmid: 25765449 |
[21] |
Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology. Sci China Life Sci, 2021, 64: 51-65.
doi: 10.1007/s11427-020-1699-4 |
[22] | Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife, 2016, 5: e19605. |
[23] |
Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20: 1250-1255.
doi: 10.1101/gad.1416306 |
[24] | Yang B, Sugio A, White F F. Os8N3 is a host disease- susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508. |
[25] |
Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ, 2011, 34: 1958-1969.
doi: 10.1111/j.1365-3040.2011.02391.x |
[26] |
Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14resistance allele to bacterial blight from wild rice. Plant J, 2015, 84: 694-703.
doi: 10.1111/tpj.13042 |
[27] |
Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White F F, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26: 497-515.
doi: 10.1105/tpc.113.119255 |
[28] |
Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015, 8: 290-302.
doi: 10.1016/j.molp.2014.10.010 |
[29] |
Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F, Yin Z. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125.
doi: 10.1038/nature03630 |
[30] |
Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
doi: 10.1073/pnas.95.4.1663 |
[31] | Zhang B, Zhang H, Li F, Ouyang Y, Yuan M, Li X, Xiao J, Wang S. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae. Plant Commun, 2020, 1: 100088. |
[32] | Ji C, Ji Z, Liu B, Cheng H, Liu H, Liu S, Yang B, Chen G. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun, 2020, 1: 100087. |
[33] |
Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370 |
[34] |
Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527.
doi: 10.1046/j.1365-313X.2003.01976.x |
[35] | Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants, 2017, 3: 17009. |
[36] |
Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, Herrfurth C, Zhang Y, Feussner I. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell, 2021, 33: 735-749.
doi: 10.1093/plcell/koaa045 |
[37] |
Holmes E C, Chen Y C, Mudgett M B, Sattely E S. Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell, 2021, 33: 750-765.
doi: 10.1093/plcell/koaa052 |
[38] |
Lee B J, Kim S K, Choi S B, Bae J, Kim K J, Kim Y J, Paek K H. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Lett, 2009, 583: 2315-2320.
doi: 10.1016/j.febslet.2009.06.028 |
[39] |
Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 2002, 14: 1093-1107.
doi: 10.1105/tpc.010436 |
[40] | He Y, Wu L, Liu X, Jiang P, Yu L, Qiu J, Wang G, Zhang X, Ma H. TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat. Front Plant Sci, 2020, 11: 574775. |
[41] |
Peng Y, Zhang Y, Gui Y, An D, Liu J, Xu X, Li Q, Wang J, Wang W, Shi C, Fan L, Lu B, Deng Y, Teng S, He Z. Elimination of a retrotransposon for quenching genome instability in modern rice. Mol Plant, 2019, 12: 1395-1407.
doi: S1674-2052(19)30205-9 pmid: 31228579 |
[42] |
Nidumukkala S, Tayi L, Chittela R K, Vudem D R, Khareedu V R. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol, 2019, 39: 395-407.
doi: 10.1080/07388551.2019.1566204 pmid: 30714414 |
[43] |
Zhang Q. Genetics and improvement of bacterial blight resistance of hybrid rice in China. Rice Sci, 2009, 16: 83-92.
doi: 10.1016/S1672-6308(08)60062-1 |
[44] | Quibod I L, Atieza-Grande G, Oreiro E G, Palmos D, Nguyen M H, Coronejo S T, Aung E E, Nugroho C, Roman-Reyna V, Burgos M R, Capistrano P, Dossa S G, Onaga G, Saloma C, Cruz C V, Oliva R. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME J, 2020, 14: 492-505. |
[45] |
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet, 2018, 19: 21-33.
doi: 10.1038/nrg.2017.82 |
[1] | 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227. |
[2] | 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264. |
[3] | 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324. |
[4] | 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338. |
[5] | 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389. |
[6] | 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420. |
[7] | 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904. |
[8] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[9] | 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027. |
[10] | 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040. |
[11] | 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133. |
[12] | 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065. |
[13] | 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582. |
[14] | 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842. |
[15] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
|