欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2210-2220.doi: 10.3724/SP.J.1006.2022.12037

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位

薛皦(), 卢东柏(), 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英*()   

  1. 广东省农业科学院水稻研究所 / 广东省水稻育种新技术重点实验室, 广东广州 510640
  • 收稿日期:2021-05-31 接受日期:2022-01-05 出版日期:2022-09-12 网络出版日期:2022-02-15
  • 通讯作者: 何秀英
  • 作者简介:薛皦, E-mail: xuejiao@gdaas.cn;
    卢东柏, E-mail: lu010324@163.com第一联系人:

    **同等贡献

  • 基金资助:
    中国博士后科学基金项目(2020M682639);科技创新战略专项资金项目(高水平农科院建设) (广东省农业科学院博士后科研专项BZ201909);广东省现代农业产业技术体系建设项目(2021KJ105);广东省重点领域研发计划项目(2020B0202090003);广东省自然科学基金项目(2018A0303130172);广东省自然科学基金项目(2021A1515110411);广州市基础与应用基础项目(202102080417);广东省学科类重点实验室运行项目(2020B1212060047);广东省农业科学院水稻研究所所长基金项目资助。

Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’

XUE Jiao(), LU Dong-Bai(), LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying*()   

  1. Rice Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong 510640, Guangzhou, China
  • Received:2021-05-31 Accepted:2022-01-05 Published:2022-09-12 Published online:2022-02-15
  • Contact: HE Xiu-Ying
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    China Postdoctoral Science Foundation(2020M682639);Special Fund for Science and Technology Innovation Strategy (Construction of High-level Academy of Agricultural Sciences) (Foundation for postdoctoral research of Guangdong Academy of Agricultural Sciences in China, BZ201909);Modern Agricultural Industry Technology System of Guangdong Province, China(2021KJ105);Research and Development Plan of Key Fields in Guangdong Province(2020B0202090003);Natural Science Foundation of Guangdong Province(2018A0303130172);Natural Science Foundation of Guangdong Province(2021A1515110411);Guangzhou Basic and Applied Basic Research Foundation(202102080417);Operation project of Guangdong Provincial Key Laboratory(2020B1212060047);Director foundation of Rice Research Institute of Guangdong Academy of Agricultural Sciences

摘要:

白叶枯病是对水稻危害最大的细菌性病害, 严重危及我国乃至全球粮食安全。挖掘新的抗病基因是改良水稻对白叶枯病抗病性的重要措施。本研究以广东省及华南稻区主栽的优质抗病水稻品种粤农丝苗为材料, 利用抗病品种粤农丝苗和感病品种丽江新团黑谷为亲本构建重组自交系(recombinant inbred lines, RILs)及回交群体, 进行接种鉴定及基因定位分析。遗传分析表明: 粤农丝苗的抗性由不完全显性的白叶枯病抗病基因控制; 重组自交系抗病表型结合重测序结果初定位到一个抗性QTL qBB-11-1, 位于11号染色体长臂末端; 利用片段重叠群分法将qBB-11-1精细定位在InDel标记P89和P54之间, 物理距离约为63 kb, 区间内包含6个候选基因, 且粤农丝苗中的白叶枯病抗性基因可能是未被报道的新基因。这些研究结果对于主栽品种粤农丝苗的抗性基因挖掘与利用将对华南稻区白叶枯病抗性育种具有重要的代表性意义。

关键词: 水稻, 粤农丝苗, 白叶枯病, 抗病, QTL

Abstract:

Bacterial blight is the most devastating bacterial disease to rice, which seriously endangers food security of China and even the world. Mining new resistance genes is an important measure to improve rice resistance to bacterial blight. Yuenong Simiao, was the main rice cultivar with good grain quality and disease resistance in South China. In this study, Yuenong Simiao (YN) and Lijiangxintuanheigu (LTH) were used as parental materials to construct recombinant inbred lines (RILs) and backcross populations. We carried out inoculation identification and gene mapping analysis. Genetic analysis showed that the resistance of YN was controlled by incomplete dominant resistance genes of bacterial blight. Combined the resistance phenotype of recombinant inbred lines with genome resequencing, a resistance QTL qBB-11-1 was identified at the end of the long arm of chromosome 11. Substitution mapping revealed that qBB-11-1 was located between InDel markers P89 and P54 with a physical distance of about 63 kb. There were six candidate genes in this region, and the resistance gene to bacterial blight in YN may be a new gene. It is of great representative significance to explore and utilize the resistance genes of YN in rice breeding for bacterial blight resistance in South China.

Key words: rice, Yuenong Simiao, bacterial blight, resistance, QTLs

图1

定位群体构建流程图 YN: 粤农丝苗; LTH: 丽江新团黑谷。"

附表1

精细定位中的多态性Indel引物信息"

名称
Primer name
引物序列
Sequence (5'-3')
产物大小
Product size (bp)
预期位置(第11染色体)
Excepted position (Chromosome 11)
P5F AAATTGTTGCTTGCAGCCAC 192 22,990,895-22,991,086
P5R CAGTACGGTATTGCAGAGCG
P12F GTACATGACAAGGAGCTCGC 144 23,124,155-23,124,298
P12R AAGCTTGCAATACTGACGGC
P22F GCCTTCAGTTTGATTAATTCTGAGC 180 23,292,791-23,292,970
P22R ATCCAGCCATGTGAGCTACA
P31F CATTGCGCTCCTGTAGTTCC 180 22,539,088-22,539,267
P31R TGCAGCAGGCTATAAATCTCG
P35F TCTGACCACCCGTTAAGCTT 250 22,637,226-22,637,475
P35R ATTTCCATGGCGCTCACATC
P54F GCCGGCCACAACTACTAATC 192 22,959,237-22,959,428
P54R AGAGGGGTTTTATGTCTTGTTTGT
P66F GCAGATGCATGCCGAATG 274 23,418,762-23,419,035
P66R ACGAAAGTGGAAGCAAAGTCA
P67F TGACATGGCTTATCTGGAAGGA 242 23,424,987-23,425,228
P67R CGCCCTAACAATCAGAGAACG
P89F ATGCCCATGATTGTCTTCGT 143 22,896,068-22,896,210
P89R AGTGATGTGACTGGAAAGGGA

图2

QTL定位的重叠群分析法示意图 图中白色区域为亲本的遗传背景, 黑色区域为代换片段。M: 分子标记; Q: QTL位点; L1: 单株1; L2: 单株2。"

图3

丽江新团黑谷和粤农丝苗接种白叶枯病菌后的抗性表现 A: 广东IV型菌和R1~R9白叶枯病菌生理小种接种丽江新团黑谷、粤农丝苗剑叶后的抗病表现; 丽江: 丽江新团黑谷; 粤农: 粤农丝苗; B: 病斑长度统计, n = 3。"

图4

粤农丝苗/丽江新团黑谷杂交的F1植株发病表型及F2群体病斑长度统计 A: 粤农丝苗与丽江新团黑谷及其杂交F1植株接种广东IV型白叶枯病菌后的表现; B: 粤农丝苗与丽江新团黑谷杂交F2植株接种广东IV型白叶枯病菌后发病病斑长度及对应株系个数统计。YN: 粤农丝苗; LTH: 丽江新团黑谷。"

图5

F6重组自交系接种病菌后发病统计 A: 2019年F6重组自交系接种广东IV型白叶枯病菌后发病病斑长度及对应植株个数统计; B: 2020年F6重组自交系接种广东IV型白叶枯病菌后发病病斑长度及对应植株个数统计。YN: 粤农丝苗; LTH: 丽江新团黑谷。"

附表2

亲本和RILs群体重测序数据统计"

样品序号
No.
样品名称
Sample
过滤后的片段数
Clean_reads
过滤后的碱基数
Clean_bases
比对到参考基因组的片段数
Mapping reads
比对率
Mapping rate (%)
平均测序深度
Mean depth
Q30
(%)
亲本Parent YN 41,286,005 12,369,830,844 82,572,010 98.33 28 92.52
亲本Parent LTH 40,239,860 12,056,746,044 80,479,720 98.64 27 92.02
1 H1 15,491,990 2,323,798,500 15,511,482 98.6 6.0174 89.46
2 H2 15,476,470 2,321,470,500 15,509,488 98.54 5.9955 88.1
3 H3 15,323,454 2,298,518,100 15,337,595 99.04 5.9962 89.45
4 H4 15,454,410 2,318,161,500 15,469,882 98.69 6.0159 89.05
5 H5 15,355,562 2,303,334,300 15,379,006 98.72 5.9652 88.88
6 H6 15,493,194 2,323,979,100 15,531,061 98.81 6.0279 89.81
7 H7 15,457,790 2,318,668,500 15,478,468 98.94 6.0448 89.16
8 H8 15,445,140 2,316,771,000 15,457,567 98.81 6.0191 89.04
9 H9 15,486,662 2,322,999,300 15,511,330 98.69 6.0224 87.62
10 H10 15,461,328 2,319,199,200 15,472,062 99.03 6.0563 89.43
11 H11 15,385,914 2,307,887,100 15,428,306 98.77 5.9796 89.75
12 H12 15,416,006 2,312,400,900 15,432,135 98.97 6.0257 89.13
13 H13 15,475,930 2,321,389,500 15,500,273 98.8 6.0267 88.67
14 H15 15,517,236 2,327,585,400 15,526,537 98.69 6.043 88.55
15 H16 15,512,628 2,326,894,200 15,530,534 98.59 6.0252 88.58
16 H17 15,469,918 2,320,487,700 15,482,685 98.79 6.0344 88.66
17 H18 15,499,492 2,324,923,800 15,514,790 98.78 6.0446 88.94
18 H19 15,466,028 2,319,904,200 15,467,191 98.48 5.9965 88.85
19 H20 15,463,762 2,319,564,300 15,477,423 98.82 6.0346 89.09
20 H21 15,477,820 2,321,673,000 15,478,523 98.87 6.0495 88.94
21 H22 15,440,126 2,316,018,900 15,466,902 98.83 6.0151 88.76
22 H23 15,484,862 2,322,729,300 15,500,195 98.73 6.0311 88.4
23 H24 15,456,826 2,318,523,900 15,467,922 99.09 6.0589 87.36
24 H26 15,401,328 2,310,199,200 15,410,304 98.68 5.9915 89.27
25 H27 15,470,830 2,320,624,500 15,487,790 98.69 6.0188 88.64
26 H28 15,479,610 2,321,941,500 15,506,542 98.7 6.0206 88.81
27 H29 15,448,996 2,317,349,400 15,456,445 98.79 6.0263 89.05
28 H30 15,510,002 2,326,500,300 15,533,337 98.48 6.009 88.65
29 H31 15,492,974 2,323,946,100 15,508,560 98.87 6.0455 88.2
30 H32 15,482,612 2,322,391,800 15,500,796 98.55 6.0109 89.74
31 H34 15,475,262 2,321,289,300 15,478,357 98.69 6.0252 87.62
32 H36 15,412,934 2,311,940,100 15,452,458 98.86 6.0017 89.2
33 H37 15,493,652 2,324,047,800 15,499,794 98.79 6.0479 89.11
34 H38 15,479,242 2,321,886,300 15,501,986 98.69 6.0172 87.99
35 H39 15,320,240 2,298,036,000 15,356,918 98.79 5.9589 88.45
36 H40 15,501,160 2,325,174,000 15,507,242 98.57 6.0191 86.97
37 H41 15,461,688 2,319,253,200 15,473,415 98.86 6.0362 86.27
38 H42 15,477,188 2,321,578,200 15,488,787 98.73 6.0266 88.11
39 H43 15,492,078 2,323,811,700 15,494,057 98.81 6.0484 89.35
40 H44 15,250,314 2,287,547,100 15,290,181 98.88 5.9346 88.97
41 H45 15,473,882 2,321,082,300 15,484,725 98.64 6.0187 89.16
42 H46 15,517,276 2,327,591,400 15,528,765 98.67 6.0395 87.99
43 H47 15,453,172 2,317,975,800 15,459,237 98.8 6.0297 88.28
44 H48 15,489,434 2,323,415,100 15,495,543 98.7 6.0307 87.71
45 H49 15,462,920 2,319,438,000 15,472,789 98.67 6.015 88.04
46 H50 15,481,870 2,322,280,500 15,498,737 98.69 6.0249 88.8
47 H51 15,446,500 2,316,975,000 15,467,734 98.61 5.9982 88.35
48 H52 15,639,674 2,345,951,100 15,651,629 98.69 6.0985 94.54
49 H54 15,651,950 2,347,792,500 15,663,166 98.63 6.0969 94.1
50 H57 15,645,264 2,346,789,600 15,647,012 98.76 6.1112 93.65
51 H59 15,638,430 2,345,764,500 15,651,657 98.78 6.1104 94.37
52 H60 15,614,960 2,342,244,000 15,632,471 98.84 6.1009 94.58
53 H61 15,629,070 2,344,360,500 15,634,909 99.06 6.1299 94.44
54 H63 15,636,592 2,345,488,800 15,646,175 98.68 6.0966 94.05
55 H64 15,644,622 2,346,693,300 15,642,704 98.63 6.0982 94
56 H65 15,648,800 2,347,320,000 15,663,287 98.76 6.1104 93.67
57 H66 15,647,578 2,347,136,700 15,648,537 98.71 6.1079 94.1
58 H67 15,644,800 2,346,720,000 15,660,901 98.52 6.0782 93.82
59 H68 15,640,580 2,346,087,000 15,649,980 98.71 6.1007 94.31
60 H69 15,631,256 2,344,688,400 15,630,676 98.84 6.1143 94.1
61 H70 15,655,344 2,348,301,600 15,660,396 98.62 6.0979 93.19
62 H71 15,637,122 2,345,568,300 15,655,204 98.54 6.0778 94.01
63 H72 15,647,880 2,347,182,000 15,666,952 98.76 6.1098 93.9
64 H73 15,664,062 2,349,609,300 15,667,395 98.92 6.1386 93.71
65 H74 15,645,486 2,346,822,900 15,653,871 98.93 6.1304 94.24
66 H75 15,643,542 2,346,531,300 15,639,646 98.66 6.0997 94.1
67 H76 15,631,808 2,344,771,200 15,631,758 98.79 6.1073 93.29
68 H79 15,690,258 2,353,538,700 15,697,408 98.65 6.115 93.66
69 H81 15,636,164 2,345,424,600 15,638,046 98.72 6.1018 94.1
70 H82 15,625,806 2,343,870,900 15,639,584 98.85 6.1112 94.43
71 H83 15,633,660 2,345,049,000 15,645,461 98.52 6.0759 93.71
72 H84 15,636,904 2,345,535,600 15,638,956 98.83 6.117 93.9
73 H85 15,642,282 2,346,342,300 15,655,320 98.68 6.0963 93.87
74 H86 15,654,490 2,348,173,500 15,659,573 98.74 6.1126 93.99
75 H87 15,652,060 2,347,809,000 15,662,526 99.03 6.1434 93.66
76 H88 15,634,468 2,345,170,200 15,632,857 99 6.137 93.6
77 H89 15,628,064 2,344,209,600 15,646,100 98.73 6.0931 93.61
78 H90 15,613,126 2,341,968,900 15,621,725 99.05 6.1289 93.48
79 H91 15,631,012 2,344,651,800 15,639,012 98.51 6.0731 93.75
80 H92 15,642,324 2,346,348,600 15,633,323 98.93 6.1335 93.76
81 H93 15,642,440 2,346,366,000 15,660,336 98.92 6.1261 93.71
82 H94 15,645,192 2,346,778,800 15,657,772 98.76 6.11 94.16
83 H98 15,646,062 2,346,909,300 15,650,958 98.88 6.1242 93.82
84 H99 15,650,152 2,347,522,800 15,649,365 98.99 6.1422 94.03
85 H100 15,639,150 2,345,872,500 15,658,739 98.98 6.1306 93.69
86 H101 15,625,178 2,343,776,700 15,647,386 98.59 6.0769 94.37
87 H102 15,640,788 2,346,118,200 15,657,631 98.86 6.1138 93.52
88 H103 15,620,126 2,343,018,900 15,633,825 98.71 6.0901 94.07
89 H104 15,636,530 2,345,479,500 15,658,275 98.75 6.096 93.42
90 H105 15,647,762 2,347,164,300 15,665,303 98.76 6.1068 93.43
91 H106 15,659,212 2,348,881,800 15,659,800 98.97 6.141 93.46
92 H107 15,648,382 2,347,257,300 15,652,697 98.81 6.1145 93.06
93 H108 15,648,200 2,347,230,000 15,661,329 98.73 6.1037 93.51
94 H109 15,646,448 2,346,967,200 15,653,428 98.65 6.0913 93.02
95 H110 15,639,892 2,345,983,800 15,664,255 98.62 6.0805 93.7
96 H111 15,639,180 2,345,877,000 15,653,438 98.88 6.117 93.92
97 H112 15,570,900 2,335,635,000 15,590,934 98.81 6.0733 93.95
98 H113 15,655,890 2,348,383,500 15,662,863 98.66 6.0954 93.5
99 H114 15,595,976 2,339,396,400 15,597,572 98.91 6.0998 93.58
100 H115 15,650,032 2,347,504,800 15,652,869 98.65 6.0964 93.65
101 H116 15,637,778 2,345,666,700 15,639,850 98.8 6.1104 93.94
102 H117 15,627,588 2,344,138,200 15,627,436 98.72 6.0782 93.5
103 H118 15,632,954 2,344,943,100 15,635,463 98.68 6.093 93.67
104 H119 15,652,736 2,347,910,400 15,663,106 98.86 6.1206 93.24
105 H120 15,647,734 2,347,160,100 15,657,814 98.7 6.098 93.91
106 H121 15,610,346 2,341,551,900 15,632,177 98.78 6.0863 93.81
107 H123 15,598,128 2,339,719,200 15,605,548 98.95 6.1023 93.66
108 H124 15,661,952 2,349,292,800 15,683,765 98.91 6.1315 93.99
109 H126 15,634,596 2,345,189,400 15,654,905 98.8 6.1013 93.39
110 H127 15,641,426 2,346,213,900 15,640,623 98.98 6.1348 93.61
111 H128 15,638,324 2,345,748,600 15,646,106 98.91 6.1211 93.86
112 H129 15,639,444 2,345,916,600 15,656,627 98.67 6.087 93.61
113 H130 15,645,230 2,346,784,500 15,664,921 98.62 6.083 93.69
114 H131 15,657,320 2,348,598,000 15,664,715 98.76 6.1143 93.86
115 H132 15,626,148 2,343,922,200 15,646,163 98.81 6.0919 94.6
116 H133 15,594,338 2,339,150,700 15,619,340 98.85 6.0935 94.4
117 H134 15,667,606 2,350,140,900 15,682,521 98.73 6.1115 93.93
118 H137 15,610,914 2,341,637,100 15,633,228 98.55 6.0621 94.1
119 H138 15,633,870 2,345,080,500 15,654,758 98.52 6.0721 94.23
120 H139 15,645,754 2,346,863,100 15,657,007 98.77 6.1081 93.79
121 H140 15,643,444 2,346,516,600 15,652,698 98.69 6.1006 93.9
122 H143 15,668,084 2,350,212,600 15,664,254 99.05 6.152 93.51
123 H144 15,650,120 2,347,518,000 15,641,978 98.92 6.1292 93.37
124 H145 15,629,292 2,344,393,800 15,655,288 98.64 6.078 93.64
125 H147 15,618,406 2,342,760,900 15,628,197 98.87 6.108 94.1
126 H149 15,567,176 2,335,076,400 15,575,971 98.72 6.068 93.26
127 H150 15,610,896 2,341,634,400 15,628,687 98.88 6.105 94.1
128 H151 15,648,120 2,347,218,000 15,680,342 98.85 6.1138 94.48
129 H152 15,652,574 2,347,886,100 15,661,193 98.81 6.1202 94.15
130 H156 15,598,540 2,339,781,000 15,594,411 98.91 6.1084 94.47
131 H157 15,641,602 2,346,240,300 15,645,884 98.76 6.11 94
132 H158 15,649,562 2,347,434,300 15,662,377 98.65 6.098 93.31
133 H159 15,649,762 2,347,464,300 15,653,101 98.67 6.1004 94.17
134 H160 15,667,296 2,350,094,400 15,685,971 98.83 6.1268 94.86
135 H161 15,479,874 2,321,981,100 15,503,106 98.94 6.0557 94.61
136 H162 15,669,080 2,350,362,000 15,680,629 98.8 6.1252 94.15
137 H163 15,663,032 2,349,454,800 15,687,369 98.65 6.0977 94.02
138 H164 15,618,640 2,342,796,000 15,636,937 98.62 6.0779 94.43
139 H165 15,651,504 2,347,725,600 15,674,063 98.56 6.0867 94.29
140 H167 15,641,368 2,346,205,200 15,643,943 99.13 6.1565 94.1
141 H168 15,641,054 2,346,158,100 15,646,273 98.73 6.1049 93.91
142 H170 15,653,652 2,348,047,800 15,663,488 98.69 6.0982 94.13
143 H171 15,668,812 2,350,321,800 15,669,727 98.67 6.1086 93.92
144 H173 15,675,188 2,351,278,200 15,690,423 98.68 6.1092 93.61
145 H174 15,661,598 2,349,239,700 15,675,575 98.77 6.1183 93.88
146 H175 15,678,796 2,351,819,400 15,702,375 98.66 6.1091 93.52
147 H176 15,282,836 2,292,425,400 15,296,067 98.8 5.9739 93.73
148 H177 15,646,244 2,346,936,600 15,669,119 98.66 6.0892 93.88
149 H178 15,649,544 2,347,431,600 15,641,523 99.04 6.1452 94.04
150 H179 15,670,220 2,350,533,000 15,684,986 98.68 6.109 93.66
151 H180 15,656,016 2,348,402,400 15,678,595 98.56 6.0868 93.54
152 H181 15,638,264 2,345,739,600 15,635,033 98.81 6.1145 94.05
153 H182 15,650,122 2,347,518,300 15,649,913 98.85 6.1254 94.17
154 H183 15,651,268 2,347,690,200 15,678,209 98.96 6.1284 94.37
155 H185 15,630,898 2,344,634,700 15,649,112 98.64 6.0826 93.88
156 H186 15,640,604 2,346,090,600 15,657,203 98.71 6.0953 94.04
157 H187 15,657,112 2,348,566,800 15,669,044 98.63 6.0983 93.74
158 H188 15,636,240 2,345,436,000 15,669,133 98.79 6.0976 94.19
159 H189 15,643,356 2,346,503,400 15,654,838 98.66 6.0974 94.62
160 H190 15,652,924 2,347,938,600 15,660,604 98.92 6.1331 94.28
161 H191 15,695,042 2,354,256,300 15,706,478 98.74 6.1273 94.11
162 H192 15,644,126 2,346,618,900 15,645,792 98.95 6.1331 94.31
163 H193 15,623,734 2,343,560,100 15,634,182 98.76 6.0991 94.4
164 H194 15,630,680 2,344,602,000 15,652,938 98.8 6.1018 93.7
165 H195 15,650,472 2,347,570,800 15,675,014 98.85 6.1214 93.91
166 H196 15,635,660 2,345,349,000 15,636,476 98.85 6.1167 94.36
167 H197 15,649,072 2,347,360,800 15,451,125 97.46 6.029 94.44
168 H198 15,664,890 2,349,733,500 15,655,932 99.14 6.1672 93.4
169 H199 15,650,714 2,347,607,100 15,649,357 98.97 6.138 94.41
170 H200 15,648,178 2,347,226,700 15,608,858 98.44 6.0904 94.28
171 H201 15,623,568 2,343,535,200 15,644,048 98.88 6.105 94.3
172 H202 15,655,202 2,348,280,300 15,670,215 98.8 6.1064 93.67
173 H203 15,630,476 2,344,571,400 15,633,295 98.71 6.0925 94.17
174 H204 15,623,138 2,343,470,700 15,646,851 98.73 6.0866 94.19
175 H205 15,636,116 2,345,417,400 15,644,750 98.99 6.1314 93.89
176 H206 15,653,604 2,348,040,600 15,660,700 98.71 6.1089 94.34
177 H207 15,649,960 2,347,494,000 15,680,180 98.6 6.0856 94.24
178 H208 15,661,136 2,349,170,400 15,683,500 98.56 6.0858 93.89
179 H209 15,610,030 2,341,504,500 15,332,494 96.78 5.9537 94.12
180 H210 15,654,376 2,348,156,400 15,657,864 98.77 6.1164 94.15
181 H212 15,652,044 2,347,806,600 15,660,112 98.71 6.106 94.42
182 H213 15,653,384 2,348,007,600 15,660,249 98.74 6.1086 94.43
183 H214 15,651,164 2,347,674,600 15,663,555 99.04 6.143 93.54
184 H215 15,659,508 2,348,926,200 15,666,902 99.09 6.1535 93.34
185 H216 15,660,744 2,349,111,600 15,676,333 98.66 6.1021 94.03
186 H217 15,649,024 2,347,353,600 15,658,283 98.63 6.0947 94.08
187 H219 15,675,696 2,351,354,400 15,688,144 98.64 6.1053 93.85
188 H221 15,681,920 2,352,288,000 15,694,734 98.52 6.0938 93.5
189 H222 15,643,696 2,346,554,400 15,641,059 98.83 6.1195 94.57
190 H224 15,660,482 2,349,072,300 15,669,870 98.52 6.0854 93.98
191 H226 15,568,560 2,335,284,000 15,605,633 98.86 6.0763 94.83
192 H228 15,673,176 2,350,976,400 15,690,824 98.66 6.106 93.78
193 H229 15,603,246 2,340,486,900 15,640,022 98.66 6.0634 94.32
194 H230 15,659,000 2,348,850,000 15,673,369 98.8 6.119 93.93
195 H231 15,667,432 2,350,114,800 15,679,878 98.77 6.0944 93.03
196 H233 15,662,366 2,349,354,900 15,669,469 98.85 6.1248 93.79
197 H234 15,661,674 2,349,251,100 15,663,993 98.91 6.1353 93.89
198 H235 15,654,314 2,348,147,100 15,672,686 98.76 6.112 94.34
199 H236 15,634,786 2,345,217,900 15,649,252 98.78 6.1026 93.84
200 H237 15,611,814 2,341,772,100 15,615,622 98.66 6.0782 94.13
201 H239 15,634,354 2,345,153,100 15,105,480 95.58 5.9076 93.68
202 H241 15,676,060 2,351,409,000 15,690,051 98.51 6.0856 93.87
203 H243 15,660,830 2,349,124,500 15,673,318 98.8 6.1119 93.62
204 H244 15,670,498 2,350,574,700 15,675,790 98.57 6.0916 93.35
205 H245 15,659,226 2,348,883,900 15,665,592 98.85 6.1206 93.7
206 H246 15,670,462 2,350,569,300 15,680,641 98.56 6.0909 93.65
207 H247 15,668,920 2,350,338,000 15,683,429 98.72 6.109 93.88
208 H248 15,635,022 2,345,253,300 15,651,802 98.78 6.0945 93.89
209 H250 15,669,354 2,350,403,100 15,679,927 98.71 6.1069 93.54
210 H251 15,673,576 2,351,036,400 15,674,961 98.71 6.1122 93.72
211 H252 15,662,336 2,349,350,400 15,671,138 98.83 6.1197 93.69
212 H253 15,654,108 2,348,116,200 15,663,577 98.97 6.1361 93.93
213 H254 15,679,174 2,351,876,100 15,691,062 98.64 6.1008 93.9
214 H255 15,663,020 2,349,453,000 15,669,247 98.62 6.0945 93.95
215 H256 15,664,826 2,349,723,900 15,684,969 98.53 6.0795 93.28
216 H257 15,654,254 2,348,138,100 15,660,761 98.97 6.1318 93.8
217 H258 15,674,924 2,351,238,600 15,697,749 98.73 6.1128 93.74
218 H259 15,604,474 2,340,671,100 15,613,775 98.8 6.0887 93.98
219 H260 15,645,904 2,346,885,600 15,661,109 98.79 6.1062 94.11
220 H261 15,671,928 2,350,789,200 15,691,047 98.9 6.1279 93.5
221 H263 15,620,536 2,343,080,400 15,259,979 96.56 5.9559 93.79
222 H264 15,710,820 2,356,623,000 15,719,500 98.72 6.1275 93.65
223 H265 15,658,198 2,348,729,700 15,664,847 98.72 6.1067 93.09
224 H266 15,666,460 2,349,969,000 15,680,524 98.73 6.1077 93.71
225 H267 15,665,356 2,349,803,400 15,675,541 98.82 6.1181 93.97
226 H268 15,533,834 2,330,075,100 15,572,106 98.83 6.0505 94.33
227 H269 15,662,386 2,349,357,900 15,667,395 99.09 6.1537 93.62
228 H270 15,654,894 2,348,234,100 15,677,947 98.73 6.0981 93.45
229 H273 15,657,610 2,348,641,500 15,648,655 99.01 6.1427 93.61
230 H274 15,664,354 2,349,653,100 15,684,094 98.82 6.1172 93.06
231 H275 15,669,548 2,350,432,200 15,689,131 98.77 6.1121 93.31
232 H276 15,645,546 2,346,831,900 15,668,720 98.88 6.1141 93.28
233 H277 15,678,368 2,351,755,200 15,692,919 98.86 6.1295 93.45
234 H278 15,672,870 2,350,930,500 15,692,324 98.78 6.1095 93.5
235 H279 15,668,886 2,350,332,900 15,675,589 98.93 6.1339 92.89
236 H280 15,648,124 2,347,218,600 15,655,673 98.76 6.1024 93.04
237 H281 15,611,140 2,341,671,000 15,629,063 99.06 6.124 93.68
238 H282 15,632,346 2,344,851,900 15,648,038 98.74 6.0915 93.61
239 H283 15,089,756 2,263,463,400 15,101,965 98.65 5.8726 93.71
240 H284 15,637,950 2,345,692,500 15,645,880 99.06 6.1348 93.76
241 H285 15,475,310 2,321,296,500 15,490,493 98.52 6.0019 88.59
242 H286 15,454,668 2,318,200,200 15,470,682 98.55 5.9964 87.32
243 H287 15,486,574 2,322,986,100 15,498,060 98.74 6.0336 88.51
244 H288 15,492,436 2,323,865,400 15,489,435 98.45 6.0059 88.45
245 H289 15,457,178 2,318,576,700 15,448,380 98.72 6.0253 87.88
246 H290 15,499,286 2,324,892,900 15,508,411 98.63 6.026 88.31
247 H291 15,476,282 2,321,442,300 15,490,455 98.75 6.0303 88.55
248 H292 15,464,520 2,319,678,000 15,466,322 98.44 5.9919 88.14
249 H293 15,472,686 2,320,902,900 15,475,667 98.63 6.016 87.88
250 H294 15,506,534 2,325,980,100 15,509,096 99.03 6.0814 86.93
251 H295 15,452,046 2,317,806,900 15,454,026 98.74 6.0231 88.29
252 H296 15,492,176 2,323,826,400 15,497,367 98.85 6.0501 88.57
253 H297 15,472,356 2,320,853,400 15,484,332 98.65 6.0177 88.29
254 H298 15,470,458 2,320,568,700 15,475,757 98.66 6.0195 88.02
255 H302 15,489,532 2,323,429,800 15,484,363 98.85 6.0526 87.71
256 H303 15,488,776 2,323,316,400 15,498,192 98.55 6.0118 87.47
257 H306 15,462,642 2,319,396,300 15,475,136 98.78 6.0278 88.28
258 H307 15,466,746 2,320,011,900 15,467,360 98.53 6.003 87.73
259 H308 15,452,280 2,317,842,000 15,286,299 97.5 5.9307 88.4
260 H310 15,468,054 2,320,208,100 15,445,741 98.56 6.0162 88.23
261 H311 15,443,720 2,316,558,000 15,444,869 98.66 6.0091 87.76
262 H312 15,476,324 2,321,448,600 15,484,090 98.53 6.0034 88.09
263 H313 15,475,090 2,321,263,500 15,474,286 98.99 6.0621 88.6
264 H314 15,393,142 2,308,971,300 15,401,466 98.62 5.9822 87.96
265 H316 15,473,580 2,321,037,000 15,476,778 98.66 6.0233 87.79
266 H317 15,465,420 2,319,813,000 15,477,794 98.75 6.026 88.19
267 H318 15,473,524 2,321,028,600 15,383,147 98 5.9761 88.31
268 H320 15,495,818 2,324,372,700 15,499,030 98.69 6.0348 89.14
269 H321 15,479,294 2,321,894,100 15,486,240 98.87 6.0499 88.71
270 H322 15,495,452 2,324,317,800 15,490,372 99 6.0736 88.46
271 H323 15,471,244 2,320,686,600 15,450,926 98.94 6.0598 88.26
272 H326 15,478,156 2,321,723,400 15,491,864 98.57 6.0094 88.55
273 H327 15,473,938 2,321,090,700 15,489,143 98.61 6.0106 88.52
274 H328 15,484,622 2,322,693,300 15,490,554 98.53 6.0089 88.83
275 H329 15,467,558 2,320,133,700 15,474,935 98.68 6.0209 88.34
276 H330 15,514,650 2,327,197,500 15,532,834 98.56 6.0211 89.01
277 H331 15,470,634 2,320,595,100 15,475,265 98.63 6.0156 88.24
278 H332 15,640,898 2,346,134,700 15,631,661 98.61 6.081 90.56
279 H333 15,619,272 2,342,890,800 15,624,938 98.82 6.0946 90.03
280 H334 15,613,988 2,342,098,200 15,615,176 98.8 6.092 90.25
281 H337 15,504,816 2,325,722,400 15,510,120 98.84 6.0496 91.03
282 H338 15,647,170 2,347,075,500 15,661,579 99 6.1434 95.21
283 H339 15,601,652 2,340,247,800 15,612,141 98.85 6.0894 90.46
284 H340 15,626,172 2,343,925,800 15,644,228 98.54 6.0587 90.92

附表3

遗传图谱统计结果"

遗传连锁群
Chr.
标记个数
No. of markers
Bin标记个数
No. of bins
连锁群总长度
Length of linkage (cM)
平均遗传距离
Bin interval (cM)
LG1 4734 286 169.35 0.59
LG2 1530 296 243.34 0.82
LG3 4850 254 142.33 0.56
LG4 607 140 169.06 1.21
LG5 4969 406 228.86 0.56
LG6 349 112 139.07 1.24
LG7 768 160 152.43 0.95
LG8 1022 161 133.46 0.83
LG9 708 165 128.62 0.78
LG10 2128 211 142.78 0.68
LG11 3206 334 177.9 0.53
LG12 1002 189 176.76 0.94

图6

MQMmapping方法在11号染色体的LOD扫描曲线图 A: 2019年抗病QTL定位图; B: 2020年抗病QTL定位图, 横坐标为遗传距离, 单位厘摩(cM), 纵坐标为LOD值, 所选QTL取LOD大于3.0。"

表1

2019年和2020年11号染色体上抗性相关显著性QTL位点统计表"

年份
Year
遗传距离
Genetic distance (cM)
染色体位置
Position in Chr.11 (bp)
LOD值
LOD value
解释群体表型变异率
PVE (%)
2019 13.63 23,158,464 5.81 9.0
2019 12.46 23,134,243 4.93 7.7
2019 12.80 23,152,825 4.50 7.1
2019 13.13 22,960,073 3.71 5.9
2020 13.63 23,158,464 5.96 9.3
2020 12.46 23,134,243 5.90 9.2
2020 12.80 23,152,825 5.31 8.3
2020 13.13 22,960,073 3.55 5.6

图7

qBB-11-1的精细定位 片段重叠群分法对qBB-11-1区间进行精细定位, H64、H68代表F6 RILs中的抗病单株, H87、H253代表F6 RILs中的感病单株, BC2F2 (From H64)代表LTH/H64//LTH自交得到的群体, BC2F3 (From H64)代表上述BC2F2中的抗、感病代表性单株分别自交后的群体; BC2F2 (From H253)代表YN/H253//YN后自交得到的群体, BC2F3 (From H253)代表上述BC2F2中的抗、感病代表性单株分别自交后的群体; 1#、2#、3#、4#、5#代表BC2F2中的单株; 1-1#代表BC2F3中源自1#的株系; 2-1#、2-2#、2-3#、2-4#、2-5#代表BC2F3中源自2#的株系; 3-1#代表BC2F3中源自3#的株系; 4-1#、4-2#、4-3#、4-4#代表BC2F3中源自4#的株系; 5-1#代表BC2F3中源自5#的株系; BC1F3 (From H87)代表YN/H87连续自交后得到的感病群体; BC1F3 (From H68)代表LTH/H68连续自交后得到的抗病群体。CEN代表着丝粒; TEL代表端粒; P31、P35、P89、P54、P5、P12、P22、P66、P67代表区间内设计的InDel分子标记; YN Homo: 粤农丝苗纯合基因型; LTH Homo: 丽江新团黑谷纯合基因型; Hetero: 杂合基因型; 以YN病斑长度为对照利用t检验来计算P值, 柱状图中的***、**分别表示0.001、0.01水平与YN的显著性差异; No. plants: 代表该基因型对应检测的植株个数。"

[1] Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.): an updated review. Rice, 2020, 13: 3.
doi: 10.1186/s12284-019-0358-y pmid: 31915945
[2] 章琦. 中国杂交水稻白叶枯病抗性的遗传改良. 中国水稻科学, 2009, 23: 111-119.
Zhang Q. Genetics and improvement of resistance to bacterial blight in hybrid rice in China. Chin J Rice Sci, 2009, 23: 111-119. (in Chinese with English abstract)
[3] Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacteria-blight disease in rice. Plant Commun, 2021, 2: 100143.
[4] 何秀英, 廖耀平, 陈钊明, 程永盛, 陈粤汉, 刘维. 优质抗病水稻新品种粤农丝苗的选育及应用. 中国稻米, 2014, 20(2): 69-70.
doi: 10.3969/j.issn.1006-8082.2014.02.020
He X Y, Liao Y P, Chen Z M, Cheng Y S, Chen Y H, Liu W. Breeding and application of a new rice variety Yuenongsimiao with good quality and disease resistance. China Rice, 2014, 20(2): 69-70. (in Chinese with English abstract)
[5] 陈深, 汪聪颖, 苏菁, 冯爱卿, 朱小源, 曾列先. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44: 217-222.
Chen S, Wang C Y, Su J, Feng A Q, Zhu X Y, Zeng L X. Differential detection and analysis of pathotypes and differentiation against Xanthomonas oryzae pv. oryzae in southern China. J Plant Prot, 2017, 44: 217-222. (in Chinese with English abstract)
[6] 方中达, 许志刚, 过崇俭, 殷尚智, 伍尚忠, 徐羡明, 章琦. 中国水稻白叶枯病菌致病型的研究. 植物病理学报, 1990, 20(2): 3-10.
Fang Z D, Xu Z G, Guo C J, Yin S Z, Wu S Z, Xu X M, Zhang Q. Studies on pathotypes of Xanthomonas campestris pv. oryzae in China. Acta Phytopathol Sin, 1990, 20(2): 3-10. (in Chinese with English abstract)
[7] Li H, Richard D. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324
[8] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170
[9] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352
[10] Danecek P, Auton A, Abecasis G, Albers C A, Banks E, De Pristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[11] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[12] Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics, 2017, 33: 3726-3732.
doi: 10.1093/bioinformatics/btx494 pmid: 29036272
[13] Van Ooijen J W. MapQTL® 6: Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species. Netherlands, 2009. p 59.
[14] Arends D, Prins P, Jansen R C, Broman K W. R/QTL: high- throughput multiple QTL mapping. Bioinformatics, 2010, 26: 2990-2992.
doi: 10.1093/bioinformatics/btq565 pmid: 20966004
[15] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918
[16] Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124: 735-742.
doi: 10.1093/genetics/124.3.735 pmid: 1968874
[17] 张月雄, 梁海福, 秦钢, 马增凤, 岑贞陆, 刘驰, 罗同平, 韦敏益, 李振经, 李容柏, 黄大辉. 籼稻品种9311抗白叶枯基因鉴定和定位. 分子植物育种, 2018, 16: 460-465.
Zhang Y X, Liang H F, Qin G, Ma Z F, Cen Z L, Liu C, Luo T P, Wei M Y, Li Z J, Li R B, Huang D H. Identification and mapping of a bacterial blight resistance gene in indica cv. 9311. Mol Plant Breed, 2018, 16: 460-465. (in Chinese with English abstract)
[18] Kim S M, Reinke R F. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS One, 2019, 14: e0211775.
[19] Chen S, Wang C, Yang J, Chen B, Wang W, Su J, Feng A, Zeng L, Zhu X. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci Rep, 2020, 10: 12642.
[20] Zhang F, Huang L Y, Zhang F, Ali J, Cruz C V, Zhuo D L, Du Z L, Li Z K, Zhou Y L. Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genomics, 2015, 16: 111.
doi: 10.1186/s12864-015-1329-3 pmid: 25765449
[21] Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology. Sci China Life Sci, 2021, 64: 51-65.
doi: 10.1007/s11427-020-1699-4
[22] Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife, 2016, 5: e19605.
[23] Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20: 1250-1255.
doi: 10.1101/gad.1416306
[24] Yang B, Sugio A, White F F. Os8N3 is a host disease- susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508.
[25] Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ, 2011, 34: 1958-1969.
doi: 10.1111/j.1365-3040.2011.02391.x
[26] Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14resistance allele to bacterial blight from wild rice. Plant J, 2015, 84: 694-703.
doi: 10.1111/tpj.13042
[27] Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White F F, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26: 497-515.
doi: 10.1105/tpc.113.119255
[28] Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015, 8: 290-302.
doi: 10.1016/j.molp.2014.10.010
[29] Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F, Yin Z. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125.
doi: 10.1038/nature03630
[30] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
doi: 10.1073/pnas.95.4.1663
[31] Zhang B, Zhang H, Li F, Ouyang Y, Yuan M, Li X, Xiao J, Wang S. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae. Plant Commun, 2020, 1: 100088.
[32] Ji C, Ji Z, Liu B, Cheng H, Liu H, Liu S, Yang B, Chen G. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun, 2020, 1: 100087.
[33] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370
[34] Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527.
doi: 10.1046/j.1365-313X.2003.01976.x
[35] Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants, 2017, 3: 17009.
[36] Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, Herrfurth C, Zhang Y, Feussner I. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell, 2021, 33: 735-749.
doi: 10.1093/plcell/koaa045
[37] Holmes E C, Chen Y C, Mudgett M B, Sattely E S. Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell, 2021, 33: 750-765.
doi: 10.1093/plcell/koaa052
[38] Lee B J, Kim S K, Choi S B, Bae J, Kim K J, Kim Y J, Paek K H. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Lett, 2009, 583: 2315-2320.
doi: 10.1016/j.febslet.2009.06.028
[39] Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 2002, 14: 1093-1107.
doi: 10.1105/tpc.010436
[40] He Y, Wu L, Liu X, Jiang P, Yu L, Qiu J, Wang G, Zhang X, Ma H. TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat. Front Plant Sci, 2020, 11: 574775.
[41] Peng Y, Zhang Y, Gui Y, An D, Liu J, Xu X, Li Q, Wang J, Wang W, Shi C, Fan L, Lu B, Deng Y, Teng S, He Z. Elimination of a retrotransposon for quenching genome instability in modern rice. Mol Plant, 2019, 12: 1395-1407.
doi: S1674-2052(19)30205-9 pmid: 31228579
[42] Nidumukkala S, Tayi L, Chittela R K, Vudem D R, Khareedu V R. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol, 2019, 39: 395-407.
doi: 10.1080/07388551.2019.1566204 pmid: 30714414
[43] Zhang Q. Genetics and improvement of bacterial blight resistance of hybrid rice in China. Rice Sci, 2009, 16: 83-92.
doi: 10.1016/S1672-6308(08)60062-1
[44] Quibod I L, Atieza-Grande G, Oreiro E G, Palmos D, Nguyen M H, Coronejo S T, Aung E E, Nugroho C, Roman-Reyna V, Burgos M R, Capistrano P, Dossa S G, Onaga G, Saloma C, Cruz C V, Oliva R. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME J, 2020, 14: 492-505.
[45] Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet, 2018, 19: 21-33.
doi: 10.1038/nrg.2017.82
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[6] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[7] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[8] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[9] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[10] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[11] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[12] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[13] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[14] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!