欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2053-2065.doi: 10.3724/SP.J.1006.2022.12038

• 耕作栽培·生理生化 • 上一篇    下一篇

不同类型水稻品种茎叶维管束与同化物运转特征

周驰燕(), 李国辉*(), 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程   

  1. 农业农村部长江流域稻作技术创新中心 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学水稻产业工程技术研究院, 江苏扬州 225009
  • 收稿日期:2021-06-03 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-30
  • 通讯作者: 李国辉
  • 作者简介:E-mail: 996979082@qq.com
  • 基金资助:
    国家自然科学基金项目(31901425);江苏省研究生科研与实践创新计划项目(KYCX20_3002)

Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties

ZHOU Chi-Yan(), LI Guo-Hui*(), XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng   

  1. Innovation Center of Rice Cultivation Technology in Yangtze River Valley of Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-06-03 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-30
  • Contact: LI Guo-Hui
  • Supported by:
    National Natural Science Foundation of China(31901425);Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_3002)

摘要:

选用籼型杂交稻、籼粳杂交稻、籼型常规稻和粳型常规稻4种不同类型水稻品种, 比较其穗颈和剑叶维管束特征、茎叶同化物运转特征, 分析穗颈和剑叶维管束特征与茎叶同化物转运和产量形成的关系, 探讨施氮水平对水稻穗颈和剑叶维管束特征和茎叶同化物转运的影响。结果表明, 不同类型水稻品种间穗颈和剑叶维管束数量和解剖结构特征、茎叶非结构性碳水化合物(non-structural carbohydrates, NSC)转运存在基因型差异。4种不同类型水稻品种中, 籼型杂交稻和籼粳杂交稻穗颈和剑叶维管束数量、平均横截面积和韧皮部面积较高, 其茎叶NSC转运和产量也较高, 其次是籼型常规稻, 粳型常规稻的穗颈和剑叶维管束数量、平均横截面积和韧皮部面积最低, 其茎叶NSC转运和产量也最低。水稻穗颈和剑叶维管束特征和茎叶NSC转运受氮水平的影响, 低氮能够促进茎叶NSC转运, 增施氮肥增加了穗颈和剑叶维管束数量、平均横截面积和韧皮部面积, 但穗颈横截面维管束密度降低。相关性分析表明, 水稻穗颈大、小维管束数量与茎叶NSC转运显著或极显著正相关, 穗颈和剑叶大、小维管束数量、横截面积和韧皮部面积与产量显著或极显著正相关。因此, 选择茎叶维管束系统发育较好的水稻品种, 同时合理施用氮肥改善维管束特征, 有利于茎叶同化物转运, 提高产量。

关键词: 水稻, 穗颈维管束, 剑叶维管束, 茎叶同化物转运, 氮水平

Abstract:

To compare the characteristics of vascular bundle of peduncle and flag leaf and assimilate translocation of stems and leaves and to explore the relationship between the characteristics of vascular bundle and the assimilate translocation of stems and leaves and yield formation, four different types of rice varieties were selected and studied, including indica hybrid rice, indica-japonica hybrid rice, indica conventional rice, and japonica conventional rice. The results showed that there were differences in genotypic phenotypes among the number and anatomical characteristics of vascular bundles of peduncle and flag leaf and non-structural carbohydrate (NSC) translocation in stems and leaves among different rice varieties. Among the four different types of rice varieties, the number of vascular bundles, average cross-section area and phloem area of peduncle and flag leaf of indica hybrid rice and indica-japonica hybrid rice were higher than those of the other two types of rice varieties, and the stem and leaf NSC translocation and yield were also higher than those of the other two types of rice varieties, followed by indica conventional rice. The vascular bundle number, average cross-sectional area and phloem area of peduncle and flag leaf in japonica conventional rice was the lowest, and the NSC translocation and yield of stem leaf was also the lowest. The characteristics of the vascular bundle and the translocation of stems and leaves NSC were affected by nitrogen application levels. Low nitrogen could promote the NSC translocation of stems and leaves, high nitrogen application could increase the number of vascular bundles, the average cross-section area and phloem area of peduncle and flag leaf, but the density of the cross-section vascular bundle of peduncle was decreased. Correlation analysis showed that the number of large and small vascular bundles of peduncle and flag leaf was significantly or extremely significantly positively correlated with NSC translocation of stems and leaves, the number of large and small vascular bundles, average cross-section area and phloem area of peduncle and flag leaf were significantly or extremely significantly positively correlated with yield. In conclusion, selecting rice varieties with well vascular bundle phylogeny and rational application of nitrogen fertilizer can improve the characteristics of vascular bundle, facilitate the translocation of assimilate in stems and leaves, and promote grain yield.

Key words: rice, vascular bundle of peduncle, vascular bundle of flag leaf, assimilate translocation of stems and leaves, nitrogen

图1

两种氮水平下不同类型水稻品种穗颈大、小维管束数量 IH、IJH、IC、JC分别为籼型杂交稻、籼粳杂交稻、籼型常规稻、粳型常规稻; LN、HN分别为0.03 g N kg-1土壤、0.3 g N kg-1土壤。柱形图上不同字母表示同一氮处理不同类型品种在0.05水平差异显著; *表示同一类型品种不同氮处理在0.05水平差异显著。"

图2

两种氮水平下不同类型水稻品种穗颈大、小维管束密度 处理同图1。柱形图上不同字母表示同一氮处理不同类型品种在0.05水平差异显著; *表示同一类型品种不同氮处理在0.05水平差异显著。"

图3

两种氮水平下不同类型水稻品种穗颈大、小维管束平均横截面积和韧皮部面积 处理同图1。柱形图上不同字母表示同一氮处理不同类型品种在0.05水平差异显著; * 表示同一类型品种不同氮处理在0.05水平差异显著。"

图4

两种氮水平下不同类型水稻品种剑叶大、小维管束数量 处理同图1。柱形图上不同字母表示同一氮处理不同类型品种在0.05水平差异显著; *表示同一类型品种不同氮处理在0.05水平差异显著。"

图5

两种氮水平下不同类型水稻品种剑叶大、小维管束平均横截面积和韧皮部面积 处理同图1。柱形图上不同字母表示同一氮处理不同类型品种在0.05水平差异显著; * 表示同一类型品种不同氮处理在0.05水平差异显著。"

图6

两种氮水平下不同类型水稻品种茎鞘非结构性碳水化合物含量动态变化 处理同图1。HD: 抽穗期; DAH: 抽穗后天数; MD: 成熟期。"

图7

两种氮水平下不同类型水稻品种剑叶非结构性碳水化合物含量动态变化 处理同图1。"

表1

不同类型水稻品种茎鞘NSC转运"

品种类型
Variety type
茎鞘NSC表观转运量ATM (mg g-1) 茎鞘NSC表观转运率AR (%) 茎鞘NSC对产量的表观贡献率AC (%)
低氮
LN
高氮
HN
低氮
LN
高氮
HN
低氮
LN
高氮
HN
籼型杂交稻IH 241.0 ab 216.2 b 90.1 a* 74.8 a 17.7 ab 15.7 a
籼粳杂交稻IJH 266.0 a 243.7 a 83.0 b 79.3 a 20.0 a 17.4 a
籼型常规稻IC 211.1 b* 150.2 c 84.8 ab* 58.3 b 15.8 ab* 11.5 b
粳型常规稻JC 175.6 c 122.6 d 67.6 c* 53.1 b 15.0 b 7.5 c

表2

不同类型水稻品种叶片NSC转运"

品种类型
Variety type
叶片NSC表观转运量ATM (mg g-1) 叶片NSC表观转运率AR (%) 叶片NSC对产量的表观贡献率AC (%)
低氮
LN
高氮
HN
低氮
LN
高氮
HN
低氮
LN
高氮
HN
籼型杂交稻IH 7.15 a 5.38 a 17.24 a* 11.77 a 0.02 b 0.06 a*
籼粳杂交稻IJH 16.15 a 10.39 a 31.06 a* 20.10 a 0.16 a 0.15 a
籼型常规稻IC -3.93 b -10.56 b -10.74 b -25.95 b -0.04 b -0.20 b
粳型常规稻JC -4.91 b -11.79 b -11.55 b -27.70 b -0.07 b -0.16 b

表3

不同类型水稻品种穗颈维管束特征与茎鞘NSC转运的相关性(n = 24)"

性状
Characteristic
大(小)维管束数量
Number of large (small) vascular bundles
大(小)维管束密度
Large (small) vascular density
大(小)维管束
平均横截面积
Average cross-sectional area of large (small) vascular bundles
大(小)维管束
平均韧皮部面积
Average phloem area of large (small) vascular bundles
茎鞘NSC表观转运量ATM 0.62** (0.79**) -0.52** (-0.49*) 0.26 (0.35) 0.24 (0.20)
茎鞘NSC表观转运率AR 0.42* (0.47*) -0.47* (-0.45*) 0.20 (0.22) 0.23 (0.16)
茎鞘NSC对产量的表观贡献率AC 0.49* (0.51*) -0.48* (-0.46*) 0.22 (0.33) 0.18 (0.18)

表4

不同类型水稻品种穗颈维管束特征与叶片NSC转运的相关性(n = 24)"

性状
Characteristic
大(小)维管束数量
Number of large (small) vascular bundles
大(小)维管束密度
Large (small) vascular density
大(小)维管束
平均横截面积
Average cross-sectional area of large (small)
vascular bundles
大(小)维管束
平均韧皮部面积
Average phloem area of large (small) vascular
bundles
叶片NSC表观转运量ATM 0.65** (0.62**) -0.52** (-0.56**) 0.22 (0.37) 0.21 (0.16)
叶片NSC表观转运率AR 0.59** (0.59**) -0.55** (-0.60**) 0.25 (0.38) 0.25 (0.18)
叶片NSC对产量的表观贡献率AC 0.69** (0.71**) -0.46* (-0.54**) 0.16 (0.32) 0.17 (0.11)

表5

不同类型水稻品种的产量及产量构成"

性状
Characteristic
处理
Treatment
籼型杂交稻
IH
籼粳杂交稻
IJH
籼型常规稻
IC
粳型常规稻
JC
有效穗数
The effective panicles (No. plant-1)
低氮LN 3.5 b 3.0 c 3.5 b 4.2 a
高氮HN 10.0 bc* 8.7 c* 10.7 b* 12.3 a*
每穗颖花数
Number of spikelets per panicle (No. panicle-1)
低氮LN 140.1 b 208.1 a 136.7 b 95.1 c
高氮HN 194.3 b* 249.5 a* 172.1 b 106.5 c
结实率
Grain filling percentage (%)
低氮LN 85.6 b 92.8 a 89.6 ab 87.4 ab
高氮HN 91.0 b* 92.5 ab 91.8 b 95.2 a
千粒重
1000-grain weight (g)
低氮LN 24.6 a 23.2 b* 23.3 b 25.3 a
高氮HN 25.9 a* 22.4 d 23.6 c 24.6 b
产量
Yield (g pant-1)
低氮LN 10.1 b 13.5 a 9.8 b 8.6 c
高氮HN 44.6 a* 44.9 a* 39.1 b* 30.0 c*
生物量
Biomass (g pant-1)
低氮LN 18.7 b 25.6 a 18.7 b 17.4 b
高氮HN 84.5 ab* 85.3 a* 78.5 b* 54.0 c*
收获指数
Harvest index (%)
低氮LN 54.2 a 52.6 a 52.0 a 49.2 b
高氮HN 52.9 ab* 52.3 ab 49.6 b 55.7 a

表6

不同类型水稻品种穗颈维管束特征与结实率、千粒重和产量的相关性(n = 24)"

性状
Characteristic
结实率
Grain filling percentage
千粒重
1000-grain weight
产量
Yield
大(小)维管束数量
Number of large (small) vascular bundles
0.38 (0.33) -0.72** (-0.55**) 0.18 (0.43*)
大(小)维管束平均横截面积
Average cross-sectional area of large (small) vascular bundles
-0.06 (0.01) 0.26 (0.18) 0.50* (0.54**)
大(小)维管束平均韧皮部面积
Average phloem area of large (small) vascular bundles
-0.16 (-0.03) 0.26 (0.24) 0.43* (0.52**)

表7

不同类型水稻品种剑叶维管束特征与结实率、千粒重和产量的相关性(n = 24)"

性状
Characteristic
结实率
Grain filling percentage
千粒重
1000-grain weight
产量
Yield
大(小)维管束数量
Number of large (small) vascular bundles
0.55** (0.40) -0.27 (-0.38) 0.90** (0.87**)
大(小)维管束平均横截面积
Average cross-sectional area of large (small) vascular bundles
0.46* (0.45*) -0.32 (-0.36) 0.67** (0.54**)
大(小)维管束平均韧皮部面积
Average phloem area of large (small) vascular bundles
0.33 (0.22) -0.02 (-0.09) 0.83** (0.70**)
[1] Scofield G N, Hirose T, Aoki N, Furbank R T. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot, 2007, 58: 3155-3169.
pmid: 17728297
[2] 李梦阳, 彭冠云, 邓彪, 孟桂元. 水稻维管束的研究进展. 植物生理学报, 2017, 53: 1586-1590.
Li M Y, Peng G Y, Deng B, Meng G Y. Research of rice vascular bundle. Plant Physiol J, 2017, 53: 1586-1590. (in Chinese with English abstract)
[3] 周驰燕, 李国辉, 许轲, 郭保卫, 戴其根, 霍中洋, 魏海燕, 张洪程. 水稻茎鞘非结构性碳水化合物转运机理及栽培调控研究进展. 生命科学, 2021, 33(1): 111-120.
Zhou C Y, Li G H, Xu K, Guo B W, Dai Q G, Huo Z Y, Wei H Y, Zhang H C. Advances in translocation mechanism and cultivation regulation of non-structural carbohydrate in rice stem and sheath. Chin Bull Life Sci, 2021, 33(1): 111-120. (in Chinese with English abstract)
[4] 廖色梅, 尹超, 石书兵, 邓应德, 张海清. 亚种间杂交稻干物质分配及其与筛管结构和细胞活性相关性研究综述. 中国农学通报, 2014, 30(12): 8-13.
Liao S M, Yin C, Shi S B, Deng Y D, Zhang H Q. Research review on dry matter distribution and its screen's structure and cellular activity relationships of intersubspecific hybrid rice. Chin Agric Sci Bull, 2014, 30(12): 8-13. (in Chinese with English abstract)
[5] 马均, 马文波, 周开达, 汪旭东, 田彦华, 明东风, 许凤英. 水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究. 作物学报, 2002, 28: 215-220.
Ma J, Ma W B, Zhou K D, Wang X D, Tian Y H, Ming D F, Xu F Y. The characteristics of the tissues of the first internode and their relations to the grain-filling for the different panicle types of rice. Acta Agron Sin, 2002, 28: 215-220. (in Chinese with English abstract)
[6] 周红英, 张桂莲, 肖应辉, 唐文邦, 陈立云. 超大穗型水稻R1126及其组合穗颈输导组织与籽粒灌浆结实的关系. 中国水稻科学, 2014, 28: 411-418.
Zhou H Y, Zhang G L, Xiao Y H, Tang W B, Chen L Y. Relationship between the conducting tissue in the first internode and the grain-filling of super large panicle rice restore line R1126 and its derived combinations. Chin J Rice Sci, 2014, 28: 411-418. (in Chinese with English abstract)
[7] 李国辉, 张国, 崔克辉. 水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系. 植物生理学报, 2019, 55: 329-341.
Li G H, Zhang G, Cui K H. Characteristics of vascular bundles of peduncle and its relationship with translocation of stem assimilates and yield in rice. Plant Physiol J, 2019, 55: 329-341. (in Chinese with English abstract)
doi: 10.1111/j.1399-3054.1982.tb00300.x
[8] Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 3rd edn. IRRI, Manila, Philippines, 1976. pp 46-49.
[9] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓棠, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量性状的影响及其相互关系. 作物学报, 2021, 47: 964-973.
doi: 10.3724/SP.J.1006.2021.02040
Cheng Y S, Hu M Y, Du Z M, Yan B C, Li L, Wang Y W, Ju X T, Sun L L, Xu H. Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation. Acta Agron Sin, 2021, 47: 964-973. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02040
[10] Teng S, Qian Q, Zeng D L, Kunihiro Y, Zhu L H. QTLs analysis of rice peduncle vascular bundle system and panicle traits. Rice Sci, 2001, 9: 2-3.
[11] 蒋昆炜. 水稻剑叶维管束性状的全基因组关联分析. 沈阳农业大学硕士学位论文,辽宁沈阳, 2020.
Jiang K W. Genome-wide Association Study of The Flag Leaf Vascular Bundles Related Traits in Rice. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[12] 许明子, 全雪丽, 石铁源, 郑成淑, 刘宪虎. 不同水稻品种穗颈维管束性状及其相关研究. 延边大学农学学报, 2000, 22(2): 81-85.
Xu M Z, Quan X L, Shi T Y, Zheng C S, Liu X H. Study on conducting bundle character of reck and correlation of several rice breeds. J Agric Sci Yanbian Univ, 2000, 22(2): 81-85. (in Chinese with English abstract)
[13] 李国辉. 水稻茎鞘非结构性碳水化合物积累转运和颖果韧皮部卸载机理. 华中农业大学博士学位论文,湖北武汉, 2018.
Li G H. Mechanisms of Accumulation and Translocation of Stem Non-structural Carbohydrates and Phloem Unloading of Caryopsis in Rice (Oryza sativa L.). PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[14] Terao T, Nagata K, Morino K, Hirose T. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet, 2010, 120: 875-893.
doi: 10.1007/s00122-009-1218-8
[15] Pan J, Cui K, Wei D, Huang J, Xiang J, Nie L. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol Plant, 2011, 141: 321-331.
doi: 10.1111/j.1399-3054.2010.01441.x
[16] Fritz E, Evert R F, Nasse H. Loading and transport of assimilates in different maize leaf bundles: digital image analysis of 14C-microautoradiographs. Planta, 1989, 178: 1-9.
doi: 10.1007/BF00392520 pmid: 24212543
[17] 袁绍文, 孙文强, 王电文, 余四斌, 何菡子. 穗颈维管性状与产量相关性状的遗传分析. 植物遗传资源学报, 2021, 22: 183-193.
Yuan S W, Sun W Q, Wang D W, Yu S B, He H Z. Genetic analysis of vascular bundle-related traits of neck-panicle and yield traits. J Plant Genet Resour, 2021, 22: 183-193. (in Chinese with English abstract)
[18] 彭廷, 可文静, 熊加豹, 王海彬, 韩雨恩, 孔许, 张静, 马国辉, 魏中伟, 林文雅, 潘晓华, 章秀福, 马均. 超级杂交稻持续增产的茎秆维管束结构基础研究. 华北农学报, 2019, 34(1): 165-171.
Peng T, Ke W J, Xiong J B, Wang H B, Han Y E, Kong X, Zhang J, Ma G H, Wei Z W, Lin W Y, Zhang X F, Ma J. Study on the characterization of stem vascular bundles in super hybrid rice with yield potential continuous increase. Acta Agric Boreali-Sin, 2019, 34(1): 165-171. (in Chinese with English abstract)
[19] Sage R F, Roxana K, Sage T L. From proto-Kranz to C4-Kranz: building the bridge to C4 photosynthesis. J Exp Bot, 2014, 65: 3341-3356.
doi: 10.1093/jxb/eru180
[20] 陈书强, 徐正进, 陈温福, 徐海, 刘宏光, 朱春杰, 王韵, 王嘉宇. 籼粳稻杂交后代维管束性状与穗部性状的关系. 华北农学报, 2007, 22(5): 8-14.
Chen S Q, Xu Z J, Chen W F, Xu H, Liu H G, Zhu C J, Wang Y, Wang J Y. The relation between the characters of vascular bundle and panicle in the filial generation from Indica and Japonica rice. Acta Agric Boreali-Sin, 2007, 22(5): 8-14. (in Chinese with English abstract)
[21] 王留行, 彭廷, 熊加豹, 王海彬, 刘晔, 张静, 王代长, 滕永忠, 赵全志. 氮肥对超级杂交稻穗颈节间维管束结构的影响. 河南农业科学, 2019, 48(9): 14-22.
Wang L X, Peng Y, Xiong J B, Wang H B, Liu Y, Zhang J, Wang D C, Teng Y Z, Zhao Q Z. Effects of nitrogen fertilizer on vascular bundle structure in first internode of super hybrid rice. J Henan Agric Sci, 2019, 48(9): 14-22. (in Chinese with English abstract)
[22] 申海兵, 杨德龙, 景蕊莲, 昌小平, 曲延英. 小麦穗颈维管束遗传特性及其与产量性状的关系. 麦类作物学报, 2007, 27: 465-470.
Shen H B, Yang D L, Jing R L, Chang X P, Qu Y Y. Genetic characters of vascular bundle in the first internode and its relationship with yield components of wheat. J Triticeae Crops, 2007, 27: 465-470. (in Chinese with English abstract)
[23] Ren H, Jiang Y, Zhao M, Qi H, Li C F. Nitrogen supply regulates vascular bundle structure and matter transport characteristics of spring maize under high plant density. Front Plant Sci, 2020, 11: 602739.
doi: 10.3389/fpls.2020.602739
[24] Fu H Y, Cui D D, Shen H. Effects of nitrogen forms and application rates on nitrogen uptake, photosynthetic characteristics and yield of double-cropping rice in South China. Agronomy, 2021, 11: 158-158.
doi: 10.3390/agronomy11010158
[25] Cao P P, Sun W J, Huang Y, Yang J R, Yang K, Lyu C H, Wang Y J, Yu L F, Hu Z H. Effects of elevated CO2 concentration and nitrogen application levels on the accumulation and translocation of non-structural carbohydrates in japonica rice. Sustainability, 2020, 12: 5386.
doi: 10.3390/su12135386
[26] Fu J, Huang Z H, Wang Z Q, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123: 170-182.
doi: 10.1016/j.fcr.2011.05.015
[27] 潘俊峰, 王博, 崔克辉, 黄见良, 聂立孝. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响. 中国水稻科学, 2016, 30: 273-282.
Pan J F, Wang B, Cui K H, Huang J L, Nie L X. Effects of nitrogen application on accumulation and translocation of non-structural carbohydrates in internodes and sheaths of rice. Chin J Rice Sci, 2016, 30: 273-282 (in Chinese with English abstract).
[28] 李国辉, 崔克辉. 氮对水稻叶蔗糖磷酸合成酶的影响及其与同化物积累和产量的关系. 植物生理学报, 2018, 54: 1195-1204.
Li G H, Cui K H. The effect of nitrogen on leaf sucrose phosphate synthase and its relationships with assimilate accumulation and yield in rice. Plant Physiol J, 2018, 54: 1195-1204. (in Chinese with English abstract)
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[6] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[7] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[8] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[9] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[10] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[11] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[12] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[13] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[14] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[15] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[10] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .