作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1813-1821.doi: 10.3724/SP.J.1006.2022.12047
YANG Fei1(), ZHANG Zheng-Feng2(), NAN Bo1, XIAO Ben-Ze1,*()
摘要:
水稻是最重要的粮食作物之一, 培育高产稳产的水稻品种对于维护粮食安全至关重要, 对产量相关性状的遗传解析是提高水稻产量的基础。本文从“3000份水稻核心种质重测序项目” (3K Rice Genome Project)中挑选生育期较为一致的226份核心种质资源材料考察生育期(rice growing period, RGP)、株高(plant height, PH)、有效穗数(effective panicle number, EPN)、穗长(panicle length, PL)、穗着粒密度(spikelet density, SD)、结实率(seed setting rate, SSR)、千粒重(thousand grains weight, TGW)、单株产量(yield per plant, YP)、每穗颖花数(spikelet per panicle, SP)、每穗实粒数(grains per panicle, GP) 10个主要农艺性状, 结合2429 kb的高密度基因型数据进行全基因组关联分析(genome-wide association study, GWAS)。共定位到显著相关位点43个, 除了qRGP7.2、qPH12、qPL6.2、qSD6.2、qTGW1.1、qGP1、qGP5.2 7个QTLs以外, 其余36个QTL为本研究中定位到的新位点。此外, 本研究利用单核苷酸位点功能评估的方式筛选到6个主要农艺性状相关候选基因。分别为株高相关基因LOC_Os12g18760、有效穗数相关基因LOC_Os03g33530、穗长相关基因LOC_Os06g30940、千粒重相关基因LOC_Os01g49810、单株产量相关基因LOC_Os09g25260、穗着粒密度和每穗颖花数相关基因LOC_Os09g32620。本研究结果将为水稻产量遗传改良提供理论参考与重要基因资源。
[1] |
Godfray H C, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
doi: 10.1126/science.1185383 |
[2] |
Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927.
doi: 10.1073/pnas.111136798 |
[3] |
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096-1105.
pmid: 12407188 |
[4] |
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936.
doi: 10.1101/gad.1189604 |
[5] |
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745.
doi: 10.1126/science.1113373 |
[6] |
Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1 |
[7] |
Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014 |
[8] | 赵芳明, 朱海涛, 丁效华, 曾瑞珍, 张泽民, 李文涛, 张桂权. 基于SSSL的水稻重要性状QTL的鉴定及稳定性分析. 中国农业科学, 2007, 40: 447-456. |
Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for traits of agronomic importance and analysis of their stabilities using SSSLs in rice. Sci Agric Sin, 2007, 40: 447-456. (in Chinese with English abstract) | |
[9] | Kaladhar K, Swamy B, Babu A P, Reddy C S, Sarla N. Mapping quantitative trait loci for yield traits in BC2F2 population derived from Swarna × O. nivara cross. Rice Genet News, 2009, 24: 34-36. |
[10] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143 |
[11] |
Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269.
doi: 10.1038/ng.977 |
[12] | 陈燕华, 黄大辉, 邱永福, 张月雄, 刘芳, 马增凤, 刘驰, 李容柏. 水稻主要农艺性状的QTL分析. 华南农业大学学报, 2014, 35: 42-51. |
Chen Y H, Huang D H, Qiu Y F, Zhang Y X, Liu F, Ma Z F, Liu C, Li R B. A QTL analysis of main agronomic characters in rice,Oryza sativa. J South China Agric Univ, 2014, 35: 42-51. (in Chinese with English abstract) | |
[13] |
Sun Z, Yin X, Ding J, Yu D, Hu M, Sun X, Tan Y, Sheng X, Liu L, Mo Y, Ouyang N, Jiang B, Yuan G, Duan M, Yuan D, Fang J. QTL analysis and dissection of panicle components in rice using advanced backcross populations derived from Oryza sativa cultivars HR1128 and ‘Nipponbare’. PLoS One, 2017, 12: e0175692.
doi: 10.1371/journal.pone.0175692 |
[14] |
Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155-160.
doi: 10.1016/j.copbio.2006.02.003 |
[15] |
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967.
doi: 10.1038/ng.695 |
[16] |
Zhou L, Liu S, Wu W, Chen D, Zhan X, Zhu A, Zhang Y, Cheng S, Cao L, Lou X, Xu H. Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies. Sci Rep, 2016, 6: 29718.
doi: 10.1038/srep29718 |
[17] |
Begum H, Spindel J E, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch S R. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One, 2015, 10: e0119873.
doi: 10.1371/journal.pone.0119873 |
[18] |
Li X, Chen Z, Zhang G, Lu H, Qin P, Qi M, Yu Y, Jiao B, Zhao X, Gao Q, Wang H, Wu Y, Ma J, Zhang L, Wang Y, Deng L, Yao S, Cheng Z, Yu D, Zhu L, Xue Y, Chu C, Li A, Li S, Liang C. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large ppub of Chinese rice accessions. Sci China Life Sci, 2020, 63: 1688-1702.
doi: 10.1007/s11427-019-1682-6 |
[19] |
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo M E B, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J C, Zhang J, Li J, Hamilton R S, Wing R A, Ruan J, Zhang G, Wei C, Alexandrov N, McNally K L, Li Z, Leung H. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature, 2018, 557: 43-49.
doi: 10.1038/s41586-018-0063-9 |
[20] | Kawahara Y, de la Bastide M, Hamilton J P, Kanamori H, McCombie W R, Ouyang S, Schwartz D C, Tanaka T, Wu J, Zhou S, Childs K L, Davidson R M, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee S S, Kim J, Numa H, Itoh T, Buell C R, Matsumoto T. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (New York), 2013, 6: 4. |
[21] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217 |
[22] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829 |
[23] | Preacher K J, Hayes A F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Res Meth Instrum Comp, 2004, 36: 717-731. |
[24] |
Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang-Guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447-456.
doi: 10.1038/ng.3518 |
[25] |
Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672 |
[26] | Li N, Li Y. Ubiquitin-mediated control of seed size in plants. Front Plant Sci, 2014, 5: 332. |
[27] | 阮成江, 何祯祥, 钦佩. 我国农作物QTL定位研究的现状和进展. 植物学通报, 2003, 20: 10-22. |
Ruan C J, He Z X, Qin P. Research advancements on crop QTL mapping in China. Chin Bull Bot, 2003, 20: 10-22. (in Chinese with English abstract) |
[1] | 怀园园, 张晟瑞, 武婷婷, AZAM Muhammad, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[2] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[3] | 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027. |
[4] | 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机理[J]. 作物学报, 2022, 48(8): 2028-2040. |
[5] | 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052. |
[6] | 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133. |
[7] | 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065. |
[8] | 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582. |
[9] | 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842. |
[10] | 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760. |
[11] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[12] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[13] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[14] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[15] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
|