欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1822-1831.doi: 10.3724/SP.J.1006.2022.12021

• 研究简报 • 上一篇    下一篇

再生稻头季和再生季稻米重金属含量的比较研究

袁珅(), 彭少兵()   

  1. 作物遗传改良国家重点实验室 / 湖北洪山实验室 / 农业农村部长江中游作物生理生态与耕作重点实验室 / 华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2021-03-26 接受日期:2021-10-20 出版日期:2022-07-12 网络出版日期:2021-11-15
  • 通讯作者: 彭少兵
  • 作者简介:E-mail: syuan@mail.hzau.edu.cn
  • 基金资助:
    本研究由国家自然科学基金国际(地区)合作与交流项目(32061143038);国家现代农业产业技术体系建设专项(水稻, CARS-01-20)资助

Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice

YUAN Shen(), PENG Shao-Bing()   

  1. National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2021-03-26 Accepted:2021-10-20 Published:2022-07-12 Published online:2021-11-15
  • Contact: PENG Shao-Bing
  • Supported by:
    Major International (Regional) Joint Research Project of National Natural Science Foundation of China(32061143038);Earmarked Fund for China Agriculture Research System (Rice, CARS-01-20)

摘要:

稻米镉(Cd)和砷(As)污染已经引起了广泛的关注。再生稻种植面积逐渐扩大并且越来越受农民的欢迎。但是, 目前关于再生稻稻米重金属污染的研究还很少。因此, 本研究目的是分析再生稻稻米Cd和As含量并比较稻米Cd和As含量在头季和再生季之间的差异。该研究于2016年在湖北省12个主要再生稻种植地区进行, 在每个采样点选取3块有代表性的农民种植的再生稻田块, 取样并测定头季和再生季稻米Cd和As元素的含量。与头季相比, 再生季稻米Cd含量在5个采样点显著增加, 在3个采样点显著降低, 在其他4个采样点没有显著变化。与稻米Cd含量表现不同的是, 再生季稻米As含量在12个采样点中均显著低于头季。在12个采样点中, 再生季稻米As含量为68.6~147.4 μg kg-1, 比头季稻米As含量低36.5%~77.4%。值得注意的是, 在所有采样点中, 再生季稻米As含量都低于国家规定的稻米As限量标准(GB2762-2012)。试验结果表明, 在再生稻生产中不管是头季还是再生季都有可能出现稻米重金属污染的问题, 因此关于品种、环境、栽培管理特别是水分管理及这些因素的互作效应对再生稻稻米重金属含量的影响还需要更多的研究, 从而为应对稻米重金属污染问题提供理论依据。

关键词: 砷, 镉, 头季, 再生季, 再生稻

Abstract:

Cadmium (Cd) and arsenic (As) pollution in rice has caused global concern. Ratoon rice has been traditionally practiced and is becoming more attractive to farmers. However, information on grain heavy metal concentration of ratoon rice is limited. Therefore, the objective of this study was to evaluate grain Cd and As concentrations of ratoon rice and to explore the differences in grain Cd and As concentrations between main and ratoon seasons. In this study, we determined Cd and As concentrations of rice grain in main and ratoon seasons, which were collected from farmers’ fields in 12 sample plots of Hubei province in 2016. In comparison with that of main season, grain Cd of ratoon season increased and decreased in 5 and 3 out of 12 sample plots, respectively, whereas there was no significant difference in grain Cd between main and ratoon seasons in the rest of 4 sample plots. Rice ratooning significantly reduced grain As contamination of ratoon season compared with main season in all sample plots. Grain As of ratoon season across 12 sample plots was between 68.6-147.4 μg kg-1, which was 36.5%-77.4% lower than that of main season. Notably, grain As of ratoon season in 12 sample plots were lower than that of the corresponding national standard (GB2762-2012). Overall, these results indicated that grain heavy metal contamination might occur in both main and ratoon seasons of ratoon rice. This study suggested that more research on the effects of rice variety, environment, crop management especially water management and/or their interactions on grain heavy metal concentration needs to be conducted for reducing grain heavy metal concentration of ratoon rice.

Key words: arsenic, cadmium, main season, ratoon season, ratoon rice

图1

12个采样点的地理位置 地图数据来源于国家地理信息公共服务平台(http://www.tianditu.gov.cn/)。● 表示的是采样点的位置, 分别是蕲春(Qichun)、武穴(Wuxue)、浠水(Xishui)、团风(Tuanfeng)、黄州(Huangzhou)、咸宁(Xianning)、洪湖(Honghu)、监利(Jianli)、江陵(Jiangling)、荆州(Jingzhou)、沙市(Shashi)和枝江(Zhijiang)。"

表1

12个采样点的水稻品种和肥料用量"

序号
No.
采样点
Sample plot
水稻品种
Rice variety
氮磷钾施用量
N-P-K rate (kg hm-2)
1 蕲春Qichun 两优6326 Liangyou 6326 300-40-180
2 武穴Wuxue 黄华占 Huanghuazhan 322-40-184
3 浠水Xishui 深两优5814 Shenliangyou 5814 280-38-121
4 团风Tuanfeng 准两优199 Zhunliangyou 199 261-26-50
5 黄州Huangzhou 新两优223 Xinliangyou 223 347-52-100
6 咸宁Xianning 准两优608 Zhunliangyou 608 277-29-149
7 洪湖Honghu 丰两优香1号 Fengliangyouxiang 1 246-24-57
8 监利Jianli 丰优9918 Fengyou 9918 226-34-103
9 江陵Jiangling 丰两优香1号 Fengliangyouxiang 1 201-34-143
10 荆州Jingzhou 天两优616 Tianliangyou 616 229-34-103
11 沙市Shashi 丰两优香1号 Fengliangyouxiang 1 187-36-106
12 枝江Zhijiang 两优33 Liangyou 33 338-26-62

图2

12个采样点再生稻生长阶段(从头季播种到再生季收获)的降雨量 降雨量数据来源于中国气象局气象信息中心和美国国家海洋和大气局。"

图3

12个采样点再生稻头季和再生季稻米镉(Cd)含量 蓝色虚线表示的是国家规定的稻米中Cd的限量值标准200 μg kg-1 (GB2762-2012)。不同的大写字母、同一采样点柱子上方不同的小写字母分别表示在0.05水平上12个采样点平均的头季和再生季之间、同一采样点头季和再生季之间差异显著(LSD)。"

图4

12个采样点再生稻头季和再生季稻米砷(As)含量 蓝色虚线表示的是国家规定的稻米中As的限量值标准 200 μg kg-1 (GB2762-2012)。不同的大写字母、同一采样点柱子上方不同的小写字母分别表示在0.05水平上12个采样点平均的头季和再生季之间、同一采样点头季和再生季之间差异显著(LSD)。"

表2

头季和再生季稻米镉(Cd)含量与气象因素及土壤理化性质的关系"

季节
Season
降雨量
Precipitation
最高温
Tmax
最低温
Tmin
黏土比例
Clay
沙土比例
Sand
pH 土壤容重
Bulk density
阳离子交换量
CEC
头季 Main -0.02ns 0.20ns 0.39ns 0.63* -0.36ns -0.51ns -0.38ns 0.29ns
再生季 Ratoon -0.16ns 0.02ns 0.24ns 0.38ns -0.56* 0.58* 0.25ns 0.36ns
[1] GRiSP (Global Rice Science Partnership). Rice Almanac, 4th edn. Los Baños (Philippines): International Rice Research Institute, 2013. p283.
[2] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108
[3] Alexandratos N, Bruinsma J. World Agriculture Towards 2030/ 2050: the 2012 revision. Roman, Food and Agriculture Organization of the United Nations, 2012. pp 59-131.
[4] FAOSTAT. Crop Production. 2021 [2021-03-20]. http://www.fao.org/faostat/en/#data .
[5] Ray D K, Foley J A. Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett, 2013, 8: 044041.
doi: 10.1088/1748-9326/8/4/044041
[6] Dong H, Chen Q, Wang W, Peng S, Huang J, Cui K, Nie L. The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crops Res, 2017, 208: 55-59.
doi: 10.1016/j.fcr.2017.04.003
[7] Harrell D L, Bond J A, Blanche S. Evaluation of main-crop stubble height on ratoon rice growth and development. Field Crops Res, 2009, 114: 396-403.
doi: 10.1016/j.fcr.2009.09.011
[8] 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究. 中国水稻科学, 2019, 33: 47-56.
He A B, Yu P C, Chen Q, Jiang G L, Wang W Q, Nie L X. Optimizing the nitrogen management for Yongyou 4949 and Chaoyou 1000 in ratoon rice system in central China. Chin J Rice Sci, 2019, 33: 47-56. (in Chinese with English abstract)
[9] Yuan S, Cassman K G, Huang J, Peng S, Grassini P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central china? Field Crops Res, 2019, 234: 66-72.
doi: 10.1016/j.fcr.2019.02.004
[10] Negalur R B, Yadahalli G S, Chittapur B M, Guruprasad G S, Narappa G. Ratoon rice: a climate and resource smart technology. Int J Curr Microb Appl Sci, 2017, 6: 1638-1653.
[11] Faruq G, Taha R M, Prodhan Z H. Rice ratoon crop: a sustainable rice production system for tropical hill agriculture. Sustainability, 2014, 6: 5785-5800.
doi: 10.3390/su6095785
[12] 赵正洪, 戴力, 黄见良, 潘晓华, 游艾青, 赵全志, 陈光辉, 周政, 胡文彬, 纪龙. 长江中游稻区水稻产业发展现状、问题与建议. 中国水稻科学, 2019, 33: 553-564.
Zhao Z H, Dai L, Huang J L, Pan X H, You A Q, Zhao Q Z, Chen G H, Zhou Z, Hu W B, Ji L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River. Chin J Rice Sci, 2019, 33: 553-564. (in Chinese with English abstract)
[13] 刘国华, 邓化冰, 陈立云, 肖应辉, 唐文邦. 中稻头季稻与再生稻的品质比较研究. 杂交水稻, 2002, (1): 45-47.
Liu G H, Deng H B, Chen L Y, Xiao Y H, Tang W B. Comparison of grain quality between main and ratooning crops of middle-season rice. Hybrid Rice, 2002, (1): 45-47. (in Chinese with English abstract)
[14] 陈基旺, 帅泽宇, 屠乃美, 易镇邪. 湖南再生稻发展现状与对策分析. 中国稻米, 2018, 24(5): 68-72.
Chen J W, Shuai Z Y, Tu N M, Yi Z X. Analysis on development status and countermeasures of ratoon rice in Hunan. China Rice, 2018, 24(5): 68-72. (in Chinese with English abstract)
[15] 环境保护部, 国土资源部. 全国土壤污染状况调查公报. 2014 [2021-03-20]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
The Ministry of Environmental Protection, the Ministry of Land and Resources. The national survey of soil pollution in the bulletin. 2014 [2021-03-20]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. (in Chinese)
[16] Satarug S, Garrett S H, Sens M A, Sens D A. Cadmium environmental exposure, and health outcomes. Environ Health Perspect, 2010, 118: 182-190.
doi: 10.1289/ehp.0901234
[17] Zhu Y G, Yoshinaga M, Zhao F J, Rosen B P. Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci, 2014, 42: 443-467.
doi: 10.1146/annurev-earth-060313-054942
[18] Zhao F J, Ma Y, Zhu Y G, Tang Z, McGrath S P. Soil contamination in China: current status and mitigation strategies. Environ Sci Technol, 2015, 49: 750-759.
doi: 10.1021/es5047099
[19] 于焕云, 崔江虎, 乔江涛, 刘传平, 李芳柏. 稻田镉砷污染阻控原理与技术应用. 农业环境科学学报, 2018, 37: 1418-1426.
Yu H Y, Cui J H, Qiao J T, Liu C P, Li F B. Principle and technique of arsenic and cadmium pollution control in paddy field. J Agro-Environ Sci, 2018, 37: 1418-1426. (in Chinese with English abstract)
[20] Marin A R, Masscheleyn P H, Patrick Jr W H. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil, 1993, 152: 245-253.
doi: 10.1007/BF00029094
[21] Xu X Y, McGrath S P, Meharg A A, Zhao F J. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol, 2008, 42: 5574-5579.
doi: 10.1021/es800324u pmid: 18754478
[22] Khan K A, Stroud J L, Zhu Y G, Mcgrath S P, Zhao F J. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol, 2010, 44: 8515-8521.
doi: 10.1021/es101952f
[23] Meharg A A, Norton G, Deacon C, Williams P, Adomako E E, Price A, Zhu Y, Li G, Zhao F J, McGrath S, Villada A. Variation in rice cadmium related to human exposure. Environ Sci Technol, 2013, 47: 5613-5618.
doi: 10.1021/es400521h
[24] Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao F J. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice, 2017, 10: 9.
doi: 10.1186/s12284-017-0149-2
[25] Yoshihara T, Goto F, Shoji K, Kohno Y. Cross relationships of Cu, Fe, Zn, Mn, and Cd accumulations in common japonica and indica rice cultivars in Japan. Environ Exp Bot, 2010, 68: 180-187.
doi: 10.1016/j.envexpbot.2009.10.006
[26] Islam S, Rahman M M, Islam M R, Naidu R. Effect of irrigation and genotypes towards reduction in arsenic load in rice. Sci Total Environ, 2017, 609: 311-318.
doi: 10.1016/j.scitotenv.2017.07.111
[27] Spanu A, Valente M, Langasco I, Barracu F, Orlandoni A M, Sanna G. Sprinkler irrigation is effective in reducing cadmium concentration in rice (Oryza sativa L.) grain: a new twist on an old tale? Sci Total Environ, 2018, 628: 1567-1581.
[28] Chen H, Tang Z, Wang P, Zhao F J. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environ Pollut, 2018, 238: 482-490.
doi: 10.1016/j.envpol.2018.03.048
[29] 李荭荭, 李洲, 陈春乐, 田甜, 陈丽玲, 王果. 生物炭对水稻-再生稻体系吸收土壤中Cd和Pb的影响. 水土保持学报, 2020, 34(2): 378-384.
Li H H, Li Z, Chen C L, Tian T, Chen L L, Wang G. Effects of biochar on the uptake of Cd and Pb from soil by rice-ratoon system. J Soil Water Conserv, 2020, 34(2): 378-384. (in Chinese with English abstract)
[30] 陈基旺, 陈平平, 王晓玉, 屠乃美, 易镇邪. 不同节位再生稻镉积累分配及其与头季稻的差异. 南方农业学报, 2020, 51: 790-797.
Chen J W, Chen P P, Wang X Y, Tu N M, Yi Z X. Cadmium accumulation and distribution in ratooning rice from different nodes and its differences with main crop. J Southern Agric, 2020, 51: 790-797. (in Chinese with English abstract)
[31] 胡志华, 李大明, 徐小林, 黄庆海, 柳开楼, 胡惠文, 叶会财, 周利军, 余喜初. 再生稻轻简化种植技术研究进展. 中国稻米, 2017, 23(3): 13-17.
Hu Z H, Li D M, Xu X L, Huang Q H, Liu K L, Hu H W, Ye H C, Zhou L J, Yu X C. Research progress of simplified cultivation technology of ratoon rice. China Rice, 2017, 23(3): 13-17. (in Chinese with English abstract)
[32] 胡香玉, 钟旭华, 梁开明, 黄农荣, 潘俊峰, 刘彦卓, 傅友强, 彭碧琳. 广东再生稻研究进展与展望. 中国稻米, 2019, 25(6): 16-19.
Hu X Y, Zhong X H, Liang K M, Huang N R, Pan J F, Liu Y Z, Fu Y Q, Peng B L. Research progress and prospect on ratoon rice in Guangdong Province. China Rice, 2019, 25(6): 16-19. (in Chinese with English abstract)
[33] Ma R, Shen J, Wu J, Tang Z, Shen Q, Zhao F J. Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environ Pollut, 2014, 194: 217-223.
doi: 10.1016/j.envpol.2014.08.004
[34] Zhao F J, Lopez-Bellido F J, Gray C W, Whalley W R, Clark L J, McGrath S P. Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. Sci Total Environ, 2007, 372: 433-439.
doi: 10.1016/j.scitotenv.2006.09.028
[35] 中国气象局气象信息中心. 气象数据. [2021-04-30]. http://www.nmic.cn/.
National Meteorological Information Centre of the China Meteorological Administration. Climatic Data. [2021-04-30]. http://www.nmic.cn/. (in Chinese)
[36] National Oceanic Atmospheric Administration. Climate Data. [2021-04-30]. http://www.ncdc.noaa.gov/.
[37] FAO/IIASA/ISRIC/ISSCAS/JRC.Harmonized World Soil Database (version 1.2).FAO, Rome, Italy and IIASA, Laxenburg, Austria. 2012.
[38] 中华人民共和国国家标准. GB 2762-2012食品安全国家标准, 食品中污染物限量. 2012.
The National Standard of the People’s Republic of China. GB 2762-2012,National Standards for Food safety, Contaminant limits in food. 2012.
[39] Chaney R L, Reeves P G, Ryan J A, Simmons R W, Welch R M, Angle J C. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals, 2004, 17: 549-553.
pmid: 15688862
[40] Clemens S, Aarts M G M, Thomine S, Verbruggen N. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci, 2013, 18: 92-99.
doi: 10.1016/j.tplants.2012.08.003
[41] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin (Vitae), 2014, 44: 845-850. (in Chinese with English abstract)
[42] 易镇邪, 周文新, 秦鹏, 屠乃美. 再生稻与同期抽穗主季稻源库流特性差异研究. 作物学报, 2009, 35: 140-148.
Yi Z X, Zhou W X, Qin P, Tu N M. Differences in characteristics of source, sink, and flow between ratooning rice and its same- term heading main-crop rice. Acta Agron Sin, 2009, 35: 140-148. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00140
[43] 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702-1717.
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702-1717. (in Chinese with English abstract)
[44] 任天举, 蒋志成, 王培华, 李经勇, 张晓春, 鲁远源. 杂交中稻再生力与头季稻农艺性状的相关性研究. 作物学报, 2006, 32: 613-617.
Ren T J, Jiang Z C, Wang P H, Li J Y, Zhang X C, Lu Y Y. Correlation of ratooning ability with its main crop agronomic traits in mid-season hybrid rice. Acta Agron Sin, 2006, 32: 613-617. (in Chinese with English abstract)
[45] 程旺大, 张国平, 姚海根, 吴伟, 汤美玲, 朱祝军, 徐民. 晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性. 作物学报, 2006, 32: 573-579.
Cheng W D, Zhang G P, Yao H G, Wu W, Tang M L, Zhu Z J, Xu M. Genotypic and environmental variation and their stability of As, Cr, Cd, Ni and Pb concentrations in the grains of japonica rice. Acta Agron Sin, 2006, 32: 573-579. (in Chinese with English abstract)
[46] Chen H, Wang P, Gu Y, Kretzschmar R, Kopittke P M, Zhao F J. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environ Pollut, 2020, 261: 114151.
doi: 10.1016/j.envpol.2020.114151
[47] Ge L, Cang L, Yang J, Zhou D. Effects of root morphology and leaf transpiration on Cd uptake and translocation in rice under different growth temperature. Environ Sci Pollut Res, 2016, 23: 24205-24214.
doi: 10.1007/s11356-016-7696-8
[48] 朱丹妹, 刘岩, 张丽, 王秀梅, 安毅, 李玉浸, 林大松. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响. 农业环境科学学报, 2017, 36: 1508-1517.
Zhu D M, Liu Y, Zhang L, Wang X M, An Y, Li Y J, Lin D S. Effects of pH, Eh, Fe, and flooded time on available-Cd content after flooding of different kinds of soil. J Agro-Environ Sci, 2017, 36: 1508-1517. (in Chinese with English abstract)
[49] Stone R. Arsenic and paddy rice: a neglected cancer risk? Science, 2008, 321: 184-185.
doi: 10.1126/science.321.5886.184
[50] Zhu Y G, Sun G X, Lei M, Teng M, Liu Y X, Chen N C, Wang L H, Carey A M, Deacon C, Raab A, Meharg A A. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol, 2008, 42: 5008-5013.
pmid: 18678041
[51] 竺朝娜, 冯英, 胡桂仙, 朱凤珍, 王林友, 张礼霞, 金庆生, 王建军. 水稻糙米砷含量及其与土壤砷含量的关系. 核农学报, 2010, 24: 355-359.
Zhu Z N, Feng Y, Hu G X, Zhu F Z, Wang L Y, Zhang L X, Jin Q S, Wang J J. Arsenic concentration of brown rice and its relationship with soil arsenic. J Nucl Agric Sci, 2010, 24: 355-359. (in Chinese with English abstract)
[52] Meharg A A, Zhao F J. Arsenic and Rice Dordrecht: Springer, 2012. pp 11-27.
[53] Yu H Y, Ding X, Li F, Wang X, Zhang S, Yi J, Liu C, Xu X, Wang Q. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: the role of soil extractable and plant silicon. Environ Pollut, 2016, 215: 258-265.
doi: 10.1016/j.envpol.2016.04.008
[54] Zhao F J, McGrath S P, Meharg A A. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol, 2010, 61: 535-559.
doi: 10.1146/annurev-arplant-042809-112152
[55] 吴佳, 纪雄辉, 魏维, 谢运河. 水分状况对水稻镉砷吸收转运的影响. 农业环境科学学报, 2018, 37: 1427-1434.
Wu J, Ji X H, Wei W, Xie Y H. Effect of water levels on cadmium and arsenic absorption and transportation in rice. J Agro-Environ Sci, 2018, 37: 1427-1434. (in Chinese with English abstract)
[56] Norton G J, Pinson S R, Alexander J, McKay S, Hansen H, Duan G L, Islam M R, Islam S, Stroud J L, Zhao F J, McGrath S P, Zhu Y, Lahner B, Yakubora E, Guerinot M L, Tarpley L, Eizenga G, Salt D E, Meharg A A, Price A H. Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites. New Phytol, 2012, 193: 650-664.
doi: 10.1111/j.1469-8137.2011.03983.x
[57] Li R Y, Stroud J L, Ma J F, McGrath S P, Zhao F J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol, 2009, 43: 3778-3783.
doi: 10.1021/es803643v pmid: 19544887
[58] 王伟, 宋雯, 尹双义, 徐辰武. 江苏省稻米重金属镉检测多级抽样最优试验方案的探讨. 作物学报, 2014, 40: 2052-2056.
doi: 10.3724/SP.J.1006.2014.02052
Wang W, Song W, Yin S Y, Xu C W. Discussion of multistage sampling optimum test plans on rice cadmium detection for Jiangsu province. Acta Agron Sin, 2014, 40: 2052-2056. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02052
[59] 汤文光, 肖小平, 张海林, 黄桂林, 唐海明, 李超, 刘胜利, 汪柯. 轮耕对双季稻田耕层土壤养分库容及Cd含量的影响. 作物学报, 2018, 44: 105-114.
Tang W G, Xiao X P, Zhang H L, Huang G L, Tang H M, Li C, Liu S L, Wang K. Effects of rotational tillage on nutrient storage capacity and Cd content in tilth soil of double-cropping rice region. Acta Agron Sin, 2018, 44: 105-114. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00105
[60] Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil, 2020, 446: 1-21.
doi: 10.1007/s11104-019-04374-6
[61] 徐建明, 孟俊, 刘杏梅, 施加春, 唐先进. 我国农田土壤重金属污染防治与粮食安全保障. 中国科学院院刊, 2018, 33: 153-159.
Xu J M, Meng J, Liu X M, Shi J C, Tang X J. Control of heavy metal pollution in farmland of China in terms of food security. Bull Chin Acad Sci, 2018, 33: 153-159.
[62] 杨小粉, 吴勇俊, 张玉盛, 汪泽钱, 敖和军. 水分管理对水稻镉吸收的影响. 中国稻米, 2019, 25(4): 34-37.
Yang X F, Wu Y J, Zhang Y S, Wang Z Q, Ao H J. Effects of water management on the accumulation of cadmium in rice. China Rice, 2019, 25(4): 34-37. (in Chinese with English abstract)
[63] 易镇邪, 苏雨婷, 谷子寒, 王元元, 屠乃美, 周文新. 不同生育阶段间歇灌溉对镉污染稻田双季稻产量构成与镉累积的影响. 水土保持学报, 2019, 33(5): 364-368.
Yi Z X, Su Y T, Gu Z H, Wang Y Y, Tu N M, Zhou W X. Effects of intermittent irrigation at different growth stages on yield components and cadmium accumulation of double-cropping rice in Cd-contaminated paddy field. J Soil Water Conserv, 2019, 33(5): 364-368. (in Chinese with English abstract)
[1] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[2] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[3] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[4] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[5] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[6] 梁桂红,华营鹏,周婷,廖琼,宋海星,张振华. 甘蓝型油菜NRT1.5NRT1.8家族基因的生物信息学分析及其对氮-镉胁迫的响应[J]. 作物学报, 2019, 45(3): 365-380.
[7] 曲存民,马国强,朱美晨,黄小虎,贾乐东,王书贤,赵会彦,徐新福,卢坤,李加纳,王瑞. 砷胁迫下甘蓝型油菜苗期根、下胚轴和鲜重的全基因组关联分析[J]. 作物学报, 2019, 45(2): 175-187.
[8] 陈鸿飞,庞晓敏,张仁,张志兴,徐倩华,方长旬,李经勇,林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响[J]. 作物学报, 2017, 43(10): 1507-1517.
[9] 张秀,郭再华*,杜爽爽,王阳,石乐毅,张丽梅,贺立源. 砷胁迫下水磷耦合对不同磷效率水稻农艺性状及精米砷含量的影响[J]. 作物学报, 2013, 39(10): 1909-1915.
[10] 李海波,杨兰芳,李亚东. 土壤砷对大豆主要性状及叶绿素含量的影响[J]. 作物学报, 2013, 39(07): 1303-1308.
[11] 高芳, 林英杰, 张佳蕾, 杨传婷, 张凤, 杨晓康, 赵华建, 李向东. 镉胁迫对花生生理特性、产量和品质的影响[J]. 作物学报, 2011, 37(12): 2269-2276.
[12] 李玲, 陈进红, 祝水金. 镉胁迫对转基因棉花SGK3和ZD-90种子品质性状的影响[J]. 作物学报, 2011, 37(05): 929-933.
[13] 佘玮, 揭雨成, 邢虎成, 鲁雁伟, 黄明, 康万利, 王栋. 苎麻耐镉品种差异及其筛选指标分析[J]. 作物学报, 2011, 37(02): 348-354.
[14] 高清松, 杨泽峰, 周勇, 张丹, 闫成海, 梁国华, 徐辰武. 一个玉米类ABC1基因ZmABC1-10的克隆及其对镉等非生物胁迫的应答[J]. 作物学报, 2010, 36(12): 2073-2083.
[15] 易镇邪;周文新;秦鹏;屠乃美. 再生稻与同期抽穗主季稻源库流特性差异研究[J]. 作物学报, 2009, 35(1): 140-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .